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Abstract—Global localization is necessary for autonomous
operations on the lunar surface where traditional Earth-based
navigation infrastructure, such as GPS, is unavailable. As NASA
advances toward sustained lunar presence under the Artemis
program, autonomous operations will be an essential component
of tasks such as robotic exploration and infrastructure deploy-
ment. Tasks such as excavation and transport of regolith require
precise pose estimation, but proposed approaches such as visual-
inertial odometry (VIO) accumulate odometry drift over long
traverses. Precise pose estimation is particularly important for
upcoming missions such as the ISRU Pilot Excavator (IPEx) that
rely on autonomous agents to operate over extended timescales
and varied terrain. To help overcome odometry drift over long
traverses, we propose LunarLoc, an approach to global localiza-
tion that leverages instance segmentation for zero-shot extraction
of boulder landmarks from onboard stereo imagery. Segment
detections are used to construct a graph-based representation
of the terrain, which is then aligned with a reference map
of the environment captured during a previous session using
graph-theoretic data association. This method enables accurate
and drift-free global localization in visually ambiguous settings.
LunarLoc achieves sub-cm level accuracy in multi-session global
localization experiments, significantly outperforming the state
of the art in lunar global localization. To encourage the de-
velopment of further methods for global localization on the
Moon, we release our datasets publicly with a playback module:
https://github.com/mit-acl/lunarloc-data.

I. INTRODUCTION

Autonomous systems will play a vital role in preparing
humanity for a sustained presence on the Moon. Precise
and robust global localization will be a key capability for
enabling autonomous surface operations to operate drift-free
during precision-based tasks. The ability for robotic systems
to accurately determine their position and orientation within
a shared lunar reference frame is critical for navigation, ex-
ploration, infrastructure deployment, and scientific discovery.
Unlike Earth-based systems that benefit from Global Naviga-
tion Satellite Systems (GNSS), the Moon lacks robust GNSS
support, requiring global localization techniques that integrate
on-board perception and environmental understanding for ac-
curate mapping.
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Fig. 1: LunarLoc uses open-set segmentation to generate maps
through detection of boulders (shown in green), then performs
object-based global localization using multi-session maps.

This ability for robots to localize without dependence on
GNSS is particularly challenging in the context of lunar
operations where harsh lighting conditions drastically alter
the appearance of the environment. Classical approaches for
localization involve visual place recognition [1, 2] followed
by visual feature extraction [3, 4] and matching [5]. Place
recognition methods struggle with viewpoint variation and
may fail to provide descriptors that are different enough for
meaningful association across places [6]. While feature-based
approaches are effective for applications such as frame-to-
frame tracking, they may fail to provide meaningful visual
cues for long-term localization. These limitations of current
global localization methods motivate the need for a separate
approach to global localization on the Moon.

LunarLoc uses the underlying structure of the environment
as a cue for global localization. The lunar environment has an
abundance of rocks, the positions of which do not change
under varying lighting conditions. Zero-shot extraction of
segments within the scene provides consistent detections of
rocks regardless of lighting conditions. LunarLoc provides a
robust paradigm for global localization on the lunar surface,
as demonstrated through experiments with a digital twin of
the IPEx rover operating in a simulated lunar environment.

Our contributions include:
• Real-time object-based mapping using open-set segmen-

tation for multi-session graph-theoretic global localiza-
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tion on the lunar surface
• Experimental validation of our approach in a simulated

lunar environment, achieving cm-level accuracy which
significantly outperforms the state of the art for lunar
global localization

• Release of our datasets as well as a simulation playback
environment to encourage further development of lunar
global localization

II. RELATED WORKS

Several approaches have been proposed for global local-
ization in environments without GNSS support and unstruc-
tured environments. We review these approaches as well as
landmark-based localization and planetary localization.

A. Global Localization in Environments without GNSS

Image-based localization techniques are commonly used in
environments with GNSS. Place recognition approaches such
as bag of words [8] and NetVLAD [1] store image representa-
tions as embeddings in a database which are used to associate
new images with previous observations. These approaches are
reasonably robust to changing environments from the same
viewpoint. Sarlin et. al [9] built upon this concept to allow
for online pose estimation using image-based localization.
New images are compared to an existing library for an initial
coarse estimation, before keypoint matching is applied for finer
positioning. While these approaches demonstrate high recall in
visually distinctive environments, their performance degrades
when comparing different places that include similar features
[6]. Learning-based methods such as [10] and [11] are also
sensitive to perceptual aliasing in visually ambiguous settings.

B. Localization in Unstructured and Natural Environments

Unstructured and natural environments present a challeng-
ing setting for many visual SLAM systems which may assume
the presence of urban-centric fixtures. To address the lack of
semantic information such as lane markings and buildings,
[12] integrates wheel odometry with visual tracking and [13]
includes topological maps in the localization process. Ap-
proaches such as [14] and [6] specifically use the underlying
structure of the environment as a cue for global localization.

C. Landmark-Based and Object-Centric Localization

To overcome issues arising from perceptual aliasing, re-
cent works have proposed landmark-based and object-centric
localization using graph theoretic alignment between objects
within maps. These approaches are lightweight, lending them-
selves well to multi-agent scenarios as well. Ankenbauer et.
al [14] proposed object-centric global localization in urban
and unstructured scenarios, relying on YOLO [15] to extract
objects from the environment which limits extension to set-
tings without pre-determined object classes. To enable open-
set operation, SOS-Match [6] employs zero-shot segmentation
from SAM to extract segments reflective of objects in the
scene. ROMAN [16] and [17] incorporate semantics into
the object-based formulation to further disambiguate between
geometrically similar scenes.

TABLE I: Planetary Localization Methods

Method Modality Locale Accuracy [m]

GPS, [22] Satellite Time Code Earth 4.9
Geo-Referencing [18] Satellite Imagery Mars 0.5
TRN [20, 21] Local Imagery Mars 10.0
MAVeN [23, 24] Aerial Imagery Mars 3.0
LunarNav [25] Local Imagery Moon 5.0
ShadowNav [26] Local Imagery Moon 1.5
LunarLoc (Proposed) Local Imagery Moon 0.02

D. Planetary and Lunar Localization

Due to the lack of GNSS coverage on both the Moon
and Mars, previous missions have adopted several different
strategies to perform localization. While most rovers utilize
wheel odometry and inertial measurement units for relative
localization, these methods are prone to odometry drift over
longer traverses. The Spirit and Opportunity rovers overcame
this by correlating local panoramas to satellite images at
regular intervals [18]. This method relies on high resolution
images of the rover’s operational site, and is highly prone
to changes in lighting. Both additionally incorporated visual-
odometry and celestial sensing, but the former is still prone to
drift and the latter only provides accurate estimates for heading
[19]. For the task of landing, orbital images are again used as
a reference against sensor data in Terrain Relative Navigation
(TRN) [20]. This technique was later shown to provide 10
meter position accuracy on the Perseverance rover [21]. A
comparison of existing and proposed planetary localization
methods is provided in Table I. Of these methods, LunarLoc
is the only approach that provides centimeter-level accuracy.

III. METHODOLOGY

A. Open-Set Object-Based Mapping

Our mapping approach consists of performing zero-shot
instance segmentation on input images using a pre-trained
foundation model [7]. The segments are primarily extracted
as boulders in the scene, reflecting the underlying geometric
structure of the environment as shown in Fig. 2.

We perform mapping simultaneously from the front and
back of the rover. Images captured from the front-left and
rear-left IPeX rover cameras, as shown in Fig. 3, are used as
inputs to the segmentation model.

We apply point prompting over a uniform 32 × 32 grid,
producing a set of instance masks:

M = {mi}Ni=1, (1)

where each mask mi is defined by its image-frame centroid
ci ∈ R2 and size si ∈ R+:

mi = (ci, si). (2)

We find mask size by projecting each centroid ci from
the 2D image frame into 3D coordinates in the rover frame
using stereo depth imagery. Assuming approximately spherical



Fig. 2: Extraction of segment locations via open-set segmentation with FastSAM [7]. Images include a front-view image taken
from the IPEx digital twin in the Lunar Simulator (left) and the zero-shot segmented image (right).

Fig. 3: IPEx rover diagram where the front-left camera and
rear-left camera are used as inputs to the segmentation model
and front-right and rear-right cameras provide imagery for
stereo depth estimation of mapped objects, from [27]

objects, we use the standard deviation σi of the mask and the
depth Di at ci to estimate the physical size si of the object:

si = σi ·Di · α, (3)

where α is the angular resolution (e.g., radians per pixel) of
the camera. This converts 2D pixel extent into a real-world
spatial scale.

We filter masks to remove those that (1) intersect the image
boundary or (2) fall outside pre-defined size thresholds smin ≤
si ≤ smax. To further refine the set, we compute the 2D spatial
covariance matrix of each mask and reject elongated shapes
by enforcing an eigenvalue ratio constraint:

λmax

λmin
≤ τelong, (4)

where λmax and λmin are the principal eigenvalues of the
covariance matrix of the mask’s pixel distribution. Masks with
high anisotropy are typically shadows or terrain edges and are
excluded. The filtered set is denoted:

M̃ =

mi ∈ M

∣∣∣∣∣∣
mi is fully visible,
smin ≤ si ≤ smax,
λmax/λmin ≤ τelong

 . (5)

The final set of projected 3D centroids stored for each frame
is:

Mveh = {Ci}Ñi=1, Ci ∈ R3, (6)

where Ñ = |M̃|.
The use of FastSAM [7] allows this procedure to occur

in real-time on a CPU, which is crucial for implementation
of SLAM systems on the lunar surface. As the segmentation
time is proportional to the prompt area, further speed-ups
can additionally be achieved by making assumptions on the
horizon line placement and excluding portions of the image.

B. Graph-Theoretic Data Association

The goal of the data association pipeline is to perform
localization between the current map Mveh, computed in real
time onboard the agent, and a reference map Mref, collected
by an agent during a prior session.

We utilize a geometric data association framework [28] to
compute the largest geometrically consistent set of 3D segment
correspondences between Mveh and Mref. Geometric consis-
tency is defined via pairwise distance preservation between
associated segments. For instance, if points a,b ∈ Mveh are
matched to a′,b′ ∈ Mref, then the pair is considered consistent
if:

∥a− b∥ ≈ ∥a′ − b′∥.

(a) (b)

Fig. 4: Illustrative example of the consistency graph and its
affinity matrix for point cloud registration, from [28]. (a) Blue
and red point clouds with putative associations u1, . . . , u5.
(b) Consistency graph G, where edges indicate geometric
consistency between associations.



An example of this process is shown in Fig. 4.
We represent candidate associations as nodes in a graph,

where the affinity matrix A ∈ {0, 1}n×n defines pairwise
consistency:

Aui,uj =

{
1 if associations ui and uj are consistent,
0 otherwise.

To find the largest mutually consistent set of correspondences,
we solve for the densest clique via the following optimization:

max
u∈{0,1}n

u⊤Au

u⊤u

subject to uiuj = 0 if Ai,j = 0.

(7)

Given the resulting set of geometrically consistent segment
correspondences S = {(ai,bi)}ki=1, where ai ∈ Mveh and
bi ∈ Mref, we estimate the rigid transformation that aligns
the current vehicle map to the reference map using Arun’s
method [29]. This produces the optimal rotation R ∈ SO(3)
and translation t ∈ R3 minimizing:

k∑
i=1

∥bi − (Rai + t)∥2 .

The resulting transformation from the vehicle frame to the
reference map frame is:

Tref
veh =

[
R t
0⊤ 1

]
∈ SE(3).

IV. EVALUATION

A. Simulator

We evaluate the performance of our approach using the
Lunar Simulator, an extension of the CARLA Simulator [30]
developed for the Lunar Autonomy Challenge [27]. While
CARLA is an open-source platform, the Lunar Simulator
adapts its capabilities to replicate the unique challenges of
lunar exploration with a high-fidelity, physics-based simulation
of the lunar surface, including terrain, lighting conditions,
and other environmental factors reflective of space exploration
contexts. The Lunar Simulator includes a 27m x 27m map with

Fig. 5: The Lunar Simulator includes a lunar lander at the
center of a 27m x 27m map, from [27]

TABLE II: Traverse Data

Traverse Length [m] Duration [min] Object Detections

1 6.3 6 1283
2 6.5 6 1280
3 5.6 6 1261
4 17.8 16 3376
5 9.6 9 1884
6 8.9 6 1060
7 37.3 7 6263
8 15.6 12 2374
9 54.5 10 1695
10 88.2 15 2982
11 36.5 7 874
12 35.9 7 871
13 197.3 26 14494
14 33.3 6 2911
15 98.3 16 6722
16 8.7 2 755
17 47.2 8 3701

386 rocks, a lunar lander in the center, and elevation varying
across approximately 1m, as shown in Fig 5.

In the Lunar Simulator, we deploy a digital twin of NASA’s
In-Situ Resource Utilization (ISRU) Pilot Excavator (IPEx)
rover. This agent reflects the physical IPEx robot at Kennedy
Space Center, which is engineered to excavate and transport
lunar regolith. The simulator incorporates detailed models of
the IPEx’s sensors, actuators, and overall dynamics. The sensor
locations reflect the IPEx rover’s design, as shown in Fig. 3.
Cameras are arranged in two sets of stereo-pairs on the front
and rear of the rover and as standalone cameras on the sides
and excavating drums. All cameras are grayscale and simulated
as perfect pinhole cameras.

B. Dataset

To evaluate the performance of LunarLoc, we collected
stereo images and poses from short, medium, and long tra-
verses spanning the same general region of the simulator map
covering an area of approximately 1000 square meters. All
17 traverses are shown in Fig. 7, and detailed information
on each traverse is provided in Table II. Subsets of longer
traverses are taken to form shorter traverses for analysis. Each
traverse is made available as a simple comma-separated table
consisting of the IPEx position and boulder detections in each
frame and as a .lac archive file, containing more detailed
sensor information and time synchronized image data, details
of which are outlined in Table III.

Each .lac archive is a gzip tarball. For ease of use, a
Python library is provided to access synchronized camera and
sensor data. The library provides direct access to underlying
tabular data as well as an API mimicking the sensor interfaces
provided by the Lunar Simulator. This mock API enables
the playback of previous traverses outside of the simulator
and without any reliance on the simulator code. Localization
methods developed using the data loader can be quickly tested
outside of the resource intensive simulator and then seamlessly
deployed in the Lunar Simulator, accelerating development.



(a) X-Z Traverse (b) X-Y Traverse (c) Y-Z Traverse

Fig. 6: Ground truth traverses from the Lunar Simulator used to evaluate LunarLoc. Scenarios 1, 2 and 3 refer to traverses
used for multi-session global localization.

Traverse data and the python data loader utility are made avail-
able on GitHub at https://github.com/mit-acl/lunarloc-data.

To collect data for each traverse, the IPEx is initialized at a
common starting location from which it navigates to randomly
selected way points in the immediate region until the minimum
path length for the traverse is reached. This exploration strat-
egy increases the frequency of repeated observations of rocks
and other terrain features within and between traverses. Images
from the front-left and front-right stereo cameras are sampled
at 5Hz and used as inputs for the zero-shot segmentation
and object centroid estimation pipeline. If suitable objects are
detected in the scene the estimated position of the object’s
centroid is recorded along with the rover’s ground truth
position and other state information. This information is saved
as an individual file for each traverse enabling post processing
and performance comparison of localization methods outside
of the resource intensive simulator. Through the use of the
provided playback utility, it is possible to synchronize multiple
separate traverses, extending beyond multi-session localization
to model multi-agent systems operating in the same environ-
ment.

V. EXPERIMENTAL RESULTS

We evaluate the performance of LunarLoc using five pairs of
traverses from the Lunar Simulator shown in Fig. 6, including
all combinations of four traverses aside from the longest
traverse with the shorter portion of itself, as Traverse 3 is a
subset of Traverse 12. We report the number of segments found

TABLE III: Metrics recorded in each LAC archive

Sensor Group Recorded Metrics (frequency)

Rover State @ 20Hz Mission Time
Accelerometer Measurements
Gyroscope Measurements
Power Consumption
Control Input (linear and angular velocity)
Rover Pose (position and orientation)

Camera @ up to 10Hz Camera Images (subsampled to 0.5Hz)
Camera Enable / Disable State
Camera Light Intensity
Camera / Light Position

Fig. 7: All traverses available in the LunarLoc dataset shown
in different colors where detected objects are shown as yellow
dots.

in each submap as well as the number of inlier associations
returned during data association in Table IV. We deploy
LunarLoc in real time. On a NVIDIA GeForce RTX 3090,
the mean detection time of FastSAM runs in real time at 25
Hz [7] which is the slowest component of LunarLoc’s front-
end detection module.

LunarLoc uses the underlying structure of the environment,
i.e. boulder locations, as a cue for global localization via
a graph theoretic approach. With the number of segments
detected ranging from 36 to 185 with up to 41% inlier
associations, we show that rock detections are a reliable cue
for data association in this setting.

To evaluate the localization performance of LunarLoc, we
report the tracking performance defined by the root mean
squared error of the translation component t between the
vehicle map Mveh and the reference map Mref. Transformations

https://github.com/mit-acl/lunarloc-data


TABLE IV: Tracking Performance on LunarLoc Dataset
(RMSE ↓ [m]).

Path 1 Path 2 Segs in 1 Segs in 2 Ain RMSE ↓ [cm]

3 5 36 62 15 0.08
3 7 36 102 22 0.61
5 7 62 102 28 1.79
5 12 62 185 18 0.32
7 12 102 185 41 0.68

returned by LunarLoc as shown in Table IV have localization
error less than 2 cm in all evaluated cases, significantly
outperforming the state of the art for localization on the Moon
as shown in Table I.

VI. CONCLUSION

We propose LunarLoc, a global localization method using
graph-theoretic data association of objects in the scene ex-
tracted using zero-shot segmentation. Future work includes
integrating this localization framework into multi-agent set-
tings and performing more extensive testing from different
viewpoints and varying lighting conditions. We also plan to
perform global localization with respect to an aerial map of the
rock locations taken during landing. While place recognition
approaches struggle with perceptual aliasing and feature-based
methods may not be distinct enough to operate in various
lighting conditions [6], LunarLoc is a promising approach
using the underlying structure of the terrain as a cue for global
localization on the Moon.
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