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Abstract

Data-driven algorithms for detecting anomalies in times series data are ubiquitous, but
generally unable to provide helpful explanations for the predictions they make. In this
work we propose a post-hoc explainability method that is applicable to any differentiable
anomaly detection algorithm for time series. Our method provides explanations in the
form of a set of diverse counterfactual examples, i.e., multiple perturbed versions of the
original time series that are similar to the latter but not considered anomalous by the
detection algorithm. Those examples are informative on the important features of the time
series and the magnitude of changes that can be made to render it non-anomalous for the
explained algorithm. We call our method counterfactual ensemble explanation, and test it on
two deep-learning-based anomaly detection models. We apply the latter to univariate and
multivariate real-world data sets and assess the quality of our explanations under several
explainability criteria such as Validity, Plausibility, Closeness and Diversity. We show that
our algorithm can produce valuable explanations; moreover, we propose a novel visualization
of our explanations that can convey a richer interpretation of a detection algorithm’s internal
mechanism than existing post-hoc explainability methods. Additionally, we design a sparse
variant of our method to improve the interpretability of our explanation for high-dimensional
time series anomalies. In this setting, our explanation is localized on only a few dimensions
and can therefore be communicated more efficiently to the model’s user.

1 Introduction

Anomaly detection in time series is a common data analysis task that can be defined as identifying outliers,
i.e., observations that do not belong to a reference distribution. For instance, anomaly detection is leveraged
to localize a defect in computing systems, disclose a fraud in financial transactions, or diagnose a disease
from health records Blazquez-Garcia et al.| (2021)). Detected outliers often call for further investigation,
therefore, the recipient of a detection algorithm outputs generally needs to be able to interpret the algorithm’s
predictions. Consequently, providing explanations for models that detect anomalies has practical relevance,
all the more in the setting of multivariate time series data, where model interpretation is an even more
challenging task. This is however a still understudied problem, in particular for machine learning models.

In general, an anomaly detection model classifies each timestamp of a time series as anomalous or not. Several
state-of-the-art models involve complex deep learning (DL) classifiers, such as LSTMs|Malhotra et al.| (2015)),
RNNs|Audibert et al.| (2020) or TCNs|Bai et al.| (2018]); Carmona et al.[(2021)), whose internal mechanisms are
opaque. This lack of transparency can prevent these models from being deployed in consequential contexts
Brown et al.| (2018]); [Bhatt et al.| (2020). Prior work has proposed to include interpretable blocks in machine
learning models for anomaly detection (e.g., attention mechanism in RNNs Brown et al.| (2018)) or design
model-specific explainability methods (e.g., feature-importance scores for Isolation Forests |Carletti et al.
(2021)). Our work is orthogonal to these methods: we propose a post-hoc and model-agnostic explainability
method that can be applied to any existing differentiable anomaly detection model.

The majority of existing post-hoc explainability methods for time series models aims at estimating feature-
saliency scores (Crabbe & van der Schaar| (2021)); |[Pan et al.| (2020). The latter ranks the features of the
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input data in terms of their relative contribution to the model’s prediction. Although these techniques
have provided valuable insights in image classification tasks (Fong et al., |2019)), it is often a weak form of
explanation for anomalies in time series. In fact, they essentially indicate that the time series values at the
anomalous time stamps are salient, therefore providing redundant information compared to the anomaly
detection model (see for instance Figure where the salient features are highlighted in green). In practice,
a user of an anomaly detection model might be interested in (a) knowing what can be changed in the input
data to avoid encountering the anomaly again in the future (preferentially with minimal cost), and (b)
understand the model’s sensitivity to a particular anomaly. Our proposed method provides explanations
satisfying these two requirements.

Counterfactual explanation denotes a type of explainability method that provides insight on the sensitivity
of a model’s predictions to a change in the input data. They have notably been proposed for interpreting
time series classifiers |Ates et al.| (2021)); [Delaney et al| (2021); Karlsson et al. (2020). A counterfactual
example (or for short, a counterfactual) is an instance-based explanation in the form of a perturbed input on
which the model’s prediction value is different from the model output on the original data. It thus indicates
what modifications of the input must be made to obtain a different prediction. It is generally defined as an
instance X’ minimizing a cost function such as Wachter et al.| (2018]):

L(X7 Xl>yl>/\) = )‘(f(X/) - yl>2 + d(X’ XI)7

where X and f are respectively the original input and the prediction model that need to be explained, y’ is
a desired output value (e.g. a different predicted label in classification contexts), d(.,.) is a distance on the
input space and A is a trade-off parameter. In their basic definition, they are closely related to adversarial
examples [Verma et al.| (2020)), however, their properties and their utility are distinct. Adversarial examples
are often weakly constrained and used as hard instances to train more robust models, whereas counterfactuals
are designed as plausible examples for interpreting an existing model’s predictions.

In the context of anomalies detected by a time series model, counterfactual methods aim at generating
modified time series (or sub-sequences) that do not contain anomalous observations according to the detection
model. With the additional constraint that counterfactuals are somehow similar to the original time series,
these time series instances therefore correspond to the closest normal or expected behaviour according to
the explained model. For example, when the time series is a temporal record of a patient’s blood glucose
level with abnormally high values, a counterfactual example can be an alternative record with levels in a
non-critical interval. Hence, counterfactual explanations can reveal the boundaries of the normal time series
distribution according to the prediction model.

However, a single counterfactual is generally only a partial explanation, satisfying a particular trade-off
between predefined criteria [Russell (2019). One extension of counterfactual explanation consists in providing
an ensemble (or set) of diverse counterfactual instances [Russell (2019); [Mothilal et al. (2020)); Dandl et al.
(2020). Nonetheless, this extension has not been previously considered in the context of time series anomaly
detection models. Besides, more broadly, there is no existing strategy to effectively communicate these
more complex counterfactual explanations to the model’s user. In this work, we propose an approach for
generating counterfactual ensemble explanations for anomaly detection models in time series, as well as a
visualization method of these explanations.

More precisely, we make the following contributions:

e We introduce a model-agnostic and post-hoc method that explains the predictions of any differ-
entiable anomaly detection model for time series. For any given input and prediction value, our
explanation, called counterfactual ensemble explanation, is a set of counterfactual examples sat-
isfying different trade-offs between pre-defined criteria. In practice, these examples can be used
individually as actionable explanations, or analysed together to investigate the model’s sensitivity
to perturbations of the input.

o We design a sparse variant of our method for high-dimensional time series anomalies, which have been
much less studied and generally harder to interpret. In this context, we constraint our counterfactual
explanation to make changes only on a few dimensions of the input time series, so that it can be
communicated more efficiently to the explanation’s recipient.
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e We propose an interpretable visualization of our counterfactual ensemble explanation. Our rep-
resentation shows the range of possible perturbations gaining insight on the model’s local decision
boundary and sensitivity. Thus, our visualization can increase the actionability of the counterfactual
explanation, when the time series features are mutable.

e We investigate the value of our method on two deep-learning anomaly detection models, applied to
univariate and multivariate real-world time series data sets. We quantify the quality of our ensemble
explanations using metrics previously proposed in other data domains, namely Validity, Plausibil-
ity, Closeness and Diversity. We note that ensemble explanations have never been considered in
the context of time series anomalies, therefore there is not yet an equivalent competitive method.
However, we also design a naive counterfactual ensemble method that we numerically compare to
in our experiments.

Figure [1] illustrates our proposed method, and its novelty in contrast to existing explainability methods for
time series models. In this univariate example with a spike outlier, a feature-saliency explanation method
essentially highlights the time series features near the anomaly (Figure. Besides, a (single) counterfactual
explanation proposes a whole new subsequence where the largest feature changes are localized at the anomaly
(Figure. In comparison, our ensemble explanation (Figure is (a) sparse, in the sense that it is localized
on a few time series features (the anomaly) (b) optimal in that it minimally modifies these features and (c)
rich by diversifying the possible perturbations (see Figure showing a few examples from our ensemble).

After succinctly reviewing existing work in explainability for time series models and counterfactual explana-
tions in Section [2| we describe the general set-up in Section [3] In Section [d we present our approach. Then
in Section [5] we demonstrate the effectiveness of our method on DL-based models and benchmark anomaly
detection data sets. Finally, we discuss our results and propose possible future developments in Section [6}

2 Related work

Explainability methods for users of machine learning models have developed along two paradigms: building
models with interpretable blocks or designing model-agnostic methods that can be applied to any model
already deployed. For time series data, RETAIN |Choi et al.| (2016) incorporates an attention-mechanism in
an RNN-based model while Dynamic Masks |Crabbe & van der Schaar| (2021)) is a model-agnostic algorithm
that produces sparse feature-importance masks on time series using dynamic perturbation operators. In fact,
many methods for time series adapt algorithms designed for tabular or image data: for instance, TimeSHAP
Bento et al.| (2021) extends SHAP, a feature-attribution method that approximates the local behaviour of
a model with a linear model using a subset of features. Another interesting line of work interprets CNNs
for time series models using Shapelet Learning Ma et al.| (2020). Shapelets are subsequences that are learnt
from a dataset to build interpretable time series decompositions.

Nonetheless, previously cited work for time series are feature-saliency estimation methods. Although they
are notably helpful to localize the important parts of time series (in terms of their contribution to the model’s
prediction), they can only weakly explain anomaly detection models. Moreover, instance- or ezample-based
explanations can be more easily interpreted by a non-expert person [Wachter et al. (2018]). These methods
explain a prediction on a single instance by comparing it to another real or generated example, e.g., the
most typical examplar of the observed phenomenon (a prototype [Hautamaki et al.| (2008)) or a contrastive
examplar related to a distinct behaviour (a counterfactual |Ates et al.| (2021)); Delaney et al.| (2021)); Karlsson
et al| (2020)). For time series classifiers, counterfactuals can be generated by swapping the values of the
most discriminative dimensions with those from another training instance |Ates et al. (2021)). In a causal
inference setting, |(Chernozhukov et al.| (2021)) construct counterfactual time series as linear combinations of
control groups. Unfortunately, these approaches can yield implausible subsequences, that do not belong to
the data manifold |Carletti et al. (2021, e.g., by breaking correlations between the dimensions of multivariate
time series. The Native Guide algorithm Delaney et al| (2021) does not suffer from the previous issue but
uses a perturbation mechanism on the Nearest Unlike Neighbor in the training set using the model’s internal
feature vector. Lastly, for a k-NN and a Random Shapelet Forest classifiers, Karlsson et al.[ (2020) design a
tweaking mechanism to produce counterfactual time series.
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However, these methods necessitate knowledge of the model’s internal mechanism and/or access to its training
dataset, which can be expensive. Additionally, these counterfactual explanations suffer from the so-called
Rashomon effect Molnar|(2019), i.e., the fact that several equally-good perturbed examples might exist and be
informative for the model’s user. In this case, one might benefit from knowing multiple ones, before choosing
the most helpful example in a specific context Mothilal et al.[(2020). For linear classifiers of tabular data, a set
of diverse counterfactuals can be obtained by sequentially adding constraints along the optimization iterations
of the perturbation algorithm Russell (2019)), whereas the Multi-Objective Counterfactuals algorithm Dand]l
et al.| (2020) records multiple perturbed examples generated along the iterations of a genetic algorithm.
These counterfactual sets therefore contain different trade-offs between conflicting criteria. While in the
previous methods, diversity is not explicitly enforced, the DiCE algorithm Mothilal et al.| (2020) includes a
penalization on counterfactuals’ similarity based on Determinantal Point Processes. In a similar fashion, for
image classifiers, DiVE [Rodriguez et al.| (2021)) perturbs the latent features in a Variational Auto Encoder and
penalises pairwise similarity between perturbations, while |Karimi et al.| (2020]) propose a general framework
for generating counterfactual examples with diversity constraints in heterogeneous data. Our paper differs
from these works since it considers the problem of generating diverse counterfactual explanations for the time
series domain. In particular, we leverage specific time series perturbation mechanisms in order to obtain
plausible examples.

To the best of our knowledge, we propose the first method that provides diverse counterfactual explanations
for time series. As previously noted (Crabbe & van der Schaar| (2021, this data domain requires specific
treatment of temporal dependencies, therefore existing methods for tabular data cannot be directly applied.
Besides, having a diverse set of counterfactual explanations can be particularly helpful for time series where
the actionable or mutable features are not known in advance. We introduce our method in the context of
anomaly detection, however we believe that our approach could be adapted to other tasks on time series data.
Moreover, previous works proposing diverse counterfactual explanations have not discussed the additional
challenge of communicating efficiently a set of examples compared to a single one. The visual representation
we propose can be related to the “What-If Tool" [Wexler et al.| (2020]), an interactive visual tool designed
for general ML model elicitation. Before exposing our method, we describe the general set-up in the next
section.

3 General set-up

In this work, we assume that anomalies in a time series are unpredictable and out-of-distribution subse-
quences. Hence, an anomaly is a significant deviation from a given reference behaviour. In the remainder,
we will not make a distinction between anomaly, outlier and anomalous/abnormal/atypical observation.
Not-anomalous data points will be considered as belonging to the data distribution, and denoted as the
reference /normal/typical/expected behaviour. We will also refer to the latter as the context.

For the description of the general set-up, we introduce the following notations: for an integer k € N, [k]
denotes the set {i; 1 <i < k} and for x € R, let 4y = max(0,z). For a vector v € R", we denote v; its i-th
coordinate and for X € R™*" a matrix or multivariate time series, X; denotes respectively the i-th row or
the i-th observation.

3.1 Anomaly detection model

We assume that we are given an anomaly detection model which we can use to predict anomalies on a time
series of any given length. We consider a general setting where time series are multivariate and the model
processes all dimensions (or channels) jointly. More precisely, we denote X € RT*P a time series with T'
time stamps and D dimensions. The prediction function of the model, denoted by f, is used to classify
each timestamp ¢t € [1,T] of X as "anomalous" (i.e., label 1) or "not-anomalous" (i.e., label 0). In fact, the
prediction f(X) € RT is a vector of anomaly scores for each timestamp (e.g., probability scores of being
anomalous) which transforms into a vector of 0-1 labels using the model’s classification rule (e.g. a threshold
on these scores). Note that the dimension of the vector f(X) might be smaller than T if the model needs a
warm-up interval.
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In practice, these models often detect anomalous time stamps by subdividing time series into smaller time
windows and classifying the latter (therefore each timestamp or a subset of them in these sub-windows). In
other works, to output a prediction on a single timestamp, the "receptive field" of a model is generally a
fixed-size (typically small) window. Let’s denote W € RY*P a window of size L and consider the following
general set-up: the window W = [W¢, W] is subdivided by the model into two parts, with W € R(E=5)xDP
a context part (that can be empty if the context is implicit once the model is trained) and Wg € R¥*P a
suspect part, for which the model makes a prediction. More precisely, f(W) € R? is the anomaly score of
the window Ws and, without loss of generality, we suppose that f(W) € [0,1]°. We also denote 6 € [0, 1]
the anomaly detection rule, i.e., a label 1 is given to Wg if for some i € [S], f(W); > 6.

Examples of anomaly detection models with the previously described mechanism are NCAD [Carmona et al.
(2021)), where the context window has typically thousands of time stamps and the suspect window has 1 to
5 time stamps, and USAD |Audibert et al.| (2020), where W = Wg and L = 5 or 10. In the latter case, the
context is implicit and the whole training set is considered as normal data and thus the context of anomalies
detected in a test time series.

3.2 Counterfactual explanation

In most cases, a single anomaly is a short subsequence, and can therefore be contained in one or few contiguous
subwindows Wg. For ease of exposition, we suppose that an anomaly is contained in one suspect window.
An example is shown in Figure [la] where a suspect window Wy (highlighted in red) contains an anomaly.
A counterfactual example for model f detecting an anomaly in Wy (i.e., for some i € [S], f(W); > 0), is
an alternative window W = [We, W] such that all predicted labels are 0 (i.e., for any i € [S], f(W); < 6).
Since the context of the anomaly is also key to its detection by the model, and if W does not contain a
context window We, we choose to add in the counterfactual example W a fixed size window W, that
immediately precedes W in the time series. Note that we implicitly suppose that anomalies are not too close
to each other so that the additional context window does not contain any anomaly. With a slight abuse of
notations, we still denote W the obtained counterfactual example.

3.3 Properties of counterfactual explanations

There are four largely consensual properties that convey value and utility to counterfactual explanations in
the context of model elicitation [Verma et al.| (2020):

1. Validity or Correctness: achieving a desired model output, e.g., changing the predicted class label
in classification; this is the key goal of a contrastive explanation.

2. Parsimony or Closeness: minimally and sparsely changing the original input; this is motivated by
practical feasibility of the counterfactual if the input features are actionable, and by readibility of
the information communicated to the model’s user.

3. Plausibility: counterfactual explanations need to contain realistic examples of normal subsequences.

4. Computational efficiency: being computable within a reasonable amount of time and with acceptable
computing resources.

In the context of an anomaly detected in a time series, property (1) is equivalent to flipping the anomaly
detection model’s prediction label from 1 to 0 (i.e., achieving a anomaly prediction score below the classifier
threshold). Property (2) can be enforced by restricting the perturbation of the input on a small window
containing the anomaly (i.e., the suspect window Wg) and on few dimensions of the time series (if the
anomalous features are only located on some channels). Property (3) requires that the counterfactual belongs
to the normal data distribution. If the latter is not known or estimated, this criterion can be complicated to
evaluate, but some prior knowledge such as the time series’ regularity, seasonality, or bounds can be leveraged.
Property (4) potentially depends on the specific setting, in particular the cost of using the model’s prediction
function or its gradient, and the size of the dataset. However, in our context, we assume that accessing the
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Figure 1: Comparison between existing explainability methods for time series and ours, in the context of
anomaly detection. The original input is a univariate time series window containing an anomalous subse-
quence (a spike outlier, highlighted in red) and the anomaly detection model is NCAD (see Section[5.1.2)). The
subsequent panels represent the explanations from a feature-importance method (Dynamic Masks [Crabbe &
fvan der Schaar| (2021))) , an instance-based method (counterfactual example) and our method (1d)).
In , the important timestamps have saliency scores closed to one (green color code). In , all the
examples from our counterfactual ensemble, which only span the anomalous sub-window, are plotted; the
orange color map indicates their anomaly scores (between 0 and 1) given by the explained model. In ,
we additionally plot five counterfactual examples from this ensemble.
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training set of the detection model is particularly expensive, since the latter often decomposes the time series
into small windows, leading to a large number of actual training inputs for long time series.

Unfortunately, those properties are often conflicting (e.g., parsimony and plausibility in the context of a
spike outlier), therefore a single counterfactual example can only achieve a particular trade-off between them.
In the next paragraph, we motivate the use of counterfactual ensembles (or sets) as more comprehensive
explanations.

3.4 Diversity as an additional property

When the data features are actionable , the counterfactual example informs on the localization and magnitude
of change that can be applied to the original time series to obtain non-anomalous data. However, the best
or feasible trade-off between the pre-defined criteria might depend on the particular anomaly or user’s
range of action. In absence of this prior knowledge, previous work [Mothilal et al| (2020); Russell| (2019)
added diversity, or range of perturbation, as one informative criterion. In particular, a set of counterfactual
examples can increase the likelihood of finding a helpful explanation Rodriguez et al.| (2021)).

In this sense, an ensemble of counterfactual explanations for an opaque model is more insightful if the
user can discriminate between feasible and non-feasible counterfactual examples when given a set of them.
However, this qualitative statement is difficult to quantify in practice since there for most data sets, there is
no ground-truth for the notion of actionability of counterfactual explanations.

Moreover, we also argue that this additional complexity in the explanation should be adequately commu-
nicated to the explanation’s recipient, e.g., with a suitable visualization. Intuitively, the latter should be
informative on the different possibilities of features changes and the particular trade-off achieved by a coun-
terfactual example. In Section [5.4] we propose a representation for time series, where all counterfactual
examples can be visualized together with their anomaly score under the explained model. One example is
shown in Figure and several case studies are represented in Figure

4 Methodology

In this section, we present our method for generating counterfactual ensemble explanations. Qur approach
for differentiable anomaly detection models is described in § [f.I] and can be delineated into two variants,
whose respective uses depend on prior knowledge of the data distribution. The first one, called Interpretable
Counterfactual Ensembles (ICFEs) (§ , can be applied without any domain knowledge input. The second
one, called Dynamically Perturbed Ensembles (DPEs) (§ , leverages dynamic perturbation operators
(Crabbe & van der Schaar, 2021)), which induce a modification of a time series according to a pre-defined
mechanism. Next, we design sparse variants of this approach, where the perturbations are restricted to a few
dimensions of the input (high-dimensional) time series (§ . Finally, we describe an alternative method
for generating our counterfactual ensemble when the model’s gradient information is not available (§ .

4.1 Gradient-based counterfactual ensemble explanations

Most counterfactual algorithms (e.g., Native Guide |Delaney et al.| (2021)), Growing Spheres [Laugel et al.
(2018), DiCE Mothilal et al.| (2020))) rely on adequately perturbing the input W and optimise the perturbation
to enforce some properties of the perturbed example. In our method, using the notations of Section [3} we
first define an objective function over a single counterfactual example W = [W¢, W], then use a gradient-
descent algorithm starting at the original time series to minimize it. The ensemble of examples is built
along the optimization path by collecting adequate perturbations. We define two variants of our method:
one, called Interpretable Counterfactual Ensemble (ICE), that is a completely unspecified, and another one,
Dynamically Perturbed Ensemble (DPE), where one can input some domain knowledge and specify a dynamic
perturbation mechanism |Crabbe & van der Schaar| (2021)).
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4.1.1 Interpretable Counterfactual Ensemble (ICE)

In this variant, the objective function on a counterfactual example is defined as follows:
L1cB(W) = Lyrea(W) + L(W) + Ly(W), (1)

where the first term accounts for the Validity property via a hinge loss on the prediction score on W, ie.,

Lprea(W) = (F(W) =)+,

with ¢ € [0, 1] is a margin parameter. The second term in equation (1| enforces the Closeness constraint via a
penalty similar to the elastic net|Zou & Hastie| (2005)), here using the Frobenius and the L; matrix distances:

- SVD

where A1, Ao > 0 are regularization parameters. Finally, the third term of equation [I| enforces Plausibility
through temporal smoothness (see for instance |Crabbe & van der Schaar| (2021)):

L(W)

— Ay~
IW = Wi+ S5 = Wi,

. A D s5-1 -
Ls(W) = R ; ; [Ws](t+1y — [Wsleil,

with Ay > 0. The assumption behind this constraint is that normal time series are not too rough and
smoother than abnormal windows, therefore realistic perturbations should also be quite smooth.

4.1.2 Dynamically Perturbed Ensemble (DPE)

In this variant, one can specify the perturbation mechanism to obtain the counterfactual ensemble using a
dynamic perturbation operator (Crabbe & van der Schaar| (2021) and a map that spatially and temporally
modulates this perturbation. This notably allows to specify the lengthscale of change in the perturbation
operator. More precisely, a map is a matrix M € [0,1]5*P that accounts for the amount of change applied
to a timestamp and a dimension in the suspect window Wg. A value close to 1 in M indicates a big change
while a value close to 0 indicates a small change. Here, the dynamic perturbation operator is a Gaussian
blur which takes as input a time series window W, a timestamp ¢ € [L — S, L], a dimension ¢ € [D] and a
weight m € [0, 1], and is defined as:

ma(W,t,i,m) = Zf=1 Wi exp(—(t — )2 /2(0maz(1 — m))?) |

Sor_y exp(—(t — t)2/2(0maz(1 — m))?)

with omee > 0, a hyperparameter tuning the blur’s temporal bandwidth. We note that the bigger this
parameter is, the larger is the smoothing effect of the perturbation. The latter is called dynamic in the sense
that it modifies a timestamp using its neighbouring times. We also refer to |Crabbe & van der Schaar| (2021))
for more examples of dynamic perturbation operators.

Finally, for a given map M, a perturbed suspect window is given by [,I/I7S(M)]tZ =a(W,L—-S5+t,i,1— M),
t € [S],4 € [D]. The objective function is then written in terms of the perturbation map as:

N A1 Ao _
M) =L, eca(W(M M —||W - W (M
Lppe(M) = Lyrea(W( ))+S@II H1+SD|| (M)l r
A S—1
T
+ LSS Mgy — Ml 2)

where the first term is the hinge loss, and the second and fourth terms account for the sparsity and smoothness
constraints, in this case applied on M rather than W as in equation
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Algorithm 1 Gradient-based counterfactual ensemble explanation algorithm.

Input: The anomalous time series window W, the anomaly detection model f, the anomaly threshold 6,
the learning rate 7 , the number of iterations 7', the number of counterfactual examples N.
Wo=w
I=1{}
fort=1,...,7 do
Do one step of Stochastic Gradient Descent Wt = Wt=1 — yVL(W'!)
if Vi € [S], f(W?!); < 0 then
Add W' to I

end if

end for

J=|I|/N.

Subsample every J-th elements of I.

Output: The set of N counterfactual examples I.

4.1.3 Optimization and complexity.

Our algorithm for differentiable models has the following steps (see also our pseudo-code in Algorithm
. We first initialize the counterfactual W at the original anomalous window W. Then, we minimize
the objective function equation [1| or equation [2[ using T iterations a Stochastic Gradient Descent (SGD)

algorithm. At each iteration ¢t = 1,...,T, we evaluate the anomaly detection model at the current value Wt
and if Vi € [S], f(W?); < 0, we add W' to a set I. After T iterations, we subsample N counterfactuals from
the set I to obtain a diverse counterfactual ensemble. In practice, by choosing T around 1000, N around
20-30, and an adequate learning rate, the size of the set I will be much larger than N and for simplicity, we
regularly subsample I, ordered by the iteration rank of the examples. Complexity-wise, our method therefore

requires to query the anomaly detection model and its gradient at each iteration of the SGD algorithm.

We note that in our method, we do not select only the global optimum of our objective functions, but we
collect a set of examples along the optimisation path, as long as these examples are non-anomalous. Our
heuristic is that by initializing at the original time series, we hope to collect counterfactual examples that
are close to the original time series, for a large range of hyperparameters values. Moreover, since defining an
optimal counterfactual given the Closeness and Plausibility criteria for each anomaly is not easy to specify,
the different examples found along the optimization path achieve different trade-offs between the terms in the
objective function. In fact, these examples can be seen as solutions of optimization problems with different
sets of weights (hyperparameters) in this objective. Note that similar strategies to ours have been previously
used for generating ensemble of counterfactuals in distinct data domains, e.g., in|Dandl et al.| (2020); Russell
(2019); [Ley et al.| (2022).

Other potential candidates for enforcing diversity. We now discuss other candidates from literature
for enforcing diversity in counterfactual explanations. There are three notable alternative strategies: a)
define an objective function over a set of counterfactual examples and include a proximity penalty between
the examples, as in [Mothilal et al. (2020); |Ley et al.| (2022)); b) select the optima of our objective function
for N sets of hyperparameters (e.g., chosen over a grid); and c¢) select the optima of our objective function
for N random initialization points of our algorithm. For strategy a), solving such an objective is much
more cumbersome for a large number of features and counterfactual examples. In fact, Ley et al.| (2022)
note that using a Determinantal Point Process penalty like in Mothilal et al.| (2020) requires expensive
computations of matrix determinants. Besides, using instead a penalty based on pairwise distances like in
Bhatt et al.|(2021) may be particularly challenging for time series where non-standard distances must be
computed. As for strategy b), solving the optimization problem for T sets of hyperparameters would be
much less computationally efficient, and in practice, T' would need to be much larger than what we use
in our method to obtain N valid counterfactuals since most of the hyperparameter configurations would
fail. Finally, additionally to being less computationally efficient, we found that strategy c) is not enough to
enforce diversity and often leads to redundant solutions in our experiments. This empirical observation has
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been previously noted by |[Ley et al| (2022)) in a different data context and may be due to the fact that a
fixed set of hyperparameters induces a “strong" minimum of the objective function.

4.2 Sparse counterfactual explanations for high-dimensional time series

A high-dimensional time series would result in a similarly high dimensional explanations. On the other hand,
prior work argues that humans prefer simpler explanations|[Miller| (2019)). Therefore, one may obtain a simpler
explanation by restricting the counterfactual ensemble explanation to span as few dimensions as possible.
In this case, the explanation can be more easily visualized and the counterfactual is more actionable, since
it then requires to change a minimal number of channels. Besides, anomalies often tend to be concentrated
on few dimensions, for instance, when a small subsample of monitoring metrics take abnormal values in
a servers network |Su et al.| (2019b)). Therefore, explanations for these anomalies should also reflect their
low-dimensional property. For these reasons, we design a sparse version of our gradient-based method that
constraints the counterfactual ensemble explanation to be spatially sparse (i.e., sparse or parsimonious in
the perturbed dimensions).

4.2.1 Sparse ICE

In the sparse version of ICE, we restrict the number of perturbed dimensions by introducing a vector

€ [0,1]P and a matrix Z € R¥*P and defining We(w, Z) = (w®1)® Z + ((1 —w) ® 1) ® Ws. The role
of w is to select the dimensions in Wy that are perturbed with Z. We then consider an objective function
in terms of (Z,w):

Licesp(w,Z) = (f(W(w Z)) —c)y
fn wlly + 22 Sl =W(w.2)|r

D S-1

Z Z ‘Z (u+1)i — Zi- (3)

zlul

Contrary to equation |1} where the sparsity penalization is applied globally (i.e., both temporally and spa-
tially), the previous objective enforces spatial sparsity through the Li-penalisation on w. Another way to
see that is to re-interpret objective equatlon as obJectlve equatlon I with w = (1,1,...,1), Z = WS and
replace the Li-penalisation on w b

4.2.2 Sparse DPE

We apply the same idea to the DPE variant by enforcing the perturbation maps to be spatially sparse. More
precisely, we define M (w,t) =t ® w with w € [0,1]P and ¢ € [0,1]7 and a loss function in terms of (w,t):

Lppesp(w,t) = <f<W<w ) — o)+

Ao —~
\F” wly + SiD”W - W(w,t)|r

S-1
)\T

Z [tut1 — tul- (4)

ul

Here the smoothness constraint is applied on t to guarantee that M is also smooth in the temporal dimension.

4.3 Gradient-free approach: Forecasting Set

If the anomaly detection model is non-differentiable, we propose an alternative algorithm that generates a
counterfactual ensemble explanation using an appropriate sampling mechanism. The pseudo-code for this
approach is given in Algorithm [2] We describe the steps in detail here. Machine learning models for time
series data sometimes rely on sampling in the context of probabilistic forecasting. Here, we will train an

10
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Algorithm 2 Gradient-free counterfactual ensemble explanation algorithm.

Input: The anomalous time series window with its context subwindow W = [W¢, Ws], the anomaly de-
tection model f, the anomaly threshold # , the training data D, a probabilistic forecasting model g,
W = [W¢, Wg], the number of draws 7.

Train the model g to predict on D
Obtain the predictive distribution g(W¢)
Irs ={}
fort=1,...,T do
Sample from g(We): WS) ~ gWe)
if Vi € [S], f((We, WP]); < 6 then
Add Wt = [We, W] to Irg
end if
end for
Output: The set of counterfactual examples Irg = {}.

auxiliary probabilistic forecasting method and use it as a generative model of counterfactual subsequences.
More precisely, given an input window We € RE=9*P | our auxiliary model g outputs a distribution over
a forecast horizon of S time stamps, g(W¢), from which one can sample forecasting paths. We therefore
sample T windows Wl(f )~ g(We), t € [T], then select the ones that are not anomalous according to the
anomaly detection model, i.e., our counterfactual ensemble is given by:

Ins = {W; t € [T]st Vi € [S], f([We, W) < 0}

Note that one could also subsample the set Irg to obtain a fixed number N of examples. Intuitively, since
the probabilistic forecasting model is trained to learn the data distribution, it generates realistic forecast
samples. However, the sampling model is oblivious to the original input Wg and therefore the forecasting
samples are not restricted to be minimally distant from it. Therefore, in this approach, the Closeness and
Sparsity properties are not explicitly accounted for. Nonetheless, one could refine this method by selecting
the samples which are closer to the original instance. In our experiments, we study the general behaviour
of this method without implementing this minor change. In Section [5] we will construct and evaluate this
approach with a Feed Forward Neural Network (FFNN) for univariate data and a DeepVAR model |Salinas
et al.| (2019)) for multivariate data from the GluonTS package (Alexandrov et al., [2020]) H

5 Experiments

In this section, we test and compare the performances of our method on two differentiable models, and the
relative advantages of its five variants (i.e., ICE, DPE, FS, Sparse ICE, Sparse DPE) in multiple contexts.
For this analysis, we have considered two DL anomaly detection models, NCAD |Carmona et al. (2021)
and USAD |Audibert et al.| (2020)), and four benchmark time series datasets. We report in Section a
qualitative evaluation of our counterfactual ensemble explanations and their visualization, and in Section
b.5] a quantitative analysis under the previously defined criteria. Note that this study does not include
a comparison to existing baselines, since counterfactual ensemble explanations have not been previously
considered for time series data. Although some algorithms such as DiCE |Mothilal et al.| (2020) exist in the
context of tabular data, we do not use them in our context since perturbation methods are adapted to each
data domain |Crabbe & van der Schaar| (2021). Nonetheless, for the sake of comparison, we also include a
naive baseline, which mechanism is described in Section Section [5.2] and Section [5.3] provide additional
details on the explainability metrics and the hyperparameters selection procedure.

Thttps://ts.gluon.ai/stable/ (accessed on September 11th 2022)
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5.1 Experimental set-up

5.1.1 Datasets

To evaluate our explainability method, we test it on four data sets that are used to benchmark anomaly
detection algorithms on time series, see for example |(Carmona et al.| (2021); Su et al.| (2019a); |Audibert et al.
(2020):

o+ KPI:P|this data set contains 29 univariate time series. It was released in the ATOPS data competi-
tion and consists of Key Performance Indicator curves from different internet companies in 1 minute
interval.

« YAHOO: E| this data set was published by Yahoo labs and consists of 367 real and synthetic
univariate time series.

o Server Machine Dataset (SMD): E| this dataset contains 28 time series with 38 dimensions,
collected from a machine in large internet companies [Su et al.[ (2019a)).

o Soil Moisture Active Passive satellite (SMAP): E|this NASA data set published by Hundman
et al.| (2018) contains 55 times series with 25 dimensions.

The main properties of these data sets are summarized in Table[l] These datasets are suitable for evaluating
our explainability method since it contains synthetic and real time series anomalies, in diverse time series
domains: Key Performance Indicators, server machines, satellite data, etc. We use these datasets since these
are commonly used by SOTA anomaly detection methods|Carmona et al.[(2021));|Su et al.| (2019a); |Audibert
et al.[(2020). We note that for these data sets, ground-truth labels of anomalies are available. However, this
data does not contain additional context or information on the anomalies, consequently there is no ground-
truth explanation, a fortiori counterfactual example. This is however a common setup in explainability, and,
when user studies are not feasible, one needs to resort to proxies for performing a quantitative evaluation
Verma et al| (2020). In Section we will define our explainability metrics, which have been previously
proposed in multiple data domains (see for instance [Mothilal et al.| (2020) and [Verma et al.| (2020)).

More precisely, we use the test sets of each dataset, which correspond to the last 50% time stamps of each
time series |Carmona et al.| (2021). When needed, the training and validation sets contain respectively the
first 30% and subsequent 20% time stamps. We note that all these datasets have ground-truth anomaly
labels on the test set, and in our evaluation, we only compute counterfactual ensemble explanations for the
ground-truth anomalies detected by each model (i.e., the True Positives).

In practice, our method could be applied on all the detected anomalies, i.e., on both the True Positives
(TPs) and the Fualse Positives (FPs) (i.e., the observations with anomalous predicted labels that are not
ground-truth anomalies). However, we consider a practical case where the user is able to analyse only the
true anomalies (i.e., the TPs ) and wants to know what changes would render this input non-anomalous.
However, we also performed a complementary analysis to test our method on FPs (see Appendix|B.2)). These
experiments indicate that the performance of our method on FPs is better in terms of our explainability
metrics than on TPs. One explanation for this empirical observation is that a small perturbation of the
original FP anomalies is often enough to find good counterfactual explanations using our method. Since
explaining TPs is more challenging than FPs, we focus on TPs in the main text and report the FP experiments

in Appendix [B:2]
5.1.2 Anomaly detection models

In our experimental evaluation, we have selected two differentiable SOTA models with distinct temporal
neural networks mechanisms. The first one, Neural Contextual Anomaly Detection (NCAD) |Carmona et al.

https://github.com/NetManAIOps/KPI-Anomaly-Detection (accessed on September 11th 2022)
Shttps://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70 (accessed on September 11th 2022)
4https://github.com/NetManAIOps/OmniAnomaly (accessed on September 11th 2022)
Shttps://github.com/khundman/telemanom (accessed on September 11th 2022)
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(2021)), uses a temporal convolutional network and subdivides time series into windows that include a context
part. The second one, UnSupervised Anomaly Detection (USAD)|Audibert et al.| (2020), is based on a LSTM
Auto-Encoder and predicts anomalies on suspect windows without explicit context windows. Neither of these
models are interpretable-by-design, but both have SOTA performances on the benchmark anomaly detection
datasets and reasonable training times (around 90 min). Before evaluating our explainability method, we
train these models using the procedure described in their respective papers. More details on these models
and their detection performance on the benchmark datasets are reported in Appendix [A]

5.1.3 Naive counterfactual ensemble explanation

As previously noted, there is no existing method for generating an ensemble of counterfactual examples for
time series. We therefore propose a simple interpolation baseline that does not require any training nor
optimization procedure. The main idea is similar to the Forecasting Set approach, but here the sampling
mechanism is "naive". For each tested window W containing an anomaly in Wg, we draw a sample by
interpolating the anomalous window Wg and a constant window with a random weight. The constant
window repeats the observation from the timestamp immediately before the anomaly, i.e., [W¢]r—s. Thus,
for i € [N], a sample I/mee " is defined as:

Wnawe - =w;Wg + (1 — wi)X_l, (5)

where w; & Ul0,1] and X_; = [Welr—s,---,[Welr_s] € R®*P. As in Section we also select the
samples that are not anomalous under the model, i.e., the naive counterfactual ensemble is finally:

Iy = {Wnaive,i _ [WC,Wnawe z]’ ic [N] stV e [S])f(fv\[}naive,i)t < 9}

5.2 Explainability metrics

To evaluate the utility of our method, we compute the following metrics as proxies of the criteria defined in
Section [B

e Failure rate: This metric accounts for the Validity or algorithm Correctness criteria. For the
gradient-based methods (DPE, ICE and their sparse variants), it is defined as the percentage of
times our method fails to output an ensemble of N counterfactual examples. For the Forecasting
Set approach and naive sampling baseline, the failure rate corresponds to the rejection rate of the
sampling scheme.

o Distance: The Closeness criterion is measured in terms of the Dynamic Time Warping (DTW)
distances between each example of the counterfactual ensemble and the original anomalous window.
The DTW distance is generally more adapted to time series data than the Euclidean distance.

e Implausibility: since the Plausibility property is not easy to evaluate without expert knowledge
of the particular data domain, we decompose it into the three following proxy metrics that cover
different notions of deviation from an estimated normal behaviour:

— DTW distance to a reference time series, here, the median sample from the Forecasting Set
approach (Implausibility 1);
— Temporal Smoothness (Implausibility 2), defined as

D S-—1 N
YD 1 Wslwrn — Wslul

i=1 t=1

— Negative log-likelihood under the probabilistic forecasting distribution g, if available (Implau-
sibility 3).

We compute the latter metrics for each example of the counterfactual ensemble explanation.

13
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e Diversity: the range of values spanned in a counterfactual ensemble is evaluated by the variance
of the counterfactual examples at each timestamp.

e Sparsity correctness: for multivariate time series, if additional information on the anomalous
dimensions in the ground-truth anomalies is available, we compute the precision and recall scores of
the sparse variants of DPE and ICE in identifying the dimensions to perturb.

5.3 Hyperparameters selection

The hyperparameters of our counterfactual explanation method with the gradient-based approaches are
selected by testing all configurations of Ay = A2, Ap in the set {0.001,0.01,0.1,1.0}, 0ypqee in {3,5,10} and
the learning rate of the SGD algorithm in {0.01, 0.1, 1.0, 10.0,1000.0,10000.0}. As an explainability method
can be finely tuned on a particular problem and dataset, the configurations could be evaluated on all the
anomalies in the test set. However, for computational time efficiency reasons, we run this evaluation on 100
randomly chosen anomalies, then evaluate the final performance of the chosen configuration on the entire
test set. An exception holds for the the SMAP dataset, which contains less than 100 anomalies detected
by the models, therefore we run the configurations’ evaluation on the whole test set. For each dataset and
detection model, we select the set of hyperparameters having the minimal Implausibility 2, given that the
failure rate is kept under a pre-defined level, (see Figures m |§| and and tables in Appendix @ We
note that here focusing on the Implausibility 2 criterion is an arbitrary choice, and one could use instead any
other explainability metric. Moreover, we run the SGD algorithm for 1000 iterations and select a maximum
of N =100 counterfactual examples along the optimization path. The hyperparameters of the probabilistic
models in the Forecasting Set approach are reported in Table [§]in Appendix [D] Finally, in order to provide
a ready-to-use method, we also suggest a default set of hyperparameters in Table in Appendix For
all datasets, models and approaches, we use suspect windows of S = 10 time stamps and margin parameter
c=0.

5.4 Qualitative analysis

Similarly to image classification settings Zeiler & Fergus| (2013), visualizations in the time series domain can
be human-friendly tools to communicate model explanations, in particular in univariate or low-dimensional
settings. In our time series anomaly detection context, we propose to visualize our counterfactual ensemble
explanation together with the original time series for which a prediction was made, possibly with an added
context window (see Section and on a restricted number of channels. Since the anomaly prediction
score given by the explained model is a scalar, we can leverage a color scale to indicate the score of each
counterfactual example in the ensemble.

On Figure |2, we present a visualization of our method on two anomalies from the KPI dataset, detected by
NCAD and USAD. On each panel, we plot a sub-window of the original time series containing anomalous
features in the last 10 time stamps, as well as each counterfactual example given by a variant of our method
applied to one of the detection model. Each counterfactual only differs at the anomalous features and the
color scheme indicates its anomaly score under the explained model. We argue that this representation
allows to deem the range of time series values and prediction scores spanned by the different counterfactuals
in our ensemble explanation, and therefore effectively informs on the model’s sensitivity and local decision
boundary.

We can then visually compare the different variants of our method and the explanations for two detection
models. We observe that the counterfactual ensemble explanation from DPE (in red color scale), ICE (in
green), and FS (in purple) are quite dissimilar, although they all globally lessen the amplitude of the spike
outliers’ features. In fact, on the one hand, DPE produces counterfactual ensembles that are less diverse
than the other approaches, and relatively close to the original input. This is coherent with the fact that
the perturbations are constrained by the dynamic mechanism. On the other hand, ICE’s counterfactual sets
cover a much larger range of values and therefore allows to visualize more clearly how the anomaly score
evolves for different magnitudes of the spikes. This explanation may thus be more informative here since it
spans a larger range of time series values. In contrast, the counterfactual ensembles generated by FS do not
have the aforementioned interpretation but seem to visually correspond to the expected behaviour given the
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shape of the context windows. The previous preliminary observations seem consistent for the two models
and confirmed on several other anomalies (see for instance the additional visualizations in Appendix .

In summary, our counterfactual ensemble explanations effectively contain diverse perturbations of the input
time series. These perturbations trigger a change in the detected label of the anomalous sub-sequence, with
a small number of altered features. The three approaches, ICE, DPE and FS, bring different insights on
the model’s prediction, the time series distribution and the possible perturbations to apply to change the
former. Their relative advantages may therefore depend on the particular time series context and usage of
the counterfactual explanation.
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Figure 2: Time series windows containing an anomaly and our counterfactual ensemble explanations, ob-
tained with DPE (first row), ICE (second row) and FS (third row) from the KPI dataset. The first (resp.
second) column corresponds to an anomaly that has been detected by NCAD (resp. USAD). Each window
includes a context part of 115 time stamps and an abnormal part of 10 time stamps at the end of the win-
dow. The original observations are plotted in blue, while the counterfactual examples appear in red, green
or purple color scales for respectively DPE, ICE and FS.
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Dataset Dimensions Number of time Total number of Total number of
series time stamps anomalies in test
set
KPI 1 29 5922913 54560
Yahoo 1 367 609666 2963
SMD 38 28 1416825 29444
SMAP 25 55 584860 57079

Table 1: Succinct description of the four benchmark datasets

5.5 Numerical evaluation

The numerical results discussed in this section are obtained in the set-up described in Section [5.1} However,
for parsimony of exposition, our results on the KPI and the SMAP datasets have been moved to Appendix
Bl We also add a partial sensitivity analysis of our method in Appendix [E]

The results on univariate datasets (see Table [2/ and Table [5| in Appendix , show that our method has
fairly small failure rates (except for the Yahoo dataset and the USAD model). In particular a rate smaller
than 10% can be achieved with at least one variant in most pairs (model, dataset), leading to a consequent
improvement over the naive procedure. We note that while the DPE variant seems to be valid more often
than ICE on the NCAD model, it is the contrary for the USAD model; this difference is possibly due to the
distinct internal mechanisms of these models.

Moreover, the analysis of the other explainability metrics supports the qualititative interpretation from Sec-
tion[5.4 The Distance metric confirms than the gradient-based approaches, DPE and ICE, provides in almost
all cases the closest counterfactuals in average, i.e., the least perturbed examples. Note that it sometimes
occurs that the naive baseline has a small distance, however it always have a high failure rate. Besides, the
Implausibility metrics validate the observation that F'S generates the most realistic counterfactual examples
in average, in particular in terms of Implausibility 1 (distance to median forecast sample) and Implausibility
3 (NLL under the probabilistic forecasting distribution). This is in fact quite expected since these quantities
are directly derived from the forecasting sampling scheme. However, these counterfactuals are less smooth
(higher score in Implausibility 2) than for DPE and ICE, which regularize the time series smoothness in the
objective functions equation [2] and equation [I]

Finally, DPE and ICE provide a more diverse counterfactual ensemble in most cases in general, but their
relative ranking is not clear from these experiments. We conjecture that this metric is particularly sensitive
to the learning rate of the SGD algorithm, and the subsampling procedure after the objective minimization
(see Section . In Appendix we test our first hypothesis on a small sample of anomalies. We observe in
this case that the Diversity criterion is consistently higher for ICE, and greatly increases with the learning
rate, at the cost of a higher failure rate.

The numerical results on the multivariate data sets are reported in Table [3] and Table [6] in Appendix
These experiments showcase that our method also generates valid counterfactual ensemble explanations in
this setting, with even a failure rate of 0% for the USAD model. Our method fails more frequently on
the NCAD model, however, the sparse variants are more often successful. This indicates that imposing
a sparsity constraint over the modified dimensions also helps to find valid counterfactuals. Consistent
with the univariate datasets, FS produces the most realistic counterfactual examples while the gradient-
based approach achieves a better Distance score. We note that in this case the Implausibility 3 metric is
not available since the forecast distribution likelihood function in the DeepVAR model is not available EL
Moreover, the sparse variants seem to correctly identify some of the anomalous channels (precision greater
than 0.6 for the USAD model).

Nonetheless, we noted the greater difficulty of tuning the hyperparameters of our method and ranking its
variants on these high-dimensional datasets compared to univariate data. In the latter, the default set of

Shttps://ts.gluon.ai/stable/api/gluonts/gluonts.model.deepvar.html?highlight=deepvar#module-gluonts.model.
deepvar| (accessed on September 11th 2022)
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NCAD on Yahoo
Method Failures (%) Distance Implausibility Implausibility Implausibility — Diversity

1 2 3

DPE 9.2 249 (4.91) 123 (1.37) 142 (2.19)  2.21 (4.76) 0.01

ICE 17.4 1.54 (1.21) 0.78 (1.37) 226 (1.67)  1.40 (5.17) 0.05

FS 56.6 6.06 (16.38)  0.27 (0.22)  3.36 (1.99) -0.29 0.10
(0.79)

Naive 72.2 2.69 (5.29)  1.04 (1.26)  1.32 (1.74)  1.89 (3.34) 0.05

USAD on Yahoo
Method Failures (%) Distance Implausibility Implausibility Implausibility — Diversity

1 2 3

DPE 29.1 5.20 (18.00) 6.42 (26.81)  0.42 (2.00)  3.74 (6.96) 0.05

ICE 25.5 6.66 (25.54)  2.68 (11.46) 0.40 (1.16)  2.48 (4.61) 3.23

FS 65.1 14.48 0.48 0.55 (0.58) -0.11 0.61
(46.03) (0.72) (1.12)

Naive 45.8 4.82 2.85 (16.31)  0.52 (1.60)  3.25 (6.00) 3.19

(18.36)

Table 2: Performance of our explainability method and the naive baseline in terms of Validity, Closeness,
Plausibility and Diversity on the Yahoo dataset and the NCAD (first panel) and USAD (second panel)
anomaly detection models. We report the average scores and standard deviations (in brackets) over the
counterfactual ensembles. We recall that Implausibility 1 is the DTW distance to the median forecasting
sample, Implausibility 2 is the temporal smoothness, and Implausibility 3 is the negative log-likelihood under
the probabilistic forecasting output distribution. For all metrics except Diversity, we assume that a lower
value is better, and the best score is highlighted in bold.

hyperparameters achieves an acceptable performance and allows to quickly compare the relative advantages
of an approach for a specific pair (detection model, dataset). We therefore conclude by recalling that
example-based explainability methods for multivariate time series are still in their early development, and
providing general methods and tuning procedures to generate useful explanations over the instances of a
dataset is still an open problem.

6 Discussion & Conclusion

In this work, we have introduced a novel type of post-hoc explainability method called Counterfactual
Ensemble Ezplanation for anomaly detection models in time series. Our approach is model-agnostic, can
be applied to any differentiable detection model, and is delineated into different variants according to the
context. With DPE, one can apply a domain-specific perturbation mechanism to the input time series,
while ICE does not require such specification. For high-dimensional time series, our sparse variants, Sparse
DPE and Sparse ICE provide counterfactual examples modifying only a few dimensions of the time series.
Additionally, we have proposed a gradient-free approach that uses a probabilistic forecasting technique as a
generative scheme and can be applied to any detection model.

Our real-world experiments on four benchmark data sets show that the counterfactual framework, augmented
with an ensemble approach, improves the interpretability of two deep-learning models and the anomalies the
latter detects. In particular, our visualization tool allows to gauge the change in anomaly scores with respect
to a large perturbation range of time series features. In the absence of competitive methods, we quantitatively
compare our explanations to a naive counterfactual ensemble method using several explainability metrics.

In comparison to existing model-agnostic explainability methods for time series, our approach conveys more
quantitative information on the model’s sensitivity that a feature-saliency approach such as DynaMask
(Crabbe & van der Schaar} [2021) and a richer contrastive explanation than single-counterfactual methods
such as Delaney et al| (2021); |Ates et al.|(2021). Nonetheless, our proposed counterfactual ensemble expla-
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NCAD on SMD
Method Failures (%)  Precision / Distance Implausibility Implausibility = Diversity

Recall 1 2
DPE 17.1 - 8.46 50.76 12.12 1.21
(13.07) (110.40) (28.13)
ICE 42.9 - 79.62 23.69 47.73 4639.11
(120.27) (28.24) (58.32)
Sparse DPE 20.0 0.22 / 0.10 36.12 29.03 5.61 (11.30) 4687.05
(77.87) (54.36)
Sparse ICE 20.0 0.20 / 0.33 26.01 62.65 10.88 174.39
(37.07) (107.25) (16.72)
FS 30.0 - 78.46 1.62 (2.33) 1.49 (1.31) 35.88
(157.57)
Naive 79.8 - 25.06 45.45 9.42 (18.79) 3255.92
(53.66) (93.03)
USAD on SMD
Method Failures (%)  Precision / Distance Implausibility Implausibility =~ Diversity
Recall 1 2
DPE 0.0 - 139.02 258.31 41.19 23339.20
(261.44) (464.18) (79.11)
ICE 0.0 - 31.81 342.19 22.64 0.52
(9.27) (708.88) (45.16)
Sparse DPE 0.0 0.68 / 0.07 115.48 293.70 19.84 105.45
(206.46) (679.88) (34.98)
Sparse ICE 0.0 0.61 / 0.28 216.44 172.58 8.35 477.43
(316.05) (475.15) (17.52)
FS 0.0 - 366.57 18.10 8.57 12175.65
(672.44) (48.25) (20.63)
Naive 73.4 - 49.83 475.42 27.45 649.44
(60.13) (879.38) (45.43)

Table 3: Performance of our explainability method and the naive baseline in terms of Validity, Closeness,
Plausibility and Diversity on the SMD dataset and the NCAD (first panel) and USAD (second panel)
anomaly detection models. We report the average scores and standard deviations (in brackets) over the
counterfactual ensemble. We recall that Implausibility 1 is the DTW distance to the median forecasting
sample and Implausibility 2 is the temporal smoothness. For all metrics except Diversity, Precision and
Recall, we assume that a lower value is better, and the best score is highlighted in bold.
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nation for time series models is an attempt in the interpretation of these models using diverse instance-based
methods, in particular in the challenging high-dimensional context.

Although our method offers greater flexibility, better explainability performances and specific interpretation
might be achieved if more assumptions are put on the detection model. In particular, similarly to Rodriguez
et al| (2021), we could adapt our gradient-based approach to use the internal representations of the model
rather than the raw time series. Moreover, aggregating the information contained in diverse explanations is
still an open problem. One possible extension of our ensemble method would be to provide a rank over the
counterfactual examples according to a utility or feasibility metric.

Broader Impact Statement

We do not see any direct negative impact of our work, however ethical concerns could come from the type
of time series data our methodology is applied to. Moreover, our method does not rank the counterfactuals
in the set of solutions, and their acceptability needs to be assessed by a domain expert. An extension of our
method could be to include fairness constraints in the optimisation objective to obtain “fair" counterfactuals.
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A Technical details and performance of the selected anomaly detection models

In this section, we provide some technical details on the two anomaly detection models selected for the
evaluation of our explainability method reported in Section[5] In Table[d] we report their anomaly detection
performance on the benchmark datasets, after training with the hyperparameter sets reported in their
respective papers when available. Otherwise, we select the models’ hyperparameters on a validation set
(20% of the time series) using the best adjusted Fl-score.

Neural Contextual Anomaly Detection (NCAD) |Carmona et al.| (2021) : This method splits
time series into subwindows (W?); and embeds them using a temporal convolutional network (TCN). Each
Wt is subdivided into a context part and a suspect part (typically much smaller than the former), i.e.,
Wi = [W,,Wi]. An embedding of the context window W, is also computed by the TCN, then the distance
between the embeddings of W;, denoted 2%, and Wé, denoted zg, is evaluated. The algorithm finally labels
W as anomalous if the latter distance is greater than a chosen threshold, i.e, if d(z%,z) > n with d(.,.)
the Euclidean distance for instance and n > 0. The intuition behind this method is that a large distance
between the embeddings of a window and its context part means that the suspect part induces a significant
shift of ZZC in the embedding space. Since the embedding of the context window should reflect the normal
behaviour, this deviation thus indicates the presence of an anomaly in Wg For our experiments, we use the
open-source implementation. E]

UnSupervised Anomaly Detection (USAD) |Audibert et al.| (2020): This reconstruction model
splits time series into subwindows that are reconstructed by a LSTM-based AutoEncoder. The latter contains
a neural network, called encoder, that embeds each window into a latent representation, and another neural
network, called decoder, that maps back the embedding into the original input space. The reconstruction
error, i.e., the distance in the time series domain between the original input and the reconstructed output,
is used as an anomaly score (a high value of this error leads to the corresponding window to be labelled as
anomalous). We use the open source implementation provided by the authors E] and the hyperparameters
provided in the paper for the two multivariate data sets, i.e. SMD and SMAP. For the KPI dataset, the final
USAD model is trained for 80 epochs and has windows of size 5, hidden size of 10 and downsampling rate
of 0.01. For the Yahoo data, the window size is 10, hidden size of 10 and downsampling rate of 0.05.

Model KPI Yahoo SMD SMAP
NCAD 0.789 0.772 0.806 0.922
USAD 0.946 0.741 0.643 0.972

Table 4: Fl-scores of the two anomaly detection models, i.e., NCAD and USAD, on the four benchmark
datasets.

“https://github.com/Francois-Aubet/gluon-ts/tree/adding_ncad_to_nursery/src/gluonts/nursery/ncad
8https://curiousily.com/posts/time-series-anomaly-detection-using-1lstm-autoencoder-with-pytorch-in-python/
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NCAD on KPI
Method Failures (%) Distance Implausibility Implausibility Implausibility — Diversity
1 2 3
DPE 3.9 5.04 (15.78)  2.16 (4.71)  3.21 (20.62)  2.74 (2.57) 1.18
ICE 19.6 3.08 (1.21) 15.31 31.67 2.07 (2.06) 0.26
(115.12) (206.70)
FS 6.0 32.05 0.21 (0.20) 2.42 (1.97) -0.56 0.12
(173.76) (1.14)
Naive 53.4 11.82 2.90 (4.49) 457 (7.64)  3.48 (2.51) 0.54
(74.03)
USAD on KPI
Method Failures (%) Distance Implausibility Implausibility Implausibility =~ Diversity
1 2 3
DPE 5.0 25.22 9.40 (65.02) 1.03 (8.16) 3.13 (3.47) 13.10
(121.60)
ICE 3.5 6.52 (7.30) 4.99 (63.31)  0.50 (4.43)  1.27 (1.98) 0.28
FS 6.8 38.56 0.33 0.38 (0.28) -0.08 0.26
(189.88) (0.29) (1.12)
Naive 45.4 31.93 277 (3.93) 142 (6.01)  2.81 (2.48) 69.88
(154.62)

Table 5: Performance of our explainability method and the naive baseline in terms of Validity, Closeness,
Plausibility and Diversity on the KPI dataset and the NCAD (first panel) and USAD (second panel) anomaly
detection models. We report the average scores and standard deviations (in brackets) over the counterfactual
ensemble. We recall that Implausibility 1 is the DTW distance to the median forecasting sample, Implausi-
bility 2 is the temporal smoothness, and Implausibility 3 is the negative log-likelihood under the probabilistic
forecasting output distribution. For all metrics except Diversity, we assume that a lower value is better, and
the best score is highlighted in bold.

B Additional numerical results

In this section, we report quantitative evaluations of our explainability method that could not be included in
the main text due to space limitation. This section notably contains the results on two benchmark datasets
using the procedure described in Section [5, and an additional analysis on False Positives.

B.1 Numerical evaluation on the KPIl and SMAP datasets

The results on the KPT and SMAP dataset are respectively in Table [§] and Table [6] Note that these results
are included in the discussion in Section [5.5

B.2 Numerical evaluation on False Positives

In the practical use of anomaly detection models, explanations can also be needed when the model wrongly
detects an anomaly in a time series. We recall that we call False Positives the anomalies detected by the
model that are not ground-truth anomalies. We present here a numerical evaluation on the False Positives
detected by NCAD in the KPI benchmarck dataset. The results in Table [7] can be compared to the results
obtained on True Positives (i.e., the ground-truth, detected anomalies) reported in the first panel of Table
. We observe that in this case ICE achieves 0% failure rate (instead of almost 20 %), and the naive method
has also a significantly smaller number of failures. Moreover, all methods seem to perform better in terms
of the Distance and Implausibility metrics. This is probably due to the fact that False Positives need less
perturbation to become not anomalous for the model, e.g. if they lie close to the model’s local decision
boundary. Therefore they may inherently be less distant to the normal behaviour than True Positives and
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NCAD
Method Failures (%) Diversity Distance Implausibility ~ Implausibility
1 2
DPE A7 0.002 0.19 (0.40) 0.21 (0.28) 0.01 (0.03)
DPE sparse 27.8 0.004 0.22 (0.42) 0.29 (0.38) 0.03 (0.04)
ICE 5.6 0.067 0.26 (0.14) 0.39 (0.37) 0.15 (0.09)
ICE sparse 23.6 0.016 0.15 (0.08) 0.22 (0.21) 0.09 (0.06)
FS 87.6 0.012 0.56 (0.77) 0.05 (0.04) 0.05 (0.04)
Naive 84.5 0.003 0.06 (0.08) 0.09 (0.03) 0.02 (0.03)
USAD
Method Failures (%) Diversity Distance Implausibility ~ Implausibility
1 2
DPE 0.0 0.02 0.62 (0.65) 0.96 (0.53) 0.06 (0.05)
DPE sparse 0.0 0.02 0.78 (0.85) 0.82 (0.50) 0.05 (0.06)
ICE 0.0 0.17 0.74 (0.75) 0.87 (0.43) 0.04 (0.03)
ICE sparse 0.0 0.18 0.72 (0.76) 0.88 (0.42) 0.06 (0.02)
FS 56.8 0.02 2.23 (1.14) 0.09 (0.01) 0.10 (0.03)
Naive 46.9 0.01 0.14 (0.04) 0.23 (0.02) 0.07 (0.02)

Table 6: Performance of our explainability method and the naive baseline in terms of Validity, Closeness,
Plausibility and Diversity on the SMAP dataset and the NCAD (first panel) and USAD (second panel)
anomaly detection models. We report the average scores and standard deviations (in brackets) over the
counterfactual ensemble. We recall that Implausibility 1 is the DTW distance to the median forecasting
sample and Implausibility 2 is the temporal smoothness. For all metrics except Diversity, Precision and
Recall, we assume that a lower value is better, and the best score is highlighted in bold.

thus easier instances for our counterfactual explanation method. Besides, the Diversity metric is smaller for
DPE and ICE;, likely as another effect of the smaller amount of perturbation needed.

NCAD
Method Failures (%) Distance Implausibility Implausibility Implausibility = Diversity
1 2 3

DPE 8.8 2.22 (1.87)  2.44 (2.50) 2.36 (2.05) 2.15 (2.22) 0.02
ICE 0.0 4.36 (3.00) 0.28 (0.45) 0.61 (0.34) 0.22 (0.93) 0.12
FS 6.6 4.17 (2.91) 0.30 (0.31) 3.54 (3.61) -0.22 0.43

(0.95)
Naive 33.3 2.74 (2.22) 2.19 (2.43) 2.97 (2.56) 2.79 (2.29) 0.16

Table 7: Performance of our explainability method and the naive baseline in terms of Validity, Closeness,
Plausibility and Diversity on the false positives in the KPI data detected by the NCAD model. We report
the average scores and standard deviations (in brackets) over the counterfactual ensemble. We recall that
Implausibility 1 is the DTW distance to the median forecasting sample, Implausibility 2 is the temporal
smoothness, and Implausibility 3 is the negative log-likelihood under the probabilistic forecasting output
distribution. For all metrics except Diversity, we assume that a lower value is better, and the best score is
highlighted in bold.

C Complementary visualizations of the explanations

In this section, we report additional visualizations of our counterfactual explanations, as well as illustrations
of the sparsity induced by the sparse variants of DPE and ICE. Figures [3]and [4] are visualizations applied
to the univariate datasets and respectively the NCAD and USAD. The advantage of Sparse ICE compared
to the plain version ICE is shown in Figure b, where only four channels of the multi-dimensional time series
window are plotted. For this anomaly, only one of these dimensions contains an anomalous observation
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Figure 3: Anomalous windows and counterfactual ensemble explanations obtained with DPE (first row),
ICE (second row) and FS (third row) on anomalies in the KPI data set detected by the NCAD model. The
columns correspond to two different anomalies. The windows include a context part of 115 time stamps and
an abnormal part of 10 time stamps. The original sub-sequence is plotted in blue, while the explanations
are in red, green or purple colors for the different variants.

but the counterfactual explanation obtained with the plain ICE perturbs four of them. In contrast, the
Sparse ICE variant keeps two dimensions without anomalous features unchanged, leading to a more accurate
and readable explanation on this particular anomaly. Similarly, Figure [6] shows two perturbation maps
corresponding to examples generated by DPE and its sparse variant. While the plain DPE produces globally
sparse maps (i.e., in the temporal and dimensional features), Sparse DPE is sparse in dimensions, leading
to perturbed examples with few modified channels.

D lllustration of the hyperparameters selection

In this section, we illustrate the hyperparameters selection procedure for our gradient-based method. For
each dataset and model, we run our algorithm with several configurations as described in Section [5.3] and
select the final one using the failure rate and the Implausibility 1 metric. More precisely, we select a threshold
of acceptable failure rate (e.g., 10% or 20%), then amongst the configurations achieving a lower value of the
latter, we select the one with the lowest Implausibility 1 value. Figures[7] [§ [[0]and [9show the values of

25



Under review as submission to TMLR

10 10

0.8
re
7 0.6

0
110.0112.5115.0117 51200 12251250

0 0 0 &0 B0 100 120 D 0 ) 0 &0 100 120 140 160

08 08
7
7 06 : 06

o T T T T T
110.0112.5115.0117.5120.0 1225 12

=)

150 152 |54 156 158

T T T
o 20 40 60 BO 100 120 o 20 40 B0 B0 100 120 140 160

T T T T T
011251150117 51200122 5125

T T T T T T T 0o T T T T T T T T T oo
o 20 40 60 80 100 120 0 20 40 &0 80 100 120 140 160

Figure 4: Anomalous windows and counterfactual ensemble explanations obtained with DPE (first row),
ICE (second row) and FS (third row) on anomalies in the KPI and Yahoo data sets detected by the USAD
model. The rows correspond to different anomalies. The windows include a context part of 115 timestamps
and an abnormal part of 10 timestamps. The original subsequence is plotted in blue, while the explanations
are in red, green or purple colors for the different variants.
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Figure 5: Counterfactual explanation obtained with ICE @) and the sparse variant (]EI) The different
rows correspond respectively to the first, third, ninth and twelfth dimensions of a subsequence in the SMD
dataset. Amongst them, only the fourth two (twelfth dimension) contains an anomalous observation in the
last timestamp of the displayed window, detected 137 the NCAD model. While ICE @ modifies all the
plotted dimensions, Sparse ICE only perturbs the third and fourth (i.e., the ninth and twelfth dimension).
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Figure 6: Perturbation maps of counterfactual examples in the explanations generated by DPE @ and its
sparse variant (EI) on one anomaly in the SMD dataset detected by NCAD. We recall that the rows of each
mask correspond to the different dimensions of the time series and the columns to the successive timestamps
in the suspect window (see Section @) The color bars on the right sides of the maps indicate the values
(between 0 and 1) of these maps along the time series features.

Dataset Model type Number of Hidden size training learning prediction
layers epochs rate length
KPI FFNN 1 32 100 0.001 10
Yahoo FFNN 1 32 100 0.001 10
SMD DeepVAR 4 40 150 0.001 10
SWaT DeepVAR 4 40 150 0.001 10

Table 8: Hyperparameters of the Probabilistic Forecasting models used in the gradient-free approach on the
four benchmark datasets.

these metrics for all explored configurations for each model and dataset. Lastly, in Tables [0 [0} [II] and
we report the selected configurations for respectively DPE, ICE, Sparse DPE and Sparse ICE on the
benchmark datasets. Besides, the hyperparameters of the gradient-free approach can be found in Table

Dataset Perturbation Omaz learning rate Ao A1
NCAD-KPI Gaussian blur 3.0 0.01 0.01 0.1
NCAD-Yahoo Gaussian blur 10.0 0.01 0.001 0.1
NCAD-SMD Gaussian blur 20.0 0.01 0.0 1.0
NCAD-SMAP Gaussian blur 10.0 0.01 1.0 1.0
USAD-KPI Gaussian blur 3.0 0.01 0.001 1.0
USAD-Yahoo Gaussian blur 10.0 0.01 0.001 1.0
USAD-SMD Gaussian blur 20.0 0.1 0.001 0.01
USAD-SMAP  Gaussian Blur 20.0 0.01 0.01 0.1

Table 9: Hyperparameters of the DPE algorithm on the four benchmark datasets.
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Figure 7: Implausibility measures 1 (left column) and 2 (right column) versus failures rates for different sets
of hyperparameters of the ICE and DPE algorithms and their sparse variants applied to the NCAD (first
row) and USAD (second row) models on a the KPI dataset. The metrics are computed over a validation set

of 5 time series and the failure rate’s threshold is 10% (red dotted line).

Dataset

learning rate A1 Ao AT

NCAD-KPI 0.1 0.01 0.01 1.0
NCAD-Yahoo 0.1 0.01 0.01 1.0
NCAD-SMD 0.1 0.01 0.01 0.1
NCAD-SMAP 0.1 0.1 0.1 1.0
USAD-KPI 0.1 0.001 0.001 1.0
USAD-Yahoo 0.1 0.001 0.001 1.0
USAD-SMD 1000.0 0.01 0.01 1.0
USAD-SMAP 1.0 0.001 0.001 1.0

Table 10: Hyperparameters of the ICE algorithm on the four benchmark datasets.
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Figure 8: Implausibility measures 1 (left column) and 2 (right column) versus failures rates for different sets
of hyperparameters of the ICE and DPE algorithms and their sparse variants applied to the NCAD (first
row) and USAD (second row) models on a the Yahoo dataset. The metrics are computed over a validation

set of 15 time series and the failure rate’s threshold is 25% (red dotted line).

Dataset Perturbation Omaz learning A1 Ao AT
rate

NCAD- Gaussian 20.0 0.1 0.01 0.01 0.1
SMD blur

NCAD- Gaussian 10.0 0.01 0.1 0.1 0.1
SMAP Blur

USAD-SMD Gaussian 20.0 0.01 0.01 0.01 1.0
Blur

USAD- Gaussian 20.0 0.1 0.01 0.01 0.1
SMAP Blur

Table 11: Hyperparameters of the Sparse DPE algorithm on the two benchmark multivariate datasets.

Dataset learning rate A1 Ao AT
NCAD-SMD 0.1 0.01 0.01 0.1
NCAD-SMAP 0.1 0.1 0.1 1.0
USAD-SMD 10000.0 0.01 0.01 0.1
USAD-SMAP 1.0 0.001 0.001 1.0

Table 12: Hyperparameters of the Sparse ICE algorithm on the two benchmark multivariate datasets.
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Figure 9: Implausibility measures 1 (left column) and 2 (right column) versus failures rates for different sets
of hyperparameters of the ICE and DPE algorithms and their sparse variants applied to the NCAD (first
row) and USAD (second row) models on a the SMAP dataset. The metrics are computed over a validation
set of 40 time series and the failure rate’s threshold is 25% (red dotted line).

Variant Perturbation o040 learning A1 Ao AT N
rate
ICE - - 0.1 0.01 0.01 0.01 100
DPE Gaussian 3.0 0.01 - 0.1 0.01 100
Blur

Table 13: Default set of hyperparameters for our gradient-based counterfactual ensemble method.
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Figure 10: Implausibility measures 1 (left column) and 2 (right column) versus failures rates for different sets
of hyperparameters of the ICE and DPE algorithms and their sparse variants applied to the NCAD (first
row) and USAD (second row) models on a the SMD dataset. The metrics are computed over a validation
set of 6 time series and the failure rate’s threshold is 40% for NCAD and 20% for USAD (red dotted lines).
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Figure 11: Diversity of the counterfactual ensemble (left) and failure rate of our counterfactual method
(right) versus the learning rate of the SGD algorithm for the two variants of our method, ICE and DPE.

E Sensitivity of the Diversity criterion to the learning rate parameter

In this section we report a small-scale study of the influence of the learning rate in the SGD algorithm
on the Diversity metric, in our gradient-based approach. We evaluate the latter metric on 10 anomalies
detected by the NCAD model in the KPI dataset, obtained with DPE and ICE with learning rates in the
set {0.001,0.01,0.1, 1,10, 100, 1000, 10000}. The other hyperparameters of our method are the same as in
Section Figure [11| shows the evolution of the Diversity score (left panel) and failure rate (right panel)
when the learning rate increases. We observe that the diversity is always higher for ICE than DPE, and
dramatically increases when the learning rate is greater than 1 for the former. However, failure rate also

skyrockets for high learning rates.
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