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ABSTRACT

We explore the properties of byte-level recurrent language models. When given
sufficient amounts of capacity, training data, and compute time, the representations
learned by these models include disentangled features corresponding to high-level
concepts. Specifically, we find a single unit which performs sentiment analysis.
These representations, learned in an unsupervised manner, achieve state of the art
on the binary subset of the Stanford Sentiment Treebank. They are also very data
efficient. When using only a handful of labeled examples, our approach matches the
performance of strong baselines trained on full datasets. We also demonstrate the
sentiment unit has a direct influence on the generative process of the model. Simply
fixing its value to be positive or negative generates samples with the corresponding
positive or negative sentiment.

1 INTRODUCTION AND MOTIVATING WORK

Representation learning (Bengio et al.|(2013)) plays a critical role in many modern machine learning
systems. Representations map raw data to more useful forms and the choice of representation is
an important component of any application. Broadly speaking, there are two areas of research
emphasizing different details of how to learn useful representations.

The supervised training of high-capacity models on large labeled datasets is critical to the recent
success of deep learning techniques for a wide range of applications such as image classification
(Krizhevsky et al.| (2012)), speech recognition (Hinton et al.|(2012)), and machine translation (Wu
et al.[(2016)). Analysis of the task specific representations learned by these models reveals many
fascinating properties (Zhou et al.| (2014)). Image classifiers learn a broadly useful hierarchy of
feature detectors re-representing raw pixels as edges, textures, and objects (Zeiler & Fergus|(2014)).
In the field of computer vision, it is now commonplace to reuse these representations on a broad
suite of related tasks - one of the most successful examples of transfer learning to date (Oquab et al.
(2014)).

There is also a long history of unsupervised representation learning (Olshausen & Field| (1997)).
Much of the early research into modern deep learning was developed and validated via this approach
(Hinton & Salakhutdinov| (2006); Huang et al.|(2007); |[Vincent et al.| (2008); |Coates et al.| (2010); [Le
(2013))). Unsupervised learning is promising due to its ability to scale beyond the small subsets and
subdomains of data that can be cleaned and labeled given resource, privacy, or other constraints. This
advantage is also its difficulty. While supervised approaches have clear objectives that can be directly
optimized, unsupervised approaches rely on proxy tasks such as reconstruction, density estimation,
or generation, which do not directly encourage useful representations for specific tasks. As a result,
much work has gone into designing objectives, priors, and architectures meant to encourage the
learning of useful representations. We refer readers to Goodfellow et al.|(2016) for a detailed review.

Despite these difficulties, there are notable applications of unsupervised learning. Pre-trained word
vectors are a vital part of many modern NLP systems (Collobert et al|(2011)). These representations,
learned by modeling word co-occurrences, increase the data efficiency and generalization capability
of NLP systems (Pennington et al.| (2014); |[Chen & Manning| (2014)). Topic modelling can also
discover factors within a corpus of text which align to human interpretable concepts such as “art” or
“education” (Blei et al.| (2003)).
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How to learn representations of phrases, sentences, and documents is an open area of research.
Inspired by the success of word vectors, Kiros et al.|(2015) propose skip-thought vectors, a method of
training a sentence encoder by predicting the preceding and following sentence. The representation
learned by this objective performs competitively on a broad suite of evaluated tasks. More advanced
training techniques such as layer normalization (Ba et al.|(2016))) further improve results. However,
skip-thought vectors are still outperformed by supervised models which directly optimize the desired
performance metric on a specific dataset. This is the case for both text classification tasks, which
measure whether a specific concept is well encoded in a representation, and more general semantic
similarity tasks. This occurs even when the datasets are relatively small by modern standards, often
consisting of only a few thousand labeled examples.

In contrast to learning a generic representation on one large dataset and then evaluating on other
tasks/datasets, [Dai & Le| (2015)) proposed using similar unsupervised objectives such as sequence
autoencoding and language modeling to first pretrain a model on a dataset and then finetune it for
a given task. This approach outperformed training the same model from random initialization and
achieved state of the art on several text classification datasets. Combining word-level language
modelling of a dataset with topic modelling and fitting a small neural network feature extractor on
top has also achieved strong results on document level sentiment analysis (Dieng et al.|(2016)).

Considering this, we hypothesize two effects may be combining to result in the weaker performance
of purely unsupervised approaches. Skip-thought vectors were trained on a corpus of books. But
some of the classification tasks they are evaluated on, such as sentiment analysis of reviews of
consumer goods, do not have much overlap with the text of novels. We propose this distributional
issue, combined with the limited capacity of current models, results in representational underfitting.
Current generic distributed sentence representations may be very lossy - good at capturing the gist,
but poor with the precise semantic or syntactic details which are critical for applications.

The experimental and evaluation protocols may be underestimating the quality of unsupervised
representation learning for sentences and documents due to certain seemingly insignificant design
decisions. Hill et al.| (2016) also raises concern about current evaluation tasks in their recent work
which provides a thorough survey of architectures and objectives for learning unsupervised sentence
representations - including the above mentioned skip-thoughts.

In this work, we test whether this is the case. We focus in on the task of sentiment analysis and attempt
to learn an unsupervised representation that accurately contains this concept. [Mikolov et al.|(2013)
showed that word-level recurrent language modelling supports the learning of useful word vectors.
We are interested in pushing this line of work to learn representations of not just words but arbitrary
scales of text with no distinction between sub-word, word, phrase, sentence, or document-level
structure. Recent work has shown that traditional NLP task such as Named Entity Recognition and
Part-of-Speech tagging can be performed this way by processing text as a byte sequence (Gillick et al.
(2015))). Byte level language modelling is a natural choice due to its simplicity and generality. We are
also interested in evaluating this approach as it is not immediately clear whether such a low-level
training objective supports the learning of high-level representations. We train on a very large corpus
picked to have a similar distribution as our task of interest. We also benchmark on a wider range of
tasks to quantify the sensitivity of the learned representation to various degrees of out-of-domain data
and tasks.

2 DATASET

Much previous work on language modeling has evaluated on relatively small but competitive datasets
such as Penn Treebank (Marcus et al. (1993)) and Hutter Prize Wikipedia (Hutter] (2006)). As
discussed in Jozefowicz et al.| (2016) performance on these datasets is primarily dominated by
regularization. Since we are interested in high-quality sentiment representations, we chose the
Amazon product review dataset introduced in McAuley et al.| (2015) as a training corpus. In de-
duplicated form, this dataset contains over 82 million product reviews from May 1996 to July 2014
amounting to over 38 billion training bytes. Due to the size of the dataset, we first split it into 1000
shards containing equal numbers of reviews and set aside 1 shard for validation and 1 shard for test.
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3 MODEL AND TRAINING DETAILS

Many potential recurrent architectures and hyperparameter settings were considered in preliminary
experiments on the dataset. Given the size of the dataset, searching the wide space of possible
configurations is quite costly. To help alleviate this, we evaluated the generative performance in terms
of log-likelihood of smaller candidate models after a single pass through the dataset and selected the
best performing architecture according to this metric for large scale experiments. The model chosen
is a single layer multiplicative LSTM (Krause et al.|(2016))) with 4096 units.

We observed multiplicative LSTMs to converge
faster than normal LSTMs for the hyperparam-
eter settings that were explored both in terms of — LST (validh

--- LSTM (train)

data and wall-clock time. The model was trained mLSTM (valid)

mLSTM (train)

for a single epoch on mini-batches of 128 sub-
sequences of length 256 for a total of 1 million
weight updates. States were initialized to zero at 130
the beginning of each shard and persisted across
updates to simulate full-backpropagation and al-
low for the forward propagation of information
outside of a given subsequence. Adam (Kingma
& Bal (2014)) was used to accelerate learning
with an initial 5e-4 learning rate that was de-
cayed linearly to zero over the course of train-
ing. Weight normalization (Salimans & Kingma
(2016)) was apphed to the LSTM parameters. 110 200000 400000 500000 800000 1000000
Data-parallelism was used across 4 Pascal Titan "

X gpus to speed up training and increase effec- Figure 1: The mLSTM converges faster and
tive memory size. Training took approximately achieves a better result within our time budget com-
one month. The model is compact, containing pared to a standard LSTM with the same hidden
approximately as many parameters as there are  gstate size

reviews in the training dataset. It also has a high

ratio of compute to total parameters due to op-

erating at a byte level. The model reaches 1.12

bits per byte.

bits per character
-
9
&

4 EXPERIMENTAL SETUP AND RESULTS

Our model processes text as a sequence of UTF-8 encoded bytes (Yergeau| (2003)). For each byte, the
model updates its hidden state and predicts a probability distribution over the next possible byte. The
hidden state of the model serves as an online summary of the sequence which encodes all information
the model has learned to preserve that is relevant to predicting the future bytes of the sequence. We
are interested in understanding the properties of the learned encoding. The process of extracting a
feature representation is outlined as follows:

e Since newlines are used as review delimiters in the training dataset, all newline characters
are replaced with spaces to avoid the model resetting state.

e Any leading whitespace is removed and replaced with a newline+space to simulate a start
token. Any trailing whitespace is removed and replaced with a space to simulate an end
token. HTML is unescaped and HTML tags are removed to mirror preprocessing applied to
the training dataset. The text is encoded as a UTF-8 byte sequence.

e Model states are initialized to zeros. The model processes the sequence and the final cell
states of the mLSTM are used as a feature representation.

We follow the methodology established in |Kiros et al.| (2015) by training a logistic regression
classifier on top of our model’s representation on datasets for tasks including semantic relatedness,
text classification, and paraphrase detection. For the details on these comparison experiments, we
refer the reader to their work. One exception is that we use an L1 penalty for text classification results
instead of L2 as we found this performed better in the very low data regime.
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Figure 2: Performance on the binary version of SST as a function of labeled training examples. The
solid lines indicate the average of 100 runs while the sharded regions indicate the 10th and 90th
percentiles. Previous results on the dataset are plotted as dashed lines with the numbers indicating the
amount of examples required for logistic regression on the byte mLSTM representation to match their
performance. RNTN (Socher et al.| (2013)) CNN (Kim|(2014)) DMN (Kumar et al.[(2015)) P-SL999
LSTM (Wieting et al.|(2015)) NSE (Munkhdalai & Yu!(2016)) CT-LSTM (Looks et al.|(2017))

4.1 TEXT CLASSIFICATION AND SENTIMENT ANALYSIS

Table 1 shows the results of our model on 4 standard text classification datasets. The performance
of our model is noticeably lopsided. On the MR (Pang & Lee|(2005)) and CR (Hu & Liu (2004)))
sentiment analysis datasets we improve the state of the art by a significant margin. The MR and
CR datasets are sentences extracted from Rotten Tomatoes, a movie review website, and Amazon
product reviews (which almost certainly overlaps with our training corpus). This suggests that our
model has learned a rich representation of text from a similar domain. On the other two datasets,
SUBJ’s subjectivity/objectivity detection (Pang & Lee|(2004)) and MPQA’s opinion polarity (Wiebe
et al.| (2005))) our model has no noticeable advantage over other unsupervised representation learning
approaches and is still outperformed by a supervised approach.

To better quantify the learned representation, we also test on a wider set of sentiment analysis datasets
with different properties. The Stanford Sentiment Treebank (SST) (Socher et al.| (2013)) was created
specifically to evaluate more complex compositional models of language. It is derived from the same
base dataset as MR but was relabeled via Amazon Mechanical Turk and includes dense labeling
of the phrases of parse trees computed for all sentences. For the binary subtask, this amounts to
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Method MR CR SUBJ  MPQA

Method Err
NBSVM [Wang & Manning|(2012)  79.4 81.8 932 86.3

FullBoW Maas et al.| (2011) 11.1
ST [Kiros et al.|(2015) 713 81.8 92.6 879 NBSVM |Mesnil et al. (2014 8.1
STLN [Ba et al|(2016) 79.5 83.1 937 893 Sentiment unit (ours) 77
SDAE [Hill et al.[(2016) 74.6 78.0 90.8 86.9 SA-LSTM [pai & Ldf015) 7.2
CNN [kinl 014) 81.5 850 934 89.6  byte mLSTM @urs) 7.1
Adasent Zhao et a1 (2013) 83.1 863 955 933  TopicRNN piengetal|@o16) 6.2

Virt Adv Miyato et al|(2016) 59
byte mLSTM 869 914 946 88.5

Table 2: IMDB sentiment analysis
Table 1: Small dataset classification accuracies

76961 total labels compared to the 6920 sentence level labels. As a demonstration of the capability of
unsupervised representation learning to simplify data collection and remove steps from a traditional
NLP pipeline, our reported results ignore these dense labels and computed parse trees, using only the
raw text and sentence level labels.

The representation learned by our model achieves 91.8% significantly outperforming the state of the
art of 90.2% by a 30 model ensemble (Looks et al.|(2017)). As visualized in Figure 2, our model is
very data efficient. It matches the performance of baselines using as few as a dozen labeled examples
and outperforms all previous results with only a few hundred labeled examples. This is under 10% of
the total sentences in the dataset. Confusingly, despite a 16% relative error reduction on the binary
subtask, it does not reach the state of the art of 53.6% on the fine-grained subtask, achieving 52.9%.

4.2 SENTIMENT UNIT

We conducted further analysis to understand
what representations our model learned and how
they achieve the observed data efficiency. The

benefit of an L1 penalty in the low data regime hegative reviews
(see Figure 2) is a clue. L1 regularization is 1000

known to reduce sample complexity when there

are many irrelevant features (Ng|(2004)). This 800

is likely to be the case for our model since it is
trained as a language model and not as a super-
vised feature extractor. By inspecting the rela-
tive contributions of features on various datasets,
we discovered a single unit within the mLSTM
that directly corresponds to sentiment. In Fig-
ure 3 we show the histogram of the final activa-
tions of this unit after processing IMDB reviews -4 -3 2 1o 1 2
(Maas et al.| (2011)) which shows a bimodal

distribution with a clear separation between pos-  Figure 3: Histogram of cell values for the senti-
itive and negative reviews. In Figure 5 we visSu- ment unit on IMDB reviews.

alize the activations of this unit on 6 randomly

selected reviews from a set of 100 high contrast reviews which shows it acts as an online estimate
of the local sentiment of the review. Fitting a threshold to this single unit achieves a test accuracy
of 92.30% which outperforms a strong supervised results on the dataset, the 91.87% of NB-SVM
trigram (Mesnil et al.|(2014)), but is still below the semi-supervised state of the art of 94.09% (Miyato
et al. (2016)). Using the full 4096 unit representation achieves 92.88%. This is an improvement of
only 0.58% over the sentiment unit suggesting that almost all information the model retains that is
relevant to sentiment analysis is represented in the very compact form of a single scalar. Table 2 has
a full list of results on the IMDB dataset.

600

count

400

200
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Method r p MSE Method Acc F1
ST [Kiros et al.|(2015) 0.858 0.792  0.269 ST [Kiros et al.|(2015) 73.0 82.0
STLN Ba et al.|(2016) 0.858 0.788 0.270 SDAE Hill et al.|(2016) 76.4 834
Tree-LSTM [Tai etal(2015)  0.868  0.808  0.253 MTMETRICS Madnani et al{(2012)  77.4  84.1
byte mLSTM 0.792 0.725 0.390 byte mLSTM 75.0 82.8
Table 3: SICK semantic relatedness subtask Table 4: Microsoft Paraphrase Corpus

4.3 CAPACITY CEILING

Encouraged by these results, we were curious
how well the model’s representation scales to
larger datasets. We try our approach on the bi-
nary version of the Yelp Dataset Challenge in
2015 as introduced in|Zhang et al.| (2015). This
dataset contains 598,000 examples which is an
order of magnitude larger than any other datasets
we tested on. When visualizing performance as
a function of number of training examples in
Figure 4, we observe a "capacity ceiling" where

100

98 1

96 1

Test Accuracy

941

the test accuracy of our approach only improves 0]
by a little over 1% across a four order of mag-
nitude increase in training data. Using the full %

10! 10? 103 104 10°
Labeled Training Examples

dataset, we achieve 95.22% test accuracy. This
better than a BoW TFIDF baseline at 93.66%
but slightly worse than the 95.64% of a linear
classifier on top of the 500,000 most frequent
n-grams up to length 5.

Figure 4: Performance on the binary version of the
Yelp reviews dataset as a function of labeled train-
ing examples. The model’s performance plateaus

The observed capacity ceiling is an interesting ~after about ten labeled examples and only slow
phenomena and stumbling point for scaling our improves with additional data.

unsupervised representations. We think a variety

of factors are contributing to cause this. Since our model is trained only on Amazon reviews, it is
does not appear to be sensitive to concepts specific to other domains. For instance, Yelp reviews
are of businesses, where details like hospitality, location, and atmosphere are important. But these
ideas are not present in reviews of products. Additionally, there is a notable drop in the relative
performance of our approach transitioning from sentence to document datasets. This is likely due to
our model working on the byte level which leads to it focusing on the content of the last few sentences
instead of the whole document. Finally, as the amount of labeled data increases, the performance
of a simple linear model trained on top of a static representation will eventually saturate. Complex
models explicitly trained for a task can continue to improve and eventually outperform our approach
when provided with enough labeled data.

With this context, the observed results reveal a natural ordering. On a small sentence level dataset
from a very similar domain (the movie reviews of Stanford Sentiment Treebank) our model sets a
new state of the art. But on a large, document level dataset from a slightly different domain (the Yelp
reviews) it is only competitive with standard baselines.

4.4 REPRESENTATION STABILITY

The features of our model are learned via an unsupervised objective. A potential concern with this
training methodology is that it is unreliable. There is no guarantee that the representations learned
will be useful for a desired task because the model is not optimizing directly for this. This could lead
to high variance of performance on desired tasks. This concern is further amplified for the properties
of individual features and not just the representation as whole. While the work of |Li et al.| (2015)
has shown that networks differing in only random initialization can learn the same features, this was
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Sentiment fixed to positive

Sentiment fixed to negative

Just what I was looking for. Nice fitted pants, exactly
matched seam to color contrast with other pants I
own. Highly recommended and also very happy!

This product does what it is supposed to. I always
keep three of these in my kitchen just in case ever I
need a replacement cord.

Best hammock ever! Stays in place and holds it’s
shape. Comfy (I love the deep neon pictures on it),
and looks so cute.

Dixie is getting her Doolittle newsletter we’ll see
another new one coming out next year. Great stuff.
And, here’s the contents - information that we hardly
know about or forget.

I'love this weapons look . Like I said beautiful !!!
I recommend it to all. Would suggest this to many
roleplayers , And I stronge to get them for every one
I know. A must watch for any man who love Chess!

The package received was blank and has no barcode.
A waste of time and money.

Great little item. Hard to put on the crib without
some kind of embellishment. My guess is just like
the screw kind of attachment I had.

They didn’t fit either. Straight high sticks at the end.
On par with other buds I have. Lesson learned to
avoid.

great product but no seller. couldn’t ascertain a cause.
Broken product. I am a prolific consumer of this
company all the time.

Like the cover, Fits good. . However, an annoying
rear piece like garbage should be out of this one. 1
bought this hoping it would help with a huge pull
down my back & the black just doesn’t stay. Scrap

off everytime I use it.... Very disappointed.

Table 5: Random samples from the model generated when the value of sentiment unit hidden state is
fixed to either -1 or 1 for all steps. The sentiment unit has a strong influence on the model’s generative
process.

tested for CNNs trained for supervised image classification. To check whether this is the case for
our approach, we trained a second model using the same hyperparameters differing only in weight
parameterization and compared to the model discussed in this paper. The best single unit in this
model (selected via validation set) achieves 92.42% test accuracy on IMDB compared to the 92.30%
of the unit visualized in this paper. This suggests that the sentiment unit is an example of a convergent
representation.

4.5 OTHER TASKS

Besides classification, we also evaluate on two other standard tasks: semantic relatedness and
paraphrase detection. While our model performs competitively on Microsoft Research Paraphrase
Corpus (Dolan et al.|(2004))) in Table 3, it performs poorly on the SICK semantic relatedness task
(Marelli et al.| (2014)) in Table 4. It is likely that the form and content of the semantic relatedness
task, which is built on top of descriptions of images and videos and contains sentences such as "A sea
turtle is hunting for fish" is effectively out-of-domain for our model which has only been trained on
the text of product reviews.

4.6 GENERATIVE ANALYSIS

Although the focus of our analysis has been on the properties of our model’s representation, it is
trained as a generative model and we are also interested in its generative capabilities. Hu et al.| (2017)
and |Dong et al.| (2017) both designed conditional generative models to disentangle the content of
text from various attributes like sentiment or tense. We were curious whether a similar result could
be achieved using the sentiment unit. In Table 5 we show that by simply setting the sentiment unit
to be positive or negative, the model generates corresponding positive or negative reviews. While
all sampled negative reviews contain sentences with negative sentiment, they sometimes contain
sentences with positive sentiment as well. This might be reflective of the bias of the training corpus
which contains over 5x as many five star reviews as one star reviews. Nevertheless, it is interesting
to see that such a simple manipulation of the model’s representation has a noticeable effect on its
behavior. The samples are also high quality for a byte level language model and often include valid
sentences.
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25 August 2003 League of Extraordinary Gentlemen: Sean Connery is one of
the all time greats and I have been a fan of his since the 1950's. I went
to this movie because Sean Connery was the main actor. I had not read
reviews or had any prior knowledge of the movie. The movie surprised me
quite a bit. The scenery and sights were spectacular, but the plot was
unreal to the point of being ridiculous. In my mind this was not one of

his better movies it could be the worst. Why he chose to i i iii W

Judy Holliday struck gold  in' 19507 i EiENGEOTOENCUKORISITVETSIONNOT
point forward, her career consisted of
trying to find material good enough to allow her to strike gold again. It
never happened. In "It Should Happen to You" (I can't think of a blander
title, by the way), Holliday does yet one more variation on the dumb
blonde who's maybe not so dumb after all, but everything about this movie

I found this to be a charming adaptation, very lively and full of fun.
With the exception of a couple of major errors, the cast is wonderful. I
have to echo some of the earlier comments -- Chynna Phillips is horribly
miscast as a teenager. At 27, she's just too old (and, yes, it DOES show),

and lacks the singing "chops" for Broadway-style music. Vanessa Williams
is a dec

€ -- with special kudos to Brigitta
Dau and Chiara Zanni. I also enjoyed Tyne Daly's performance, though I'm
not generally a fan of her work. Finally, the dancing Shriners are a riot,
especially the dorky three in the bar. The movie is suitable for the whole
family, and I highly recommend it.

God bless Randy Quaid...his leachorous Cousin Eddie in Vvacation and
Christmas Vacation hilariously stole the sh

Vegas Vacation at least worth a look. I will say that he tries hard in
this made for TV sequel, but that the script is so NON funny that the
movie never really gets anywhere. Quaid and the rest of the returning

Vacation vets (including the orginal Audrey, Dana Barron) are wast.

feels warmed over and half hearted. Even Jack Lemmon, in what I believe

was his first film role, can't muster up enough energy to elh“

Team Spirit is maybe made by the best intentions, but it misses the warmth once in a while you get amazed over how BAD a film can be, and how in the

of "All Stars" (1997) by Jean van de Velde. Most scenes are identic, just
not that funny

world anybody could raise money to make this kind of crap.
mﬂ F

Figure 5: Visualizing the value of the sentiment unit’s cell state as it processes six randomly selected
high contrast IMDB reviews. Red indicates negative sentiment while green indicates positive
sentiment. Best seen in color.

5 DISCUSSION AND FUTURE WORK

It is an open question why our model recovers the concept of sentiment in such a precise, disentangled,
interpretable, and manipulable way. It is possible that sentiment as a conditioning feature has strong
predictive capability for language modelling. This is likely since sentiment is such an important
component of a review. Previous work analyzing LSTM language models showed the existence of
interpretable units that indicate position within a line or presence inside a quotation (Karpathy et al.
(2015)). In many ways, the sentiment unit in this model is just a scaled up example of the same
phenomena. The update equation of an LSTM could play a role. The element-wise operation of its
gates may encourage axis-aligned representations. Models such as word2vec have also been observed
to have small subsets of dimensions strongly associated with specific tasks (Li et al.| (2016)).

Our work highlights the sensitivity of learned representations to the data distribution they are trained
on. The results make clear that it is unrealistic to expect a model trained on a corpus of books, where
the two most common genres are Romance and Fantasy, to learn an encoding which preserves the
exact sentiment of a review. Likewise, it is unrealistic to expect a model trained on Amazon product
reviews to represent the precise semantic content of a caption of an image or a video.

There are several promising directions for future work highlighted by our results. The observed
performance plateau, even on relatively similar domains, suggests improving the representation model
both in terms of architecture and size. Since our model operates at the byte-level, hierarchical/multi-
timescale extensions could improve the quality of representations for longer documents. The sensi-
tivity of learned representations to their training domain could be addressed by training on a wider
mix of datasets with better coverage of target tasks. Finally, our work encourages further research
into language modelling as it demonstrates that the standard language modelling objective with no
modifications is sufficient to learn high-quality representations.
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