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a b s t r a c t 

Deep learning, especially Convolutional Neural Networks (CNNs), has been widely applied in many do- 

mains. The large number of parameters in a CNN allow it to learn complex features, however, they may 

tend to hinder generalization by over-fitting training data. Despite many previously proposed regulariza- 

tion methods, over-fitting is still a problem in training a robust CNN. Among many factors that lead to 

over-fitting, the numerous parameters of fully-connected layers (FCLs) of a typical CNN should be taken 

into account. This paper proposes the SparseConnect, a simple idea which alleviates over-fitting by spar- 

sifying connections to FCLs. Experimental results on three benchmark datasets MNIST, CIFAR10 and Ima- 

geNet show that the SparseConnect outperforms several state-of-the-art regularization methods. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction and related work 

Convolutional Neural Networks (CNNs) have achieved great suc-

esses in many application domains, e.g., image classification and

bject detection [1,2] . The great performance of CNNs comes along

ith high model complexity. Modern CNNs usually have tens of

illions of parameters. This high complexity allows CNNs to learn

omplex concepts from training data, but also makes it easy for

NNs to fit in training data, i.e., leading to the over-fitting problem.

ver-fitting reduces CNNs’ ability to generalize to unseen data.

itigating over-fitting is a challenge in training robust CNN mod-

ls. 

Many regularization methods have been developed to alleviate

he over-fitting problem. Data augumentation [1] enriches training

ata by generating additional training examples using various

abel-preserving transformations, such as scaling, zooming, and

andom cropping of images. DisturbLabel [3] mitigates over-fitting

y introducing a small number of incorrectly labeled training ex-

mples into the training set. The labels are in turn used to evaluate

he loss function. Weight decay reduces complexity of a neural

etwork by imposing an upper bound on weight magnitudes [4] .

ropout [5] regularizes input and hidden layers by discarding

he output of a random subset of units during each training

teration. DropConnect [6] mitigates over-fitting by disabling a
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andom subset of connections within the network during each

raining iteration. Stochastic pooling [7] regularizes pooling layers

o that each pooling unit randomly selects an input value from

ts receptive field as its output value. Liu et al. [8] presented an

pplication of sparse dictionary learning algorithm [9] to maximize

parsity of convolutional kernels of a CNN. Table 1 summarizes

he related work on tackling the over-fitting problem on different

ngles, including training examples, the loss function, weights,

odes, connections, and pooling layers. However, none of these

apers has studied the effect of regularizing fully-connected layers

FCLs), although some work (e.g., weight decay) regularize FCLs

ogether with other layers. Our preliminary work has imposed

egularization on the FCLs [10] . Based on this basic idea, this paper

urther investigates what important role the sparsity of FCLs plays.

e extend the previous work [10] by analysing the FCLs of CNNs

nd validating them with more data sets. 

In a typical CNN, weights of FCLs make up most of the pa-

ameters of the network. VGG-Net [11] has 135M parameters,

mong which 123M are in the FCLs. For AlexNet [12] , 58M out

f the 60M parameters are from the FCLs. In OverFeat [13] , the

CLs contribute 54.7M of the 70M parameters of the network.

n a variant of LeNet-5 [14] , which is a small CNN, 40.5K out

f the 43K parameters are from the FCLs. The large number

f parameters in FCLs may be a contributor to over-fitting and

ccupy the majority of the total parameters. This motivates us

o propose SparseConnect as show in Fig. 1 , which mitigates the

ver-fitting problem of CNNs by sparsifying FCLs. Because of the

parsity of FCLs, the none-zero parameters are decreased which
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Table 1 

Comparison of different regularization methods for CNNs. 

Method Data Aug. DisturbLables Weight decay Dropout DropConnect Stochastic pooling SparseConnect 

Site Training samples Loss function Weights Nodes Connections Pooling layers FCLs 

Fig. 1. SparseConnect on a CNN. 
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is useful for model compression. [15] removes all connections

whose weights are lower than a threshold. DSD [16] discards the

parameters whose magnitudes are below the threshold which

is found by sensitivity-based analysis for each layer and then

recovers the pruned connections to make the network dense

again in re-training phase. [17] applies hard thresholding over

connections and freezes the parameters whose magnitudes are

below the threshold and then re-activates the frozen parameters

in re-training phase. Compared with these methods, SparseCon-

nect only aims at the FCLs and sparsifies the parameters through

the specific loss function. Furthermore, SparseConnect discards

the near-zero parameters directly using the threshold which is a

hyperparameter not a learned parameter. SpaseConnect prunes the

parameters not freezes and re-actives them in re-training phase.

Experimental results show that SparseConnect is able to alleviate

the over-fitting problem of CNNs and compress the CNNs. 

2. SparseConnect 

For a typical CNN, according to the role fully-connected lay-

ers parameters (FCLs) play, FCLs extract the global features, as for

the noisy data, however, not all of the global features are useful.

Meanwhile, FCLs make up the majority of the whole parameters.

The numerous parameters of FCLs are likely to be a contributor to

the over-fitting problem. In this section, we describe our SparseC-

onnect method in detail. SparseConnect mitigates over-fitting by

sparsifying the connections to the FCLs. 

SparseConnect is used in the training phase of a CNN which is

divided into two stages: SparseConnect1 and SparseConnect2. First,

during SparseConnect1 we sparsify connections to the FCLs by ap-

plying � 1 regularization on the weights of the FCLs. Then, SparseC-

onnect2 follows, further enhancing the sparsity by clipping small

weights to zeros. 

2.1. Imposing � 1 regularization on FCLs 

When applied on a subset of parameters of an optimization

problem, � 1 regularization tends to reduce some unimportant pa-

rameters in the subset to be very small or even to be zero, and

thus sparsifying the parameters in the subset [18] . In order to

make connections to FCLs sparse, we apply � 1 regularization on the

weights W FCL of the FCLs during the training phase of a CNN. On

the other hand, we empirically find that applying � 1 regularization

on convolution filters of a CNN has a significant negative impact on
he CNN’s learning ability. Unlike previous work [19] , which applies

 1 regularization on all layers of a CNN to reduce the memory us-

ge, we apply � 1 regularization only on FCLs in order to avoid the

ignificant negative impact on the CNN’s learning ability. 

Besides the � 1 regularization on the weights of the FCLs, we

lso apply weight decay, i.e., � 2 regularization, on all weights W

f the CNN to constrain the weights within a certain range around

ero. Both regularization terms are added to the loss function: 

 (W ) = 

1 

n 

n ∑ 

i =1 

L (y i , f (x i , W )) + λ1 ‖ W FCL ‖ 1 + λ2 ‖ W ‖ 

2 
2 (1)

here L ( y i , f ( x i , W )) is the loss between the true label y i and the

rediction of the CNN f ( x i , W ) for the i th training example; ‖ · ‖ 1
nd ‖ · ‖ 2 

2 
denote � 1 norm and squared � 2 norm, respectively; λ1 

nd λ2 are scalar hyperparameters controlling the strengths of the

egularization terms. 

During this stage, the CNN is trained with the new loss function

n Eq. (1) , using a suitable Stochastic Gradient Descent (SGD) algo-

ithm for optimizing L ( y i , f ( x i , W )) to minimize the loss function.

parseConnect can be used with any SGD algorithm. 

.2. Discarding near-zero parameters 

Furthermore, we find that the parameters in trained CNNs usu-

lly obey the distribution that is similar to the Gaussian distribu-

ion as shown in Fig. 2 and typically concentrated near zero [20] ,

special on the FCLs. In addition, when used together with a SGD

lgorithm, the � 1 regularization in Eq. (1) tends to produce many

eights that are very near zero, but not strictly equal to zero [19] .

hese observations motivate us to further enhance sparsification

y removing connections very small weight values. Specifically, we

ontinue training the CNN produced by the SparseConnect1 stage

ith the same loss function and hyperparameters as SparseCon-

ect1. During every iteration of SparseConnect2, we clip a sub-

et of weights whose magnitudes are below a certain threshold

o zero. Although [15] has already pruned redundant connections,

e discard near-zero parameters during 2 stages and according to

 threshold. The threshold is dictated by the Sparsification Factor

SF) , a non-negative scalar hyperparameter controlling the degree

f sparsity of connections to FCLs. For example, if the sparsifica-

ion factor is 10% (SF10), 10% of weights of FCLs with the smallest

agnitudes would be set to zero. 
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Fig. 2. Weights distributions in each layer (LeNet-5). 

Fig. 3. A data augmentation example. 
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. Experimental results 

We consider three public datasets: MNIST [14] , CIFAR10 [4] and

mageNet (ILSVRC2012) [21] . 

.1. Experimental setting 

For MNIST and CIFAR10, we train two CNN models as baseline

etworks. For MNIST, the baseline network is a variant of LeNet-

. The network architecture is 20C5@28x28-P2-50C5@12x12-P2-

500-F10. For CIFAR10, the network architecture of our baseline

etwork is 32C5@32x32-P2-32C5@16x16-P2-64C5@8x8-P2-F10. We 

ill refer to this baseline network as CIFAR10-Net. For ImageNet,

e use a variant of AlexNet [12] as our baseline network. 

For CIFAR10-Net, we augment the CIFAR10 training set using the

mage data generator of Keras [22] . For each training example, we

enerate 10 new images using different combinations of 5 label-

reserving transformations, including rotation, translation, shear-

ng, scaling, and horizontal flipping. Fig. 3 shows an example for

ata augmentation on an image from the CIFAR10 dataset. 

The experiments are run on a server equipped with two NVidia

eForce GTX TITAN X GPUs, an Intel Xeon Quad-Core CPU, and 16

B main memory. We use Tensorflow [23] for training and testing

NNs. 
.2. Performance evaluation of SparseConnect1 

For each of the baseline networks LeNet-5 and CIFAR10-Net, we

rain six CNNs using six different loss functions, each correspond-

ng to a combination of zero or more of the regularization terms in

q. (1) : 1) CE: cross-entropy only; 2) CEAL2: cross-entropy and � 2 
egularization on all layers; 3) CEAL1: cross-entropy and � 1 regular-

zation on all layers; 4) CECL1: cross-entropy and � 1 regularization

n convolutional layers; 5) CEFL1: cross-entropy and � 1 regulariza-

ion on fully-connected layers; 6) SC1: the loss function defined in

q. (1) . Each network is trained using stochastic gradient descent

ith a batch size of 100 for 10 0,0 0 0 iterations. 

As shown in Figs. 4 and 5 , for each of the 12 CNNs, the ac-

uracy on the training set is improved during training. For both

eNet-5 and CIFAR10-Net, the network trained without any regu-

arization term achieves the best training accuracy. This is expected

ince the network trained without any regularization term has the

ost freedom to fit its training data. Training and test accuracies

f all the 12 CNN models are shown in Table 2 . On both MNIST

nd CIFAR10, networks trained with SC1 achieves significantly bet-

er test accuracies than the baseline networks trained without any

egularization term. To see how much each of the two regulariza-

ion terms in Eq. (1) contributes to the improvement, we trained

etwork models with either CEAL2 or CEFL1. For both MNIST and

IFAR10, the network trained with CEFL1 achieves a significantly
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Fig. 4. Training accuracy curves of LeNet-5 with various loss functions during Spar- 

seConnect1. 

Fig. 5. Training accuracy curves of CIFAR10-Net with various loss functions during 

SparseConnect1. 

Table 2 

Training and test accuracy (%) of LeNet-5 and CIFAR10-Net with various functions 

with SparseConnect1. 

CE CEAL1 CEAL2 CECL1 CEFL1 SC1 

MNIST Training 99.53 98.24 99.21 98.32 98.77 98.89 

Test 98.24 99.21 98.45 98.11 99.35 99.56 

CIFAR10 Training 91.82 90.32 91.23 90.54 90.77 90.76 

Test 91.63 91.99 92.03 91.23 92.31 92.35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Training accuracy curves of LeNet-5 during SparseConnect2. 

Fig. 7. Training accuracy curves of CIFAR10-Net during SparseConnect2. 

Table 3 

Training and test accuracy (%) of LeNet-5 and CIFAR10-Net with SparseConnect2. 

SF0 SF10 SF30 SF50 SF80 

MNIST Training 99.75 99.03 98.79 98.23 87.53 

Test 98.14 99.22 99.77 98.56 86.65 

CIFAR10 Training 92.05 91.96 91.74 91.03 80.77 

Test 90.79 91.06 92.53 90.72 80.05 
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1  
better test accuracy than the baseline network, but still performs

worse than the network trained with SC1. This suggests that � 1 
regularization on weights of FCLs is a very effective regularization

method to mitigate over-fitting, and confirms our conjecture that

the numerous parameters of FCLs are a contributor to over-fitting.

To our surprise, even if the FCL of CIFAR10-Net contributes only a

small portion (around 11%) of parameters, it is still a contributor

to over-fitting. Meanwhile, it can be seen that CEAL2 is also very

effective against over-fitting. 

By comparing CECL1 and CE, it can be seen that � 1 regular-

ization on convolution filters has a significant negative impact

on both the training and test accuracies. This suggests that � 1 
regularization is not compatible with convolution filters. Further-

more, for both datasets, despite the negative impact of applying

� 1 regularization on convolution filters, the network trained with

CEAL1 achieves better test accuracy than the network trained with

CECL1. It seems the positive impact of applying � 1 regularization

on weights of FCLs has compensated for the negative impact of

applying � regularization on the convolution filters. 
1 
.3. Performance evaluation of SparseConnect2 

In order to further enhance sparsification of FCLs, we continue

o train the networks produced by the SparseConnect1 stage dur-

ng the SparseConnect2 stage. For each of the networks, we train

ve networks with five different sparsification factors: 0%, 10%,

0%, 50%, and 80%. 

As shown in Figs. 6 and 7 , for both datasets, the network model

rained with a zero sparsification factor (SF0) achieves the best ac-

uracy in general on the training set. This is expected since the

etwork model trained with a zero sparsification factor has the

ost freedom to fit the training set. 

From Table 3 , we observe that, for both datasets, the test accu-

acy increases with the increasing sparsification factor before the

parsification factor reaches a suitable value around 30%, when the

est test accuracy is achieved. Then, the test accuracy decreases as

he sparsification factor increases further. This observation clearly

uggests that SparseConnect2 with a suitable sparsification factor

urther improves the network’s generalization capability. 

.4. Performance evaluation on ImageNet 

We evaluate SparseConnect on the ImageNet dataset, which has

0 0 0 object categories. The dataset consists of 3 subsets: a training
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Table 4 

Test accuracy (%) of LeNet-5 and CIFAR10-Net with different regularization methods. 

No reg. Dropout DisturbLabel SC1 SC2 (SF30) 

MNIST 98.24 99.52 99.37 99.56 99.77 

CIFAR10 91.63 92.24 92.16 92.35 92.53 

Fig. 8. Percentages of remaining parameters of LeNet-5 and CIFAR10-Net with Spar- 

seConnect. 
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et of 1.3M examples, a validation set of 50K examples and a test

et with 150K examples [21] . 

For this experiment, we use BAIR AlexNet in Caffe Model Zoo

24] , which is trained using Dropout with a dropout rate of 0.5, as

ur baseline network. For comparison, we train two variants of the

lexNet without Dropout. We train AlexNet through the SparseC-

nnect1 stage to obtain our first variant of AlexNet. Then, the first

ariant is further trained through SparseConnect2 with a sparsifi-

ation factor of 30% to produce the second variant. 

Dropout achieves a top-1 accuracy of 56.9% and a top-5 ac-

uracy of 81.1% on the validation set. SparseConnect1 slightly

utperforms Dropout, achieving a top-1 accuracy of 57.01% and a

op-5 accuracy of 81.17%. SparseConnect2 in turn slightly outper-

orms SparseConnect1, achieving a top-1 accuracy of 57.05% and

 top-5 accuracy of 81.24%. Although the test accuracies are not

ignificantly improved, SparseConnect with a sparsification factor

f 30% reduces the amount of parameters of the baseline network

rom 60M to 31M. 

.5. Comparison with state-of-the-art regularization methods 

We compare SparseConnect with two previously proposed

tate-of-the-art regularization methods: Dropout and DisturbLabel.

or each of LeNet-5 and CIFAR10-Net networks, five networks are

rained with different regularization methods, including: 1) No reg.:

o regularization; 2) Dropout : Dropout; 3) DisturbLabel: DisturbLa-

el; 4) SC1: through the SparseConnect1 stage only; 5) SC2 (SF30):

hrough both SparseConnect1 and SparseConnect2 with a sparsifi-

ation factor of 30%. 

As shown in Table 4 , our SparseConnect outperforms Dropout

nd DisturbLabel on both datasets, achieving a test accuracy of

9.77% on MNIST and 92.53% on CIFAR10, which are significantly

etter than the test accuracies of Dropout and DisturbLabel. 

.6. SparseConnect as model compression 

SparseConnect is also useful for model compression. Fig. 8

hows percentages of remaining parameters in the baseline net-

orks LeNet-5 and CIFAR10-Net, the networks trained by SparseC-

nnect1 (SC1), and the networks trained by SparseConnect2 with

arious sparsification factors (SC2 (SFxx)). Note that for each of the

wo datasets, the percentages are normalized so that the percent-

ge of remaining parameters for the baseline network is 100%. Af-

er trained by SparseConnect1, the networks may have many tiny

eights whose magnitudes are very close to zero, but not strictly
qual to zero. Thus, for networks trained through SparseConnect1

nly, we deem weights with a magnitude above 10 −8 as “remain-

ng”. As for networks trained by SparseConnect2, only non-zero

eights are deemed as “remaining”. From Fig. 8 , it can be seen

hat, for each of the datasets, the network trained by only Spar-

eConnect1 has fewer parameters than the baseline network, and

he network trained by SparseConnect2 has even fewer parame-

ers. Among the networks trained by SparseConnect2, the number

f remaining parameters decreases with the increasing sparsifica-

ion factor. The compression rate for LeNet-5 is higher than that

or CIFAR10-Net, since the FCLs of LeNet-5 contribute a larger pro-

ortion of parameters than the FCL of CIFAR10-Net. 

. Conclusions and future work 

In this paper, we propose a novel method, called SparseConnect,

o regularize fully-connected layers by sparsifying their incoming

onnections. It is based on the observation that numerous param-

ters of fully-connected layers of CNNs are a contributor to the

ver-fitting problem of CNNs. The proposed method is evaluated

ith experiments on three popular benchmark datasets. The ex-

erimental results show that the SparseConnect is effective against

he over-fitting problem. 

In future work, we will further investigate how to combine

parseConnect with other regularization algorithms. Furthermore, 

he basic idea of the SparseConnect may be extended to other

ypes of neural networks, such as Deep Belief Networks [25] , Auto-

ncoders [26] , Spiking Neural Networks [27,28] and miSFM [29] , as

ell as modeling biological neural signals for cyborg intelligence

nd brain informatics [30,31] . 
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