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ABSTRACT
We tackle the problem of recovering a low-rank tensor signal with possibly corre-
lated components from a random noisy tensor, or the so-called spiked tensor model.
When the underlying components are orthogonal, they can be recovered efficiently
using tensor deflation, while correlated components may alter the tensor deflation
mechanism, thereby preventing efficient recovery. Relying on recently developed
tools from random tensor theory, we deal precisely with the non-orthogonal case
by deriving an asymptotic analysis of a parameterized deflation procedure, which
we refer to as γ-orthogonalized tensor deflation. Based on this analysis, an efficient
tensor deflation algorithm is proposed by optimizing the parameter injected into
the deflation mechanism, which in turn is proven to be optimal by construction
for the studied tensor model. We perform a detailed theoretical and algorithmic
analysis on the rank-2 order-3 model, and outline a general structure to tackle the
problem in more generality for arbitrary ranks/orders, aiming to lead to a broader
impact in machine learning and beyond.

1 INTRODUCTION

Tensor methods have been proven to be a powerful and versatile tool to model multi-relational,
multimodal and/or temporal data (Jenatton et al., 2012; Nickel et al., 2011; Rabanser et al., 2017;
Sidiropoulos et al., 2017; Fawzi et al., 2022), all of which lie at the heart of the current state-of-the-art
in machine learning research. In the era of exascale models, one of the most important fundamental
problems is extracting latent structure from high-dimensional data, which hints at more sophisticated
foundational abilities learned by the model, showcasing its ability to meta-learn. Typically, such latent
structure is of low rank and includes correlations among the different signal components. Tensor
methods, as in (Anandkumar et al., 2014; Zare et al., 2018), have been quite successful in tasks of
unsupervised nature, among others.
In particular, we shed light on the spiked tensor model. A rank-r order-d spiked tensor model is
written as follows

T ≡
r∑

i=1

d⊗
j=1

βix
(i)
j +

1√
n
W ∈ Rp1×p2×...×pd ,

where βi ≥ 0 correspond to the signal-to-noise strengths and x(i)j are unit vectors.
In practice, this model corresponds to a variety of applications, across diverse domains. In compressed
sensing (CS) (Lim & Comon, 2010; Sidiropoulos & Kyrillidis, 2012; Yang et al., 2015), it is used to
model images that are sparse in some dictionary or lying in a union of lower dimensional subspaces,
for instance natural images or medical images (undersampled MRI, CT etc). In reinforcement
learning (RL) (Rozada & Marques, 2022; Agarwal et al., 2020; Ni et al., 2021), it is used to model
the transition kernel over a very large state space, yet exhibiting a low rank structure. In natural
language processing (NLP) (Agarwal et al., 2020; Anandkumar et al., 2013; Cheng et al., 2015),
orthogonalized deflation based tensor decomposition (Mackey, 2008) and its variants are, for instance,
used for topic modeling.
Related Work. We consider a more detailed literature review in Appendix A, given the space
constraints.
Notation. The set {1, . . . , n} is denoted by [n]. The unit sphere in Rp is denoted by Sp−1. The Dirac
measure at some real value x is denoted by δx. The support of a measure µ is denoted by supp(µ).
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The inner product between two vectors u, v is denoted by ⟨u, v⟩ =
∑

i uivi. The imaginary part of a
complex number z is denoted by ℑ[z]. The set of eigenvalues of a matrix M is denoted by Sp(M).
The almost sure converges is denoted by the arrow a.s.−−→. The notation an ≍ bn means that an and bn
converge to the same limit as n→∞.
Preliminaries. We provide a self-contained review of some of the key concepts of random matrix/ten-
sor theory (RMT/RTT) to guide the reader throughout the theoretical results of the paper. We outline
that in Appendix B.
Key Contributions. Our contributions are outlined as follows

• We introduce γ-orthogonalized tensor deflation, a variant of the orthogonalized tensor
deflation algorithm by injecting an optimizable parameter γ ∈ [0, 1] into the projection hy-
perplane, as described in §3. In particular, γ = 1 corresponds to the classical orthogonalized
deflation (Mackey, 2008) and γ = 0 corresponds to projecting onto the signal subspace
itself.

• We carry out a random tensor theory (RTT) analysis of the proposed deflation method
applied to a noisy rank-two asymmetric spiked tensor model1, as defined in §2.1.

• Relying on the theoretical construction performed throughout the paper, we design an
efficient tensor deflation algorithm (§3) that compares favorably (as measured by alignments)
to state-of-the-art and is fully theoretically tractable with the developed theory, as compared
to some of its learning-based counterparts.

2 LOW-RANK SPIKED TENSOR MODEL

We study the problem of recovering a low-rank r (possibly high-order d) signal from a noisy full rank
tensor, which formulates as follows

T ≡
r∑

i=1

d⊗
j=1

βix
(i)
j +

1√
n
W ∈ Rp1×p2×...×pd ,

where βi ≥ 0 correspond to the signal-to-noise ratios (SNRs), x(i)j ∈ Spj−1 with ∥x(i)j ∥ = 1, ∀ i, j
are the signal components. W is a random (possibly asymmetric) tensor with standard Gaussian i.i.d.
entries, i.e., Wijk ∼ N (0, 1), and n =

∑d
i=1 pi.

Correlated Signal Components. When the signal components are orthogonal(
⟨x(i1)j , x

(i2)
j ⟩ = 0, i1 ̸= i2

)
, a tensor deflation algorithm step would recover the signal

component with the highest SNR. In a variety of practical scenarios, this assumption is quite
restrictive. On a further note, tensor decomposition algorithms that rely on this assumption perform
quite poorly when the latter is not satisfied, as shown in Figure 1. We alleviate this assumption by
allowing arbitrary correlations among the signal components.
Alignments as an Evaluation Metric. Since the signal components are normalized, our goal is
to maximize the alignments of the recovered signal with the hidden low-rank signal across modes.
Indeed, in high dimension, the probability that two random vectors u, v are orthogonal, i.e. ⟨u, v⟩ = 0,
is very high, which shows the difficulty of obtaining high estimation accuracies (alignments) in this
setting.

2.1 RANK-2 ORDER-3 SPIKED TENSOR MODEL

Given the simplicity to visualize it and the focus on the inter-component correlation, we consider the
following rank-2 order-3 spiked tensor model

T1 ≡
2∑

i=1

βixi ⊗ yi ⊗ zi +
1√
n
W ∈ Rp×p×p, (1)

with n = 3p in this case.

1Spiked models are more both general and offer numerous theoretical advantages compared to unrealistic
noiseless low-rank models. For instance, subtracting a best rank-1 approximation of a noiseless low-rank tensor
may increase its rank (Stegeman & Comon, 2010), while spiked models do not suffer from such limitation since
their noise component is full rank (Strassen, 1983).
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Figure 1: Orthogonalized deflation (as defined in §3) is applied to the noiseless rank-two tensor
model

∑2
i=1 βix

⊗3
i , where xi ∈ R200, β1 is fixed and β2 varies along the x-axis. u1 and u2 are

the resulting signal estimates after one and two steps of orthogonalized deflation respectively. Left:
u1 and u2 align well with the hidden signal x1 and x2 in the orthogonal case, i.e ⟨x1, x2⟩ = 0,
highlighting a high estimation quality. Right: In the presence of correlation among the signal
components, i.e ⟨x1, x2⟩ = 0.5, u1 and u2 don’t align well with the hidden signal components x1
and x2, highlighting a poor signal recovery quality.

Assumption for Mathematical Convenience. In this setting, we further assume that the alignments
among signal components are uniform across the modes, i.e.

α ≡ ⟨x1, x2⟩ = ⟨y1, y2⟩ = ⟨z1, z2⟩. (2)

We highlight here that α measures the degree of correlation among the signal components. The choice
of a uniform α across the signal modes equation 2 is for mathematical convenience only. Extending
to general alignments αx, αy, αz is rather straightforward, but would probably require the use of a
solver, SymPy (Meurer et al., 2017) for instance, as the theoretical alignment expressions become
quite tedious.

3 γ-ORTHOGONALIZED TENSOR DEFLATION

We present a strategy to recover the hidden low-rank signal components from a noisy rank-2 order-3
spiked tensor model, while jointly estimating all model parameters.

3.1 CONSTRUCTION OF THE DEFLATION MECHANISM: RANK-2 ORDER-3 SPIKED TENSOR
MODEL

First Deflation Step. This step consists of a best rank-1 approximation of T1 (1), which is written
as λ̂1û1 ⊗ v̂1 ⊗ ŵ1.

Second Deflation Step. Now, given û1 ∈ Sp−1, we perform a best rank-1 approximation λ̂2û2 ⊗
v̂2 ⊗ ŵ2 of the resulting tensor from the first deflation step

T2 ≡ T1 ×1

(
Ip − γû1û⊤1

)
= T1 − γû1 ⊗ T1(û1), (3)

for some tunable parameter γ ∈ [0, 1]. If γ = 1, this step reduces to performing the classical
orthogonalized deflation (Mackey, 2008).

Best Rank-1 Approximation conditions. Best rank-1 approximations from first and second
deflation respectively satisfy the following identities, for i ∈ [2]

Ti(·, v̂i, ŵi) = λ̂iûi, Ti(ûi, ·, ŵi) = λ̂iv̂i, Ti(ûi, v̂i, ·) = λ̂iŵi, λ̂i = Ti(ûi, v̂i, ŵi). (4)
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Tensor Power Iteration (TPI). Initialized with SVD (Auddy & Yuan, 2022), TPI allows us to
compute λ̂1û1 ⊗ v̂1 ⊗ ŵ1 and λ̂2û2 ⊗ v̂2 ⊗ ŵ2 in practice. For the orthogonal case (α = 0), it has
been proven to converge in polynomial time for βi ≥ O(p3/2). Now, for each deflation step i ∈ [2],
we denote the following alignments as

ρ̂1i ≡ |⟨û1, xi⟩| ≍ |⟨v̂1, yi⟩| ≍ |⟨ŵ1, zi⟩|, θ̂2i ≡ |⟨û2, xi⟩|,
ρ̂2i ≡ |⟨v̂2, yi⟩| ≍ |⟨ŵ2, zi⟩|, κ̂ ≡ |⟨û1, û2⟩|, η̂ ≡ |⟨v̂1, v̂2⟩| ≍ |⟨ŵ1, ŵ2⟩|.

(5)

The equivalences |⟨û1, xi⟩| ≍ |⟨v̂1, yi⟩| ≍ |⟨ŵ1, zi⟩|, |⟨v̂2, yi⟩| ≍ |⟨ŵ2, zi⟩| and |⟨v̂1, v̂2⟩| ≍
|⟨ŵ1, ŵ2⟩| are a direct consequence of our assumption (2), provided all mode dimensions of T1 are
equal. We also highlight that θ̂2i�≍ ρ̂2i and κ̂�≍ η̂ in general, since the projection (3) is only applied
to the first mode.

Theoretical Alignments. As n → ∞, our main goal is to compute the asymptotic expectations
of the singular values λ̂i and alignments ρ̂1i, θ̂2i, ρ̂2i, κ̂, η̂ at each deflation step i. Indeed, using
concentration arguments, one can show that these quantities tend to concentrate around their respective
expected values as n grows large with variances of order O(n−1), in the same vein as Benaych-
Georges et al. (2011) which studied the fluctuations of the largest eigenvalues of large random
matrices.

Joint Estimation of Model Parameters. We address the problem of jointly estimating the under-
lying model parameters, namely the signal-to-noise ratios β1, β2, and the correlation parameter α
based on a single realization of T1. This allows us to construct an improved deflation algorithm in
the correlated case. Our analysis partly relies on a recently developed random tensor theory approach
(Seddik et al., 2021). In particular, we decompose the random tensor model obtained at each deflation
step as in the following
Generalized Deflation Step Theoretical Analysis Procedure (Detailed Insight in Appendix G).

1. Identify the tensor model’s corresponding random matrix model.
2. Describe the limiting spectral measure of the corresponding random matrix.
3. Compute the asymptotic singular value and corresponding alignments.

Next, we present a detailed analysis of step part of our approach.

3.2 FIRST DEFLATION STEP

Following the aforementioned macro steps, the first deflation step is performed in the following

3.2.1 CORRESPONDING RANDOM MATRIX MODEL & LIMITING SPECTRAL MEASURE

Starting from the best rank-1 approximation identities (4) for i = 1, it has been shown in Seddik
et al. (2021) that the study of the random tensor T1 and its associated singular value and vectors
(λ̂1, û1, v̂1, ŵ1) boils down to the analysis of the following block-wise contraction random matrix of
size n× n (see Appendix D.1)

N ≡ 1√
n

 0 W(ŵ1) W(v̂1)
W(ŵ1)

⊤ 0 W(û1)
W(v̂1)

⊤ W(û1)
⊤ 0

 (6)

To characterize the limits of λ1 and the alignments ρ̂1i for i ∈ [2] when n→∞, the analysis boils
down to the computation of the Stieltjes transform of the limiting spectral measure of the random
matrix N . We prove the latter statement in Appendix D.1.2. To compute the Stieltjes transform, the
following technical assumption is needed. We provide more insight into that in the next section.
Assumption 3.1 (“Recoverability”). As n → ∞, there exists a sequence of critical points

(λ̂1, û1, v̂1, ŵ1) such that λ̂1
a.s.−−→λ1 > 2

√
2
3 and ρ̂1i

a.s.−−→ ρ1i > 0.

Now, we finally characterize the limiting spectral measure of the random matrix N in the following
theorem.
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Figure 2: Spectrum of Random Matrix Model at First Deflation Step N (6) & Limiting Semi-Circle
Law (Theorem 1)- One realization of T1 with Parameters: p = 200, β1 = 20, β2 = 15, α = 0.8.

Theorem 1. (Seddik et al., 2021, Corollary 1) Under Assumption 3.1, the spectral measure of

N converges weakly to a semi-circle law µ of compact support
[
−2
√

2
3 , 2
√

2
3

]
and density

function µ(dx) = 3
4π

√(
x2 − 8

3

)+
. Moreover, the Stieltjes transform of µ is

r(z) =
3

4

(
−z +

√
z2 − 8

3

)
, for z > 2

√
2

3
.

Visualization of Theorem 1. Figure 2 depicts the histogram of the eigenvalues of N and the
corresponding limiting semi-circle law as specified by Theorem 1. Note that the spectral measure
of N is not affected by the parameters β1, β2 and α, but some conditions on them are required to
ensure Assumption 3.1 (“Recoverability”).

3.2.2 ASYMPTOTIC SINGULAR VALUE AND ALIGNMENTS

Following Theorem 1, by taking the expectation with respect toW of the identity λ̂1 = T1(û1, v̂1, ŵ1)
(4), one can derive the following result.
Proposition 3.2. The limiting singular value λ1 satisfies the following

λ1 + r(λ1) =

2∑
i=1

βiρ
3
1i. (7)

Proof. See Appendix D.1.2.

Insight into Assumption 3.1. Since the Stieltjes transform r has to be evaluated at λ1, the latter must
lie outside the support of µ, which is ensured by Assumption 3.1 if the signal strengths β1 or β2 are
sufficiently high. In the absence of inter-component correlations, i.e α = 0, it was shown in (Seddik

et al., 2021, Corollary 3) that max{β1, β2} must be greater than 2
√
3

3 to ensure λ1 > 2
√

2
3 . When

λ1 ≤ 2
√

2
3 , i.e., λ1 lies inside the support of µ, it basically corresponds to the case where the tensor

T1 is indistinguishable from its noise counterpartW , and hence recovering the signal components is
information-theoretically impossible (Richard & Montanari, 2014; Lesieur et al., 2017; Jagannath
et al., 2020; Goulart et al., 2021; Seddik et al., 2021).
Now, taking the expectation with respect toW of the remaining identities in (4, for i = 1) projected
onto the signal components xi, yi, zi for i ∈ [2], allows us to obtain Theorem 2. This result exactly
characterizes the asymptotic behavior at the first deflation step.

Theorem 2. Under Assumption 3.1, the limiting singular value λ1 and corresponding alignments
ρ1i for i ∈ [2] of the first deflation step satisfy the following equations:

fr(λ1) =

2∑
i=1

βiρ
3
1i, hr(λ1)ρ1j =

2∑
i=1

βiαijρ
2
1i for j ∈ [2], (8)
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where we recall αij = α if i ̸= j and 1 otherwise, and we denoted fr(z) = z + r(z) and
hr(z) = − 1

r(z) , with r the Stieltjes transform of the corresponding random matrix model after
deflation step 1 (semi-circle law, as depicted in Figure 3) as per Theorem 1.

Proof. See D.1.2 and D.1.3.

3.3 SECOND DEFLATION STEP

We henceforth turn to the description of the second deflation step asymptotics.

3.3.1 CORRESPONDING RANDOM MATRIX MODEL & LIMITING SPECTRAL MEASURE

Denote û3 = û2 − γ⟨û1, û2⟩û1. We show in Appendix D.2 that the study of the second deflation
step boils down to the analysis of the following n× n block-wise contraction random matrix

M ≡ 1√
n

 0 W(ŵ2) W(v̂2)
W(ŵ2)

⊤ 0 W(û3)
W(v̂2)

⊤ W(û3)
⊤ 0

 , (9)

Now, we demonstrate that for some γ ̸= 1, the limiting spectral measure of M does not follow a
semi-circle law due to the additional term γ⟨û1, û2⟩W(û1) induced by the correlation between the
singular vectors û1 and û2. When γ = 0 or γ = 1, the term γ⟨û1, û2⟩W(û1) vanishes, in which
cases the limiting spectral measure of M reduces to the semi-circle law in Theorem 1. For γ = 1,
the identity T2(·, v̂2, ŵ2) = λ̂2û2 in (4) with T2 (as in 3) implies

λ2⟨û1, û2⟩ = T2(û1, v̂2, ŵ2) = T1(û1, v̂2, ŵ2)− ⟨û1, û1⟩︸ ︷︷ ︸
=1

T1(û1, v̂2, ŵ2) = 0
(10)

which in turn directly implies ⟨û1, û2⟩ = 0 since the spectral norm of the tensor T2 is non-zero, due
to the presence of the noise term. We therefore provide the result characterizing the limiting spectral
measure of M for any γ ∈ [0, 1], and which in turn generalizes Theorem 1 to random contraction
matrices of the form in equation 9. We start by the following definition.
Definition 3.3. Let ν be the probability measure with Stieltjes transform q(z) = a(z) + 2b(z)
verifying ℑ[q(z)] > 0 for ℑ[z] > 0, where a(z) and b(z) satisfy the following equations, for
z /∈ supp(ν)

[2b(z) + z] a(z) +
1

3
= 0, (a(z) + z − τb(z))b(z) + 1

3
= 0, (11)

for some parameter τ ∈ R. Moreover, the density function corresponding to ν is given by the Stieltjes
inverse formula ν(dx) = 1

π limε→0ℑ[q(x+ iε)].

Akin to the analysis of the first deflation step, we need additional technical assumptions to describe
the limiting singular value λ2 and corresponding alignments.

Assumption 3.4. As n→∞, there exists a sequence of critical points (λ̂2, û2, v̂2, ŵ2) such that, for
i ∈ [2]

λ̂2
a.s.−−→λ2, θ̂2i

a.s.−−→ θ2i, κ̂
a.s.−−→κ, ρ̂2i

a.s.−−→ ρ2i, η̂
a.s.−−→ η,

where λ2 /∈ supp(ν) with ν defined in Definition 3.3 for τ = γκ2 − 1 + κ(γ − 1) and suppose
θ2i, κ, ρ2i, η > 0.

We therefore have the following theorem which characterizes the limiting spectral measure of M .

Theorem 3. Under Assumption 3.4, the spectral measure of M converges weakly to the
probability measure ν defined in Definition 3.3 for τ = γκ2 − 1 + κ(γ − 1).

Proof. See D.2.1.

Interpretation & Visualization of Theorem 3. In essence, if the involved alignments in the second
deflation step converge asymptotically, Theorem 3 states the convergence of the spectral measure
of M to the deterministic measure ν defined in Definition 3.3 for τ = γκ2 − 1 + κ(γ − 1). We
particularly recall that κ corresponds to the limit of ⟨û1, û2⟩, which highlights the fact that the
spectrum of M can be deformed if the singular vectors u1 and u2 are correlated, i.e., if γ ̸= 1. This
phenomenon is depicted in Figure 3 where we see that for γ = 0.85, the limiting spectral measure of
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Figure 3: Spectrum of Random Matrix Model at Second Deflation Step M (9) & Limiting (The-
oretically Obtained) Law (3)- One realization of T1 with Parameters: p = 200, β1 = 20, β2 = 15,
α = 0.8, γ = 0.85.



fq(λ2)− γκη2

3
r(λ1)− 2γκ2b(λ2) =

∑2
i=1 βiθ2iρ

2
2i − γκ

∑2
i=1 βiρ1iρ

2
2i,

[fq(λ2)− a(λ2)]θ2j − γρ1j
[
η2

3
r(λ1) + 2κb(λ2)

]
=

∑2
i=1 βiαijρ

2
2i − γρ1j

∑2
i=1 βiρ1iρ

2
2i for j ∈ [2],

[λ2 + 2(1− γ)b(λ2)]κ = (1− γ)
[∑2

i=1 βiρ1iρ
2
2i − η2

3
r(λ1)

]
,[

fq(λ2)− (1 + γκ2)b(λ2)
]
ρ2j =

∑2
i=1 βiθ2iρ2iαij − γκ

[∑2
i=1 βiρ1iρ2iαij − ρ1jη

3
r(λ1)

]
for j ∈ [2],[

λ2 + a(λ2) + (1− γκ2)b(λ2)− γκ
3
r(λ1)

]
η =

∑2
i=1 βiθ2iρ1iρ2i − γκ

∑2
i=1 βiρ

2
1iρ2i.

(13)

M is no longer described by the semi-circle law. On the contrary, if γ = 1 we have κ = 0 as we
saw in 9, which implies that τ = −1. In this case, the limiting spectral measure ν becomes equal
to µ, thereby describing again a semi-circle law. This can be trivially checked from Definition 3.3
by setting τ = −1 and a(z) = b(z), and we therefore find a(z) = b(z) = r(z)

3 and q(z) = r(z).
Note that for γ ∈ (0, 1), the Stieltjes transform q(z) can be computed numerically by alternating the
equations in equation 11 as per Algorithm 1, which can be proved to converge to a fixed point in the
same vein as in Louart & Couillet (2018).

3.3.2 ASYMPTOTIC SINGULAR VALUE AND ALIGNMENTS

As for the first deflation step, taking the expectation w.r.t. W of the identity λ̂2 = T2(û2, v̂2, ŵ2) in
equation 4 allows us to obtain the equation satisfied by λ2, see Appendix D.2.2, which yields

fq(λ2)−
γκη2

3
r(λ1)− 2γκ2b(λ2) =

2∑
i=1

βiθ2iρ
2
2i − γκ

2∑
i=1

βiρ1iρ
2
2i, (12)

where fq(z) = z+q(z). Again, the limiting singular value λ2 must lie outside the support of ν, as we
assumed in Assumption 3.4, since its corresponding Stieltjes transform q(z) (and the function b(·))
needs to be evaluated at λ2. In fact, if λ2 ∈ supp(ν), then it is information-theoretically impossible
to recover the second signal term (i.e., the one with strength min{β1, β2}).
Moreover, taking the expectation w.r.t.W of the remaining identities in equation 4 for i = 2, projected
on the signal components xi, yi, zi for i ∈ [2] and the first singular vectors u1, v1, w1, allows us to
derive the result characterizing the behavior of the second deflation step.

Theorem 4. Under Assumption 3.4, the limiting singular value λ2 and corresponding alignments
θ2i, ρ2i for i ∈ [2] and κ, η of the second deflation step satisfy the system of equations in
equation 13.

Proof. See D.2.2 and D.2.3.

3.4 MAIN ALGORITHM SKETCH

We are now in place to describe the proposed γ-orthogonalized tensor deflation algorithm. Our
principal insight lies in the fact that, for β1 > β2 for instance, the asymptotic alignments θ22 and ρ22
at the second deflation step are concave functions of the parameter γ (as depicted in Figure 9 for
α = 0.6 and Figure 10 for different values of α in Appendix E.4). Therefore, there exists an optimal
value γ∗ which maximizes such alignments and which we need to jointly tune in order to recover
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the signal components efficiently, given a single realization of the spiked random tensor T1. To this
end, we motivate our algorithmic choices in the following procedure

• First we perform a standard orthogonalized tensor deflation with γ = 1 which corresponds
to the steps 1 and 2 of Algorithm 2.

• Then we estimate the underlying model parameters, i.e., β1, β2, and α as we discussed in
Appendix E.2. This corresponds to steps 3 and 4 of Algorithm 2.

• In order to find the optimal parameter γ∗ which maximizes the alignment ρ̂22 for instance.
We update γ as γ ← γ − ϵ for some small step size ϵ > 0 and starting from γ = 1, while
solving the system of equations (13) to get an estimate of ρ̂22. We stop updating γ when
the maximum value of ρ̂22 is reached and we return the corresponding maximizer γ∗. Note
that at each iteration, the system (equation 13) is solved numerically and initialized with the
previous iteration estimates. This corresponds to steps 5-12 in Algorithm 2.

• Then, we perform orthogonalized deflation with γ∗ along the modes 1 and 2, which provides
a better estimation of the signal component denoted as λ̂2û∗2 ⊗ v̂∗2 ⊗ ŵ∗

2 . This corresponds
to steps 13 and 14 of Algorithm 2.

• Finally, in step 15 of Algorithm 2, we re-estimate the first signal component by performing a
best rank-1 approximation of T1−min{β̂1, β̂2}û∗2⊗ v̂∗2⊗ŵ∗

2 with β̂1, β̂2 being the estimated
SNRs from step 4 of Algorithm 2.

Given the space constraints, we present the full γ-orthogonalized tensor deflation algorithm pseudo-
code in Algorithm 2.

4 EXPERIMENTAL SETUP & EVALUATION

In the following, we list a few representative experiments. In addition, we provide a detailed set of
supplementary experiments in Appendix E.
Experimental Setup. We operate in the synthetic setting, where we randomly generate a low-rank
spiked tensor model (as in 2.1) starting from a single tensor component sampled from a Gaussian
distribution (we provide more details and a code sample in E.1). We evaluate our proposed algorithm’s
recovery quality on the algorithmic performance (final deflation alignments & single-realization
estimation quality of the model parameters), on estimation robustness compared to state-of-the-art
(averaging over multiple instances, variance statistics) and how well our developed theory corresponds
to the performance in practice.
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Figure 4: Simulated vs theoretical asymptotic singular value and alignments corresponding to the
second deflation step as per Theorem 4. We considered β2 = 5, α = 0.5, p = 100, γ = 0.8 and
varying β1 ∈ [0, 15]. The system of equations (13) is solved numerically and initialized with the
simulated singular value and alignments (dotted curves) from a single realization of T1.
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Simulated vs Theoretical Singular Value and Alignments. Figure 4 depicts the simulated singular
value and alignments between the different signal components at the second deflation step along with
their theoretical asymptotic counterparts as given by Theorem 4. We observe that our developed
theory accurately describes the expected behavior and thereby offers strong theoretical guarantees
on the performance of our proposed algorithm. On an important note, we further stress out that for
a fixed (large enough) β2 and α ̸= 1, there exists a threshold for β1 below which it is information-
theoretically impossible to recover the second signal component. This behavior is already visible
from Figure 4 for β1 ≈ 2, below which all the alignments are asymptotically zero and the asymptotic
singular value converges to the right edge of the distribution ν. This exactly corresponds to the
scenario where Assumption 3.4 is not verified.
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Figure 5: (Top): Alignments of first and second deflation steps in function of α. (Top Left)
Performance of standard orthogonalized deflation (γ = 1) and (Top Right) of the γ-orthogonalized
deflation procedure, as per Algorithm 2. (Averaged over) 200 realizations of T1: β1 = 6, β2 = 5.7
and p = 150. (Bottom) Alignment at convergence in function of inter-component correlation α.
(Bottom Left) Alignments on mode 1 projections, (Bottom Right) Alignments on modes 2 and 3
(equal by virtue of 5). (Averaged over) 200 realizations of T1: β1 = 10, β2 = 8 and p = 150.

Benchmarks. Figure 5 showcases a two-level benchmarking. Figures on (Top) compare the
performances of the standard orthogonalized deflation (γ = 1) (Top Left) and our proposed γ-
orthogonalized version (Top Right), while varying the signal correlation parameter α. This allows
us to measure the effect of correlation in orthogonalized deflation procedures and corresponds
exactly to our considered setting and applications. As theoretically anticipated, we observe a clear
advantage of our proposed approach with estimated alignments ρ̂11 and ρ̂22 very close to 1, thus
accurately estimating the different signal components at different levels of correlation α. For its
vanilla orthogonalized deflation counterpart, in addition to decaying alignments ρ̂11 and ρ̂22 (e.g.,
α ≥ 0.3), we also observe a value close to 1 of ρ̂12 thus showing a high level of correlation
between the estimation of different signal components at the first deflation step. On the (Bottom)
part, we compare the alignments for mode 1 (Bottom Left) and modes 2, 3 (equal by virtue of 5)
(Bottom Right) of our proposed algorithm to prevalent state-of-the-art spectral tensor decomposition
algorithms, namely CANDECOMP/PARAFAC (CP) and Tucker. We see a very clear advantage of
the γ-orthogonalized approach, as the other approaches collapse for higher correlation levels.

5 PERSPECTIVE

We address some of the limitations of our work and elaborate on potential promising directions,
including Extension to Higher Ranks & Orders, Evaluation on Real-World Data and Other
Theoretical Considerations. We treat these directions in depth in Appendix G.
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A RELATED WORK

As a first step towards understanding the behavior of tensor methods, Richard & Montanari (2014)
introduced the concept of tensor PCA by studying the so-called spiked tensor model of the form
βx⊗d +W/

√
p where x ∈ Rp is a high-dimensional vector of the unit norm which represents the

(rank-1) signal of interest,W is a symmetric Gaussian random noise tensor of order d, and β ≥ 0 is a
parameter controlling the signal strength. This statistical model raises many fundamental questions
which mainly concern the theoretical and algorithmic guarantees that ensure the efficient recovery of
the hidden signal x.
A volume of works focused on addressing these questions (Perry et al., 2020; Lesieur et al., 2017;
Jagannath et al., 2020; Chen et al., 2021; Goulart et al., 2021; Auddy & Yuan, 2022; Ben Arous et al.,
2021). The first main result was for tensors of order d ≥ 3, for which it was shown that there exists a
statistical threshold βstat of O(1) in the tensor dimension, which defines the information-theoretic
limit above which signal recovery is possible, with the maximum likelihood estimator (MLE), and
below which signal recovery is impossible.
While recovery above βstat is theoretically possible from an information-theoretic standpoint, solving
the underlying MLE problem remains NP-hard in the worst case (Hillar & Lim, 2013). Indeed,
Richard & Montanari (2014) suggest through heuristics that there exists an algorithmic threshold
βalgo = O(p

d−2
4 ) beyond which recovery is possible with a polynomial time algorithm, therefore

implying the existence of a theoretical-algorithmic spectral gap where no polynomial time algorithm
has been proven to be efficient in signal recovery. These suggestions were rigorously proven (Lesieur
et al., 2017; Jagannath et al., 2020; Chen et al., 2021; Huang et al., 2022) and generalized to
non-symmetric tensors (Ben Arous et al., 2021; Seddik et al., 2021; Auddy & Yuan, 2022).
From a practical standpoint, to be able to unleash the full potential of tensor methods, higher low-rank
(beyond rank-1) signal reconstruction problems need to be considered, thus motivating the study of
low-rank spiked tensor models. In particular, and in a more realistic scenario, one would be interested
in extracting low-rank hidden structure from random noise, for which the model can naturally be
extended to

∑r
i=1 βix

⊗d
i +W/

√
p where r is the rank of the signal of interest.

In this line of work, Chen et al. (2021) prove that the asymptotic behavior of a low-rank spiked tensor
model with orthogonal signal components, i.e., ⟨xi, xj⟩ = 0 for i ̸= j ∈ [r], can be understood
from the analysis of a rank-1 model. Moreover, da Silva et al. (2015b;a) show that estimating a
higher rank signal boils down to performing successive rank-1 approximations using iterative tensor
deflation. While the latter result provides a more tractable approach to low-rank signal recovery in the
orthogonal case, it proves to be inefficient (in general) in signal reconstruction in the non-orthogonal
case (Seddik et al., 2022).
Other enhanced deflation techniques rely on orthogonal projections (Mackey, 2008) while exhibiting
the same behavior as the standard deflation in the non-orthogonal case, as illustrated in Figure 1. The
latter depicts signal recovery, as measured by alignments of the recovered signal with the hidden
low-rank signal, from a simple noiseless rank-two tensor

∑2
i=1 βix

⊗3
i using orthogonalized deflation

(Mackey, 2008). We clearly observe that when β1 ≈ β2, the non-orthogonality of x1 and x2 prevents
efficient recovery. We highlight the fact that measuring alignments is a concrete performance measure
of recovery quality, as mentioned in 2.1.

B A REVIEW OF RANDOM MATRIX/TENSOR THEORY

We aim to provide a self-contained review of some key results of random matrix/tensor theory
(RMT/RTT) in the following.

B.1 TENSOR CONCEPTS

3-order tensors. The set of 3-order tensors of mode dimension d is denoted Rd×d×d. The scalar
Tijk or [T ]ijk denotes the (i, j, k)’th entry of a tensor T ∈ Rd×d×d. In the remainder, we will
mainly consider tensors from Rd×d×d, and for brevity, we may omit the notation T ∈ Rd×d×d unless
specified otherwise.

Rank-r tensors. A tensor T is said to be of rank-1 if it can be represented as the outer product of
three real-valued vectors x, y, z ∈ Rd. In this case, we write T = x⊗ y⊗ z, where the outer product
is defined as [x⊗ y ⊗ z]ijk = xiyjzk. More generally, a tensor T is said to be of rank-r, for some
integer r, if it can be expressed as the sum of r rank-1 terms, written as T =

∑r
i=1 xi ⊗ yi ⊗ zi,
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where xi, yi, zi ∈ Rd for all i ∈ [r]. To maintain consistency, we will adhere to the convention of
using xi or ui to represent the components of the first mode, yi or vi to represent the components of
the second mode, and zi or wi to represent the components of the third mode throughout the paper.

Tensor contractions. The first mode contraction of a tensor T with a vector x results in a matrix
denoted T (x, ·, ·) with entries [T (x, ·, ·)]jk =

∑d
i=1 xiTijk. Similarly, T (·, y, ·) and T (·, ·, z) denote

the second and third mode contractions of T with vectors y and z respectively. We will sometimes
denote these contractions by T (x), T (y), and T (z) if there is no ambiguity. The contraction of T
on two vectors x, y is a vector denoted T (x, y, ·) with entries [T (x, y, ·)]k =

∑
ij xiyjTijk. The

contraction of T on three vectors x, y, z is a scalar denoted T (x, y, z) =
∑

ijk xiyjzkTijk. The
first mode contraction of T with a matrix M ∈ Rd×d results in a tensor denoted T ×1 M with
entries [T ×1 M ]ijk =

∑d
i′=1Mii′Ti′jk. Similarly, T ×2 N and T ×3 P denote the second and

third modes tensor-matrix contractions of the tensor T with the matrices N and P respectively. The
notation u⊗M stands for the tensor with entries uiMjk.

Tensor norms. The Frobenius norm of a tensor T is denoted ∥T ∥F with ∥T ∥2F =
∑

ijk T
2
ijk. The

spectral norm of T is ∥T ∥ = supu,v,w∈Sd−1 |T (u, v, w)|.

Spectral Normalization. We highlight that the normalization of the noise tensor, i.eW in equa-
tion 1, by the sum of mode dimension, i.e n in equation 1, ensures that the spectral norm of T is of
O(1) with respect to mode dimensions pi. This follows from a standard concentration result (Seddik
et al. (2021), Lemma 4).

Best rank-1 approximation and tensor power iteration. A best rank-1 approximation of T
corresponds to a rank-1 tensor λu ⊗ v ⊗ w, where λ > 0 and u, v, w are unitary vectors, that
minimizes the square loss ∥T − λu ⊗ v ⊗ w∥2F . The latter generalizes to tensors the concept of
singular value and vectors (Lim, 2005) and the scalar λ coincides with the spectral norm of T . In
particular, the quadruple (λ, u, v, w) satisfies the following identities{

T (·, v, w) = λu, T (u, ·, w) = λv,

T (u, v, ·) = λw, λ = T (u, v, w). (14)

Such a best rank-1 approximation can be computed via tensor power iteration which consists in
iterating

u← T (·, v, w)
∥T (·, v, w)∥

v ← T (u, ·, w)
∥T (u, ·, w)∥

w ← T (u, v, ·)
∥T (u, v, ·)∥

starting from some initialization (Anandkumar et al., 2014).

B.2 RANDOM MATRIX THEORY

Resolvent. Specifically, we will consider the resolvent formalism Hachem et al. (2007), which
allows to characterize the spectral behavior of large symmetric random matrices. Given a symmetric
matrix S ∈ Rn×n, the resolvent of S is defined as R(z) = (S − zIn)−1 for z ∈ C \ Sp(S), where
Sp(S) denotes the spectrum of matrix S.

Motivation. In essence, RMT focuses on describing the distribution of eigenvalues of large random
matrices. Typically, under certain technical assumptions on some random matrix S ∈ Rn×n with
eigenvalues λ1, . . . , λn, the empirical spectral measure of S, defined as µ̂ = 1

n

∑n
i=1 δλi , converges

in the weak sense Van Der Vaart & Wellner (1996) to some deterministic probability measure µ as
n→∞ and RMT aims at describing such µ. To this end, one of the widely considered approaches
relies on the Stieltjes transform Tao (2012).

Stieltjes Transform. Given a probability measure µ, the Stieltjes transform of µ is defined as
gµ(z) =

∫ dµ(λ)
λ−z with z ∈ C \ Supp(µ), and the inverse formula allows one to describe the density

function of µ as µ(dx) = 1
π limε→0ℑ[gµ(x+ iε)].

Relating the Stieltjes Transform & the Resolvent. The Stieltjes transform of the empirical
spectral measure, µ̂, is closely related to the resolvent of S through the normalized trace operator. In
fact, gµ̂(z) = 1

n trR(z) and the almost sure convergence of gµ̂(z) to some deterministic Stieltjes
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transform g(z) is equivalent to the weak convergence between the underlying probability measures
Tao (2012). Our analysis relies on estimating quantities involving 1

n trR(z), making the use of the
resolvent approach a natural choice.

C KEY LEMMAS

In this section, we recall some key lemmas that are at the heart of our analysis.

Lemma C.1 (Woodbury Matrix Identity). Let A ∈ Rn×n, B ∈ Rr×r, U ∈ Rn×r and V ∈ Rr×n,
we have

(A+UBV )
−1

= A−1 −A−1U
(
B−1 + V A−1U

)−1
V A−1

The following perturbation lemma is wildly used in RMT. Basically, it states that the normalized trace
operator is invariant through low-rank perturbations in high dimension. The notation a = On(bn)
means that a is of order O(bn) as n→∞.

Lemma C.2 (Perturbation Lemma, (Silverstein & Bai, 1995)). Let M ∈ Rn×n and P ∈ Rn×n such
that ∥M∥ = On(1), ∥P ∥ = On(1) and rank(P ) = On(1). For all z ∈ C \ Sp(M + P ), we have

1

n
tr (M + P − zIn)−1

=
1

n
tr (M − zIn)−1

+On(n
−1)

Proof. Simple consequence of the Woodbury identity from Lemma C.1 applied to the matrix M +
P .

Our analysis will particularly rely on computing expectations which we drive through the classical
Stein’s Lemma.

Lemma C.3 (Stein’s Lemma, Stein (1981)). Let W ∼ N (0, σ2) and f some continuously differen-
tiable function having at most polynomial growth, then

E [Wf(W )] = σ2E [f ′(W )]

when the above expectations exist.

D PROOFS OF THE MAIN RESULTS

We recall our considered spiked tensor model as follows

T1 = S +
1√
n
W ∈ Rp×p×p with S =

2∑
i=1

βixi ⊗ yi ⊗ zi (15)

where ∥xi∥ = ∥yi∥ = ∥zi∥ = 1, βi ≥ 0, n = 3p and Wijk ∼ N (0, 1). In the remainder, if some
quantity expresses as a(n) =

∑r
i=1 bi(n), the notation a(n) ≃ bj(n) means that bj(n) is the only

contributing term in the expression of a(n) as n goes to infinity.

D.1 FIRST DEFLATION STEP

The singular vectors u1, v1 and w1 of T1 corresponding to its largest singular value λ1 satisfy

T1(·, v1, w1) = λ1u1, T1(u1, ·, w1) = λ1v1, T1(u1, v1, ·) = λ1w1 (16)

In the remainder, we will need to compute the derivatives of the singular vectors u1, v1 and w1

w.r.t.the entries of the noise tensorW . From (Seddik et al., 2021, Appendix B.1), we have
∂u1

∂Wijk
∂v1

∂Wijk
∂w1

∂Wijk

 = − 1√
n

 0 T1(w1) T1(v1)
T1(w1)

⊤ 0 T1(u1)
T1(v1)⊤ T1(u1)⊤ 0

− λ1In
−1(

v1jw1k(ei − u1iu1)
u1iw1k(ej − v1jv1)
u1iv1j(ek − w1kw1)

)
(17)

which results from deriving the identities in equation 16 w.r.t.the entry Wijk of the noise tensorW .
In particular, as demonstrated in Seddik et al. (2021), the only contributing terms in the quantities we
will compute later on will depend only on traces of the resolvent matrix appearing in equation 17.
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D.1.1 LIMITING STIELTJES TRANSFORM

Since the tensor T1 is a low-rank perturbation of a random tensorW , by Lemma C.2, the normalized
trace of the resolvent in equation 17 is asymptotically equal to the normalized trace of the resolvent
of the following random matrix

N =
1√
n

 0 W(w1) W(v1)
W(w1)

⊤ 0 W(u1)
W(v1)

⊤ W(u1)
⊤ 0

 (18)

Let R(z) = (N − zIn)−1 be the corresponding resolvent. We denote the different sub-blocks of
R(z) as

R(z) =

 R11(z) R12(z) R13(z)
R12(z)⊤ R22(z) R23(z)
R13(z)⊤ R23(z)⊤ R33(z)

 (19)

It has been shown in (Seddik et al., 2021, Appendix B.2) that

1

n
trRii(z) −−−−→

n→∞
ri(z) =

r(z)

3
and

1

n
trR(z) −−−−→

n→∞
r(z) (20)

with

r(z) =
3

4

(
−z +

√
z2 − 8

3

)
(21)

D.1.2 ESTIMATION OF THE SINGULAR VALUE

Estimation of λ1: From the identities in equation 16, we have

λ1 = T1(u1, v1, w1) = S(u1, v1, w1) +
1√
n
W(u1, v1, w1)

and
1√
n
E [W(u1, v1, w1)] =

1√
n

∑
ijk

E[u1iv1jw1kWijk]

=
1√
n

∑
ijk

E
[
∂u1i
∂Wijk

v1jw1k

]
+ E

[
u1i

∂v1j
∂Wijk

w1k

]
+ E

[
u1iv1j

∂w1k

∂Wijk

]
where the last equality is derived from Stein’s Lemma and the involved derivatives express as

∂u1i
∂Wijk

≃ −1√
n
v1jw1kR

11
ii (λ1),

∂v1j
∂Wijk

≃ −1√
n
u1iw1kR

22
jj (λ1),

∂w1k

∂Wijk
≃ −1√

n
u1iv1jR

33
kk(λ1)

Substituting in the above sum, we get

1√
n
E [W(u1, v1, w1)] ≃ −

1

n

∑
ijk

E[v21jw2
1kR

11
ii (λ1)]−

1

n

∑
ijk

E[u21iw2
1kR

22
jj (λ1)]−

1

n

∑
ijk

E[u21iv21jR33
kk(λ1)]

= −E
[
1

n
trR11(λ1)

]
− E

[
1

n
trR22(λ1)

]
− E

[
1

n
trR33(λ1)

]
−−−−→
n→∞

−(r1(λ1) + r2(λ1) + r3(λ1)) = −r(λ1)

Therefore, we have

λ1 + r(λ1) = S(u1, v1, w1) (22)

D.1.3 ESTIMATION OF THE ALIGNMENTS

Estimation of ⟨u1, xs⟩: Again from the first identity in equation 16, we have

λ1⟨u1, xs⟩ = T1(xs, v1, w1) = S(xs, v1, w1) +
1√
n
W(xs, v1, w1)

17
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And we have
1√
n
E[W(xs, v1, w1)] =

1√
n

∑
ijk

E [xsiv1jw1kWijk]

=
1√
n

∑
ijk

E
[
xsi

∂v1j
∂Wijk

w1k

]
+

1√
n

∑
ijk

E
[
xsiv1j

∂w1k

∂Wijk

]
≃ − 1

n

∑
ijk

E
[
xsiu1iw

2
1kR

22
jj (λ1)

]
− 1

n

∑
ijk

E
[
xsiu1iv

2
1jR

33
kk(λ1)

]
= −E

[
⟨xs, u1⟩

1

n
trR22(λ1)

]
− E

[
⟨xs, u1⟩

1

n
trR33(λ1)

]
−−−−→
n→∞

−(r2(λ1) + r3(λ1))⟨xs, u1⟩ = −(r(λ1)− r1(λ1))⟨xs, u1⟩

Therefore, we have

(λ1 + r(λ1)− r1(λ1))⟨xs, u1⟩ = S(xs, v1, w1) (23)

Similarly, we get

(λ1 + r(λ1)− r2(λ1))⟨ys, v1⟩ = S(u1, ys, w1)

(λ1 + r(λ1)− r3(λ1))⟨zs, w1⟩ = S(u1, v1, zs)
(24)

Finally, with our assumption in equation 2 and since T1 is cubic, the above equations reduce to the
following system of equations describing the first deflation step{

fr(λ1) =
∑2

i=1 βiρ
3
1i

hr(λ1)ρ1j =
∑2

i=1 βi⟨xi, xj⟩ρ21i for j ∈ [2]
(25)

where we denoted fr(z) = z + r(z) and hr(z) = z + 2
3r(z) = −

1
r(z) .

D.2 SECOND DEFLATION STEP

Given u1 from the first deflation step, we consider now the following random tensor

T2 = T1 ×1

(
IN − γu1u⊤1

)
= T1 − γu1 ⊗ T1(u1, ·, ·) (26)

Again the singular vectors of T2 satisfy

T2(·, v2, w2) = λ2u2, T2(u2, ·, w2) = λ2v2, T2(u2, v2, ·) = λ2w2 (27)

and we also have
∂u2

∂Wijk
∂v2

∂Wijk
∂w2

∂Wijk

 = − 1√
n

 0 T2(w2) T2(v2)
T2(w2)

⊤ 0 T2(u2)
T2(v2)⊤ T2(u2)⊤ 0

− λ2In
−1(

v2jw2k(ei − u2iu2)
u2iw2k(ej − v2jv2)
u2iv2j(ek − w2kw2)

)
(28)

D.2.1 STIELTJES TRANSFORM

Again, since T1 is a low-rank perturbation of a random tensorW , it is easily noticed that 0 T2(w2) T2(v2)
T2(w2)

⊤ 0 T2(u2)
T2(v2)⊤ T2(u2)⊤ 0

 = M + P

where P is some low-rank matrix and M is a random matrix given by

M =
1√
n

 0 W(w2) W(v2)
W(w2)

⊤ 0 W(u2)− γ⟨u1, u2⟩W(u1)
W(v2)

⊤ W(u2)
⊤ − γ⟨u1, u2⟩W(u1)

⊤ 0

 (29)

18
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Therefore, by Lemma C.2, the limiting Stieltjes transform corresponding to the analysis of the second
deflation step can be computed through the resolvent Q(z) = (M − zIn)−1 of the random matrix
M and we denote κ = ⟨u1, u2⟩. We denote the different sub-blocks of Q(z) as

Q(z) =

 Q11(z) Q12(z) Q13(z)
Q12(z)⊤ Q22(z) Q23(z)
Q13(z)⊤ Q23(z)⊤ Q33(z)

 (30)

Denote
1

n
trQii(z) −−−−→

n→∞
qi(z) and

1

n
trQ(z) −−−−→

n→∞
q(z) (31)

Estimation of 1
n trQ11(z): From the identity MQ(z)− zQ(z) = In, we have

1√
n

[
W(w2)(Q

12)⊤
]
ii
+

1√
n

[
W(v2)(Q

13)⊤
]
ii
− zQ11

ii = 1

Therefore
1

n
√
n

∑
ijk

E
[
w2kWijkQ

12
ij

]
+

1

n
√
n

∑
ijk

E
[
v2jWijkQ

13
ik

]
− z

n
trQ11(z) =

1

3

where

• 1

n
√
n

∑
ijk

E
[
w2kWijkQ

12
ij

]
≃ 1

n
√
n

∑
ijk

E

[
w2k

∂Q12
ij

∂Wijk

]

From Seddik et al. (2021), we have
∂Q12

ij

∂Wijk
≃ − 1√

n
w2kQ

11
ii Q

22
jj , hence

1

n
√
n

∑
ijk

E
[
w2kWijkQ

12
ij

]
≃ − 1

n2

∑
ijk

E
[
w2

2kQ
11
ii Q

22
jj

]
= −E

[
1

n
trQ11 1

n
trQ22

]
−−−−→
n→∞

−q1(z)q2(z)

Similarly, we have

• 1

n
√
n

∑
ijk

E
[
v2jWijkQ

13
ik

]
−−−−→
n→∞

−q1(z)q3(z)

Therefore, q1(z) = limn→∞
1
n trQ11(z) satisfies the equation

[q2(z) + q3(z) + z]q1(z) +
1

3
= 0 (32)

Estimation of 1
n trQ22(z): We have

1√
n

[
W(w2)

⊤Q12
]
jj

+
1√
n

[
(W(u2)− γκW(u1)) (Q

23)⊤
]
jj
− zQ22

jj = 1

Hence
1

n
√
n

∑
ijk

E
[
w2kWijkQ

12
ij

]
+

1

n
√
n

∑
ijk

E
[
u2iWijkQ

23
jk

]
− γκ

n
√
n

∑
ijk

E
[
u1iWijkQ

23
jk

]
− z

n
trQ22 =

1

3

where

• 1

n
√
n

∑
ijk

E
[
w2kWijkQ

12
ij

]
≃ 1

n
√
n

∑
ijk

E

[
w2k

∂Q12
ij

∂Wijk

]
= − 1

n2

∑
ijk

E
[
w2

2kQ
11
ii Q

22
jj

]
−−−−→
n→∞

−q1(z)q2(z)

• 1

n
√
n

∑
ijk

E
[
u2iWijkQ

23
jk

]
≃ 1

n
√
n

∑
ijk

E

[
u2i

∂Q23
jk

∂Wijk

]
= − 1

n2

∑
ijk

E
[
(u22i − γκu1iu2i)Q22

jjQ
33
kk

]
−−−−→
n→∞

(γκ2 − 1)q2(z)q3(z)
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• 1

n
√
n

∑
ijk

E
[
u1iWijkQ

23
jk

]
≃ 1

n
√
n

∑
ijk

E

[
u1i

∂Q23
jk

∂Wijk

]
= − 1

n2

∑
ijk

E
[
(u1iu2i − γκu21i)Q22

jjQ
33
kk

]
−−−−→
n→∞

κ(γ − 1)q2(z)q3(z)

where we used the fact that
∂Q23

jk

∂Wijk
≃ − 1√

n
(u2i − γκu1i)Q22

jjQ
33
kk.

(
q1(z) + z −

[
γκ2 − 1 + κ(γ − 1)

]
q3(z)

)
q2(z) +

1

3
= 0 (33)

Estimation of 1
n trQ33(z): From the identity MQ(z)− zQ(z) = In, we have

1√
n

[
W(v2)

⊤Q13
]
kk

+
1√
n

[(
W(u2)

⊤ − γκW(u1)
⊤) (Q23)

]
kk
− zQ33

kk = 1

Hence

1

n
√
n

∑
ijk

E
[
v2jWijkQ

13
ik

]
+

1

n
√
n

∑
ijk

E
[
u2iWijkQ

23
jk

]
− γκ 1

n
√
n

∑
ijk

E
[
u1iWijkQ

23
jk

]
− z

n
trQ33(z) =

1

3

where

1

n
√
n

∑
ijk

E
[
v2jWijkQ

13
ik

]
≃ 1

n
√
n

∑
ijk

E
[
v2j

∂Q13
ik

∂Wijk

]
= − 1

n2

∑
ijk

E
[
v22jQ

11
ii Q

33
kk

]
−−−−→
n→∞

−q1(z)q3(z)

1

n
√
n

∑
ijk

E
[
u2iWijkQ

23
jk

]
≃ 1

n
√
n

∑
ijk

E

[
u2i

∂Q23
jk

∂Wijk

]
= − 1

n2

∑
ijk

E
[(
u22i − γκu1iu2i

)
Q22

jjQ
33
kk

]
−−−−→
n→∞

(
γκ2 − 1

)
q2(z)q3(z)

1

n
√
n

∑
ijk

E
[
u1iWijkQ

23
jk

]
≃ 1

n
√
n

∑
ijk

E

[
u1i

∂Q23
jk

∂Wijk

]
= − 1

n2

∑
ijk

E
[
(u1iu2i − γκu21i)Q22

jjQ
33
kk

]
−−−−→
n→∞

κ(γ − 1)q2(z)q3(z)

with again
∂Q23

jk

∂Wijk
≃ − 1√

n
(u2i − γκu1i)Q22

jjQ
33
kk.

(
q1(z) + z −

[
γκ2 − 1 + κ(γ − 1)

]
q2(z)

)
q3(z) +

1

3
= 0 (34)

Therefore, we have
[q2(z) + q3(z) + z]q1(z) +

1
3 = 0(

q1(z) + z −
[
γκ2 − 1 + κ(γ − 1)

]
q3(z)

)
q2(z) +

1
3 = 0(

q1(z) + z −
[
γκ2 − 1 + κ(γ − 1)

]
q2(z)

)
q3(z) +

1
3 = 0

q(z) =
∑3

i=1 qi(z)

(35)

Moreover, by symmetry in equation 2 and since T1 is cubic, we have b(z) = q2(z) = q3(z) and we
denote a(z) = q1(z) and τ = γκ2 − 1 + κ(γ − 1). Hence,{

[2b(z) + z] a(z) + 1
3 = 0

(a(z) + z − τb(z))b(z) + 1
3 = 0

(36)

Moreover, q(z) = a(z) + 2b(z).
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D.2.2 ESTIMATION OF THE SINGULAR VALUE

Estimation of λ2: We first have

λ2 = T2(u2, v2, w2) = T1(u2, v2, w2)− γ⟨u1, u2⟩T1(u1, v2, w2)

= S(u2, v2, w2) +
1√
n
W(u2, v2, w2)− γ⟨u1, u2⟩

(
S(u1, v2, w2) +

1√
n
W(u1, v2, w2)

)
where we have

1√
n
E [W(u2, v2, w2)] −−−−→

n→∞
−q(λ2)

and
1√
n
E [W(u1, v2, w2)] =

1√
n

∑
ijk

E [u1iv2jw2kWijk]

=
1√
n

∑
ijk

E
[
∂u1i
∂Wijk

v2jw2k

]
+ E

[
u1i

∂v2j
∂Wijk

w2k

]
+ E

[
u1iv2j

∂w2k

∂Wijk

]
Again, we have

∂u2i
∂Wijk

≃ −1√
n
v2jw2kQ

11
ii (λ2),

∂v2j
∂Wijk

≃ −1√
n
u2iw2kQ

22
jj (λ2),

∂w2k

∂Wijk
≃ −1√

n
u2iv2jQ

33
kk(λ2)

Therefore
1√
n
E [W(u1, v2, w2)] ≃ −

1

n

∑
ijk

E
[
v1jw1kv2jw2kR

11
ii (λ1)

]
− 1

n

∑
ijk

E
[
u1iu2iw

2
2kQ

22
jj (λ2)

]
− 1

n

∑
ijk

E
[
u1iv

2
2ju2iQ

33
kk(λ2)

]
−−−−→
n→∞

−⟨v1, v2⟩⟨w1, w2⟩r1(λ1)− ⟨u1, u2⟩q2(λ2)− ⟨u1, u2⟩q3(λ2)

= −⟨v1, v2⟩⟨w1, w2⟩r1(λ1)− ⟨u1, u2⟩ [q2(λ2) + q3(λ2)]

Hence, λ2 satisfies

λ2 + q(λ2)− γ⟨u1, u2⟩⟨v1, v2⟩⟨w1, w2⟩r1(λ1)− γ⟨u1, u2⟩2 [q2(λ2) + q3(λ2)]

= S(u2, v2, w2)− γ⟨u1, u2⟩S(u1, v2, w2)
(37)

And by symmetry, from equation 2 and since T1 is cubic, we have

fq(λ2)−
γκη2

3
r(λ1)− 2γκ2b(λ2) =

2∑
i=1

βiθ2iρ
2
2i − γκ

2∑
i=1

βiρ1iρ
2
2i (38)

where we denoted fq(z) = z + q(z) and

θ2i = ⟨u2, xi⟩, ρ2i = ⟨v2, yi⟩ = ⟨w2, zi⟩, κ = ⟨u1, u2⟩, η = ⟨v1, v2⟩ = ⟨w1, w2⟩

D.2.3 ESTIMATION OF THE ALIGNMENTS

Estimation of ⟨u2, xs⟩: From the identity in equation 27, we have

λ2⟨u2, xs⟩ = T2(xs, v2, w2) = T1(xs, v2, w2)− γ⟨u1, xs⟩T1(u1, v2, w2)

= S(xs, v2, w2) +
1√
n
W(xs, v2, w2)− γ⟨u1, xs⟩

(
S(u1, v2, w2) +

1√
n
W(u1, v2, w2)

)
where

1√
n
E [W(xs, v2, w2)] −−−−→

n→∞
−(q(λ2)− q1(λ2))⟨xs, u2⟩
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and E
[

1√
n
W(u1, v2, w2)

]
was computed previously. We therefore have

[λ2 + q(λ2)− q1(λ2)]⟨xs, u2⟩ − γ⟨u1, xs⟩ [⟨v1, v2⟩⟨w1, w2⟩r1(λ1) + ⟨u1, u2⟩(q2(λ2) + q3(λ2))]

= S(xs, v2, w2)− γ⟨xs, u1⟩S(u1, v2, w2)
(39)

Again by symmetry, from equation 2 and since T1 is cubic, we have

[fq(λ2)− a(λ2)]θ2s − γρ1s
[
η2

3
r(λ1) + 2κb(λ2)

]
=

2∑
i=1

βi⟨xs, xi⟩ρ22i − γρ1s
2∑

i=1

βiρ1iρ
2
2i for s ∈ [2]

(40)

Estimation of ⟨u1, u2⟩: Again from equation 27, we have

λ2⟨u1, u2⟩ = T2(u1, v2, v2)
with T2 = T1 − γu1 ⊗ T1(u1, ·, ·), therefore

λ2⟨u1, u2⟩ = T1(u1, v2, w2)− γT1(u1, v2, w2) = (1− γ)T1(u1, v2, w2)

= (1− γ)
(
S(u1, v2, w2) +

1√
n
W(u1, v2, w2)

)
(41)

Hence, we have

[λ2 + (1− γ)(q2(λ2) + q3(λ2))] ⟨u1, u2⟩ = (1− γ) [S(u1, v2, w2)− ⟨v1, v2⟩⟨w1, w2⟩r1(λ1)]
(42)

Again by symmetry, from equation 2 and since T1 is cubic, we have

[λ2 + 2(1− γ)b(λ2)]κ = (1− γ)

[
2∑

i=1

βiρ1iρ
2
2i −

η2

3
r(λ1)

]
(43)

Estimation of ⟨v2, ys⟩: From equation 27, we have

λ2⟨v2, ys⟩ = T2(u2, ys, w2) = T1(u2, ys, w2)− γ⟨u1, u2⟩T1(u1, ys, w2)

= S(u2, ys, w2) +
1√
n
W(u2, ys, w2)− γ⟨u1, u2⟩

[
S(u1, ys, w2) +

1√
n
W(u1, ys, w2)

]
And as previously, we have

E
[

1√
n
W(u2, ys, w2)

]
−−−−→
n→∞

−(q(λ2)− q2(λ2))⟨ys, v2⟩

And

E
[

1√
n
W(u1, ys, w2)

]
=

1√
n

∑
ijk

ysjE
[
∂u1i
∂Wijk

w2k + u1i
∂w2k

∂Wijk

]
≃ − 1

n

∑
ijk

ysjE
[
v1jw1kR

11
ii (λ1)w2k + u1iu2iv2jQ

33
kk(λ2)

]
−−−−→
n→∞

−⟨ys, v1⟩⟨w1, w2⟩r1(λ1)− ⟨ys, v2⟩⟨u1, u2⟩q3(λ2)

Therefore, [
λ2 + q(λ2)− q2(λ2)− γ⟨u1, u2⟩2q3(λ2)

]
⟨v2, ys⟩ =

S(u2, ys, w2)− γ⟨u1, u2⟩ [S(u1, ys, w2)− ⟨v1, ys⟩⟨w1, w2⟩r1(λ1)]
(44)

Again by symmetry, from equation 2 and since T1 is cubic, we have

[
fq(λ2)− (1 + γκ2)b(λ2)

]
ρ2s =

2∑
i=1

βiθ2iρ2i⟨ys, yi⟩ − γκ

[
2∑

i=1

βiρ1iρ2i⟨ys, yi⟩ −
ρ1sη

3
r(λ1)

]
for s ∈ [2]

(45)
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Estimation of ⟨v1, v2⟩: From equation 27, we have

λ2⟨v1, v2⟩ = T2(u2, v1, w2) = T1(u2, v1, w2)− γ⟨u1, u2⟩T1(u1, v1, w2)

= S(u2, v1, w2) +
1√
n
W(u2, v1, w2)− γ⟨u1, u2⟩

[
S(u1, v1, w2) +

1√
n
W(u1, v1, w2)

]
Where

E
[

1√
n
W(u2, v1, w2)

]
=

1√
n

∑
ijk

E[u2iv1jw2kWijk]

=
1√
n

∑
ijk

E
[
∂u2i
∂Wijk

v1jw2k + u2i
∂v1j
∂Wijk

w2k + u2iv1j
∂w2k

∂Wijk

]
≃ − 1

n

∑
ijk

E
[
v2jw2kQ

11
ii (λ2)v1jw2k + u2iu1iw1kR

22
jj (λ1)w2k + u2iv1ju2iv2jQ

33
kk(λ2)

]
−−−−→
n→∞

−⟨v1, v2⟩[q1(λ2) + q3(λ2)]− ⟨u1, u2⟩⟨w1, w2⟩r2(λ1)

And

E
[

1√
n
W(u1, v1, w2)

]
=

1√
n

∑
ijk

E[u1iv1jw2kWijk]

=
1√
n

∑
ijk

E
[
∂u1i
∂Wijk

v1jw2k + u1i
∂v1j
∂Wijk

w2k + u1iv1j
∂w2k

∂Wijk

]
≃ − 1

n

∑
ijk

E
[
v1jw1kR

11
ii (λ1)v1jw2k + u21iw1kw2kR

22
jj (λ1) + u1iv1ju2iv2jQ

33
kk(λ2)

]
−−−−→
n→∞

−⟨w1, w2⟩[r1(λ1) + r2(λ1)]− ⟨u1, u2⟩⟨v1, v2⟩q3(λ2)

Hence, we have[
λ2 + q1(λ2) + q3(λ2)− γ⟨u1, u2⟩2q3(λ2)

]
⟨v1, v2⟩+ [(1− γ)r2(λ1)− r1(λ1)] ⟨u1, u2⟩⟨w1, w2⟩

= S(u2, v1, w2)− γ⟨u1, u2⟩S(u1, v1, w2)
(46)

Finally by symmetry, from equation 2 and since T1 is cubic, we have

[
λ2 + a(λ2) + (1− γκ2)b(λ2)−

γκ

3
r(λ1)

]
η =

2∑
i=1

βiθ2iρ1iρ2i − γκ
2∑

i=1

βiρ
2
1iρ2i (47)

D.2.4 γ-ORTHOGONALIZED TENSOR DEFLATION: GOVERNING SYSTEM OF EQUATIONS

The second deflation step is therefore governed by the following system of equations

[2b(z) + z] a(z) + 1
3 = 0

(a(z) + z − τb(z))b(z) + 1
3 = 0

q(z) = a(z) + 2b(z)

fq(λ2)− γκη2

3 r(λ1)− 2γκ2b(λ2) =
∑2

i=1 βiθ2iρ
2
2i − γκ

∑2
i=1 βiρ1iρ

2
2i

[fq(λ2)− a(λ2)]θ2s − γρ1s
[
η2

3 r(λ1) + 2κb(λ2)
]
=
∑2

i=1 βi⟨xs, xi⟩ρ22i − γρ1s
∑2

i=1 βiρ1iρ
2
2i

[λ2 + 2(1− γ)b(λ2)]κ = (1− γ)
[∑2

i=1 βiρ1iρ
2
2i −

η2

3 r(λ1)
]

[
fq(λ2)− (1 + γκ2)b(λ2)

]
ρ2s =

∑2
i=1 βiθ2iρ2i⟨ys, yi⟩ − γκ

[∑2
i=1 βiρ1iρ2i⟨ys, yi⟩ −

ρ1sη
3 r(λ1)

]
[
λ2 + a(λ2) + (1− γκ2)b(λ2)− γκ

3 r(λ1)
]
η =

∑2
i=1 βiθ2iρ1iρ2i − γκ

∑2
i=1 βiρ

2
1iρ2i

(48)
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with fq(z) = z + q(z) and τ = γκ2 − 1 + κ(γ − 1). In the case γ = 1, we have κ = 0 from
equation 41 and therefore the system above reduces to the following system, since a(z) = b(z) = r(z)

3
and q(z) = r(z).

fr(λ2) =
∑2

i=1 βiθ2iρ
2
2i

hr(λ2)θ2s − η2

3 r(λ1)ρ1s =
∑2

i=1 βi⟨xs, xi⟩ρ22i − ρ1s
∑2

i=1 βiρ1iρ
2
2i

hr(λ2)ρ2s =
∑2

i=1 βiθ2iρ2i⟨ys, yi⟩[
λ2 +

2
3r(λ2)

]
η =

∑2
i=1 βiθ2iρ1iρ2i

(49)

E EXPERIMENTAL SETUP & SUPPLEMENTARY SIMULATIONS

E.1 EXPERIMENTAL SETUP

We outline how we can generate synthetic models corresponding to our setting (2.1) in the following
code snippet.

1 import numpy as np
2 from numpy.random import randn, normal
3

4 from tensorly.tenalg import outer
5

6 class TwoSpikesModel():
7 def __init__(self, b1, b2, alpha, dims):
8 """
9 Generates a rank-2 order-3 spiked tensor model as in Section 2.

10

11 Parameters
12 ----------
13 b1, b2: Signal to Noise Ratios (SNRs)
14 alpha: Correlation level between the 2 signal components.
15 dims: Dimensions per mode up to order.
16 ----------
17 """
18 self.b1 = b1
19 self.b2 = b2
20 self.order = len(dims)
21 self.alpha = alpha
22 self.c1 = [normalized(randn(d)) for d in dims]
23 self.c1_orth = [(np.eye(d) - np.outer(u, u)) @ normalized(randn(d

)) for (d, u) in zip(dims, self.c1)]
24 self.c2 = [alpha * u1 + np.sqrt(1 - alpha**2) * u2 for (u1, u2)

in zip(self.c1, self.c1_orth)]
25 self.noise = normal(size=dims) / np.sqrt(sum(dims))
26 self.tensor = b1 * outer(self.c1) + b2 * outer(self.c2) + self.

noise

E.2 JOINT ESTIMATION OF MODEL PARAMETERS

In a variety of applications, we do not only care about estimating the hidden low rank components,
but we also would like to estimate the different problem parameters with a sufficiently high accuracy.
For instance, in telecommunications, a very fundamental problem is estimating the signal-to-noise
strengths (SNRs) Pauluzzi & Beaulieu (2000); Wiesel et al. (2006); Suhadi et al. (2010); Matzner
& Englberger (1994), which corresponds to quantifying the communication channel quality. In
that spirit, we also address the problem of estimating the underlying model parameters, namely the
signal-to-noise ratios β1, β2, and the correlation parameter α based on a single realization of T1.
This allows us to design an improved deflation algorithm in the presence of correlations among our
hidden signal components.
In this section, we discuss the problem of estimating the underlying model parameters, namely
the SNRs and the signal components correlation β ≡ (β1, β2, α) ∈ R3, and the alignments ρ ≡
(ρ1i, ρ2i, θ2i | i ∈ [2]) ∈ R6 from one realization of the random tensor T1. Indeed, this will
allow us to design an improved deflation algorithm by optimizing the parameter γ introduced
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Figure 6: Estimation of the underlying SNRs β1 and β2 as described in Section 3. (Averaged over)
100 realizations of with T1 Parameters: β2 = 5, α = 0.5, p = 150 and γ = 1, β1 is varied. The
parameters are estimated only from the singular values λ̂1, λ̂2 and the alignment between the singular
vectors η̂ = ⟨v̂1, v̂2⟩, computed via tensor power iteration.

in the second deflation step. Further denoting λ ≡ (λ1, λ2, η) ∈ R3, we define the mapping
ψ : R3 × R3 × R6 → R9 through equation 50, where the first three entries of the vector ψ(β,λ,ρ)
correspond to the first deflation step equations in equation 8 while the remaining entries correspond
to the second deflation step for γ = 1 characterized by equation 51. In particular, the singular
values λ1, λ2 and the corresponding alignments satisfy ψ(β,λ,ρ) = 0. On the other hand, given
an estimate λ̂ = (λ̂1, λ̂2, η̂) of λ, which can be computed via tensor power iteration as discussed
previously, we can solve ψ(·, λ̂, ·) = 0 in the variables β and ρ while fixing λ̂, which allows us to
estimate the model parameters β̂ and ρ̂. In particular, Figure 6 supports this statement where we see
that solving ψ(·, λ̂, ·) = 0 allows us to estimate β1 and β2 with reasonably low variance. Moreover,
an important aspect of parameter estimation is proving its consistency. Namely, demonstrating a
Central Limit Theorem (CLT) result that shows the concentration of β̂ around the true β as well
as for ρ̂. We currently support this statement through simulations as depicted in Figures 6 and 7.
Note however that, given the concentration of λ̂, we believe that such consistency can be ensured
with additional assumptions on the function ψ in equation 50 and in particular the existence and
uniqueness of solution to the equation ψ(·, λ̂, ·) = 0.

ψ : (β,λ,ρ) 7→



fr(λ1)−
∑2

i=1 βiρ
3
1i

hr(λ1)ρ11 −
∑2

i=1 βiαi1ρ
2
1i

hr(λ1)ρ12 −
∑2

i=1 βiαi2ρ
2
1i

fr(λ2)−
∑2

i=1 βiθ2iρ
2
2i

hr(λ2)θ21 − η2

3 r(λ1)ρ11 −
∑2

i=1 βiαi1ρ
2
2i + ρ11

∑2
i=1 βiρ1iρ

2
2i

hr(λ2)θ22 − η2

3 r(λ1)ρ12 −
∑2

i=1 βiαi2ρ
2
2i + ρ12

∑2
i=1 βiρ1iρ

2
2i

hr(λ2)ρ21 −
∑2

i=1 βiθ2iρ2iαi1

hr(λ2)ρ22 −
∑2

i=1 βiθ2iρ2iαi2[
λ2 +

2
3r(λ2)

]
η −

∑2
i=1 βiθ2iρ1iρ2i


(50)

Case γ = 1: As we discussed earlier, in the case γ = 1 the limiting spectral measure ν becomes
equal to the semi-circle law µ described in the first deflation step. Moreover, the system of equations
in equation 13 reduces to the following equations, for j ∈ [2], which will be needed subsequently.{

fr(λ2) =
∑2

i=1 βiθ2iρ
2
2i, hr(λ2)θ2j − η2

3
r(λ1)ρ1j =

∑2
i=1 βiαijρ

2
2i − ρ1j

∑2
i=1 βiρ1iρ

2
2i

hr(λ2)ρ2j =
∑2

i=1 βiθ2iρ2iαij ,
[
λ2 +

2
3
r(λ2)

]
η =

∑2
i=1 βiθ2iρ1iρ2i

(51)
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Figure 7: Estimation of Alignments as described in Section 3 from one realization of the random
tensor T1. We considered β1 = 15, β2 = 5, γ = 1, p = 100 while varying α. The curves are
averaged over 100 realizations of T1. The hats correspond to simulations while tildes correspond to
the estimated alignments as per Section 3.

E.3 SIMULATED AND ASYMPTOTIC ALIGNMENTS AT FIRST DEFLATION STEP

We observe a near perfect estimation of all the problem parameters of the first deflation step of
γ-orthogonalized tensor deflation in Figure 8.
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Figure 8: Simulated vs theoretical asymptotic singular value and alignments corresponding to
the first deflation step as per Theorem 2. We considered β2 = 5, α = 0.5, p = 100 and varying
β1 ∈ [0, 15]. The system of equations in equation 8 is solved numerically and initialized with the
simulated singular value and alignments (dotted curves) from one realization of T1.

E.4 CONCAVITY OF ALIGNMENTS IN γ

An important property of interest is the behavior of the asymptotic alignments as a function of γ, we
show that empirically in Figures 7 and 10 for different stages of γ-orthogonalized tensor deflation.
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Figure 9: Asymptotic alignments of the second deflation varying the hyper-parameter γ. We
considered β1 = 10, β2 = 8 and α = 0.6.
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Figure 10: Asymptotic alignments of the second deflation step in terms of γ and α. We considered
β1 = 10 and β2 = 8.

F ALGORITHMS

Algorithm 1 below, implements the fixed point equation in Definition 3.3 which allows the computa-
tion of the Stieltjes transform at the second deflation step.

Algorithm 1 Stieltjes Transform by Fixed Point
Input: z ∈ C \ supp(ν) and τ .
- Initialize a and b.
while no convergence do

- Update a← −1
3(2b+z) .

- Update b← −1
3(a+z−τb) .

end while
Output: a, b and Stieltjes transform q = a+ 2b.

Algorithm 2 implements our γ-orthogonalized tensor deflation procedure which was carefully con-
structed in Section 3.1.
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Algorithm 2 γ-Orthogonalized Tensor Deflation Algorithm
Input: Tensor T ∈ Rp×p×p and step size ϵ ∈ [0, 1].
# Perform orthogonalized deflation:
1- Compute λ̂1û1 ⊗ v̂1 ⊗ ŵ1 as best rank-1 approximation of T .
2- Compute λ̂2û2 ⊗ v̂2 ⊗ ŵ2 as best rank-1 approximation of T ×1 (Ip − γû1û⊤1 ) for γ = 1.
# Estimate underlying model parameters:
3- Compute η̂ ← |⟨v̂1, v̂2⟩|.
4- Estimate β̂ = (β̂1, β̂2, α̂) and ρ̂ = (ρ̂1i, ρ̂2i, θ̂2i | i ∈ [2]) by fixing λ̂ = (λ̂1, λ̂2, η̂) and solving
ψ(β̂, λ̂, ρ̂) = 0 in β̂ and ρ̂ with ψ defined in equation 50.
# Estimate optimal γ:
5- Initialize γ = 1 and κ̂ = 10−5.
6- Initialize two empty lists Lγ and Lρ.
while The maximum in Lρ is not reached do

7- Set x0 ← (λ̂2, κ̂, η̂, θ̂2i, ρ̂2i | i ∈ [2]).
8- Estimate (λ̂2, κ̂, η̂, θ̂2i, ρ̂2i | i ∈ [2]) by solving the system in equation 13 initialized with

x0 and for (β1, β2, α) = (β̂1, β̂2, α̂) and γ.
9- Append Lγ with γ.
10- Append Lρ with max{ρ̂21, ρ̂22}.
11- Update γ ← γ − ϵ.

end while
12- Set optimal γ as γ∗ ← Lγ [argmax(Lρ)].
# Perform orthogonalized deflation with γ∗:
13- Compute λ̂2û2 ⊗ v̂∗2 ⊗ ŵ∗

2 as best rank-1 approximation of T ×1 (Ip − γ∗û1û⊤1 ).
14- Compute λ̂2û∗2 ⊗ v̂2 ⊗ ŵ∗

2 as best rank-1 approximation of T ×2 (Ip − γ∗v̂1v̂⊤1 ).
# Re-estimate the first component by simple deflation:
15- Compute λ̂1û∗1 ⊗ v̂∗1 ⊗ ŵ∗

1 as best rank-1 approximation of T −min{β̂1, β̂2}û∗2 ⊗ v̂∗2 ⊗ ŵ∗
2 .

Output: Estimates of the signal components (max{β̂1, β̂2}, û∗1, v̂∗1 , ŵ∗
1), (min{β̂1, β̂2}, û∗2, v̂∗2 , ŵ∗

2).

G ADDRESSING LIMITATIONS & FUTURE WORK

We have showcased a concrete example where RMT/RTT allows us to understand and even improve
signal recovery from low-rank asymmetric spiked random tensors. To the best of our knowledge, this
is the first time where an asymptotic characterization of the considered deflation method is carried
out. For the sake of clarity, we limited our detailed analysis to the more intuitive rank-2 order-3
model. On a further note, we outline that our actual results already pave a new path towards the
analysis and improvement of more sophisticated tensor methods and models, by means of random
tensor theory, thereby impacting tensor-based machine learning methods and many other applications.
In the following, we list some extensions to address some limitations in our current work.

• Extension to Higher Ranks & Orders. We present the meta steps that allow to obtain our
results and generalize beyond that to low rank tensor models of arbitrary ranks and/or orders.
The machinery behind the generalized deflation step theoretical analysis framework (3) lies
in the application of Stein’s lemma (principally, among others) to estimate the different
problem parameters, alignments in particular. Given that this is a non-amortized approach,
the number of model parameters and alignments grows exponentially in the number of
deflation steps, which makes the analysis very tedious by hand. Upon the use of symbolic
solvers able to sequentially apply lemmas like that of Stein, the generalization of our to
higher orders/ranks becomes fairly straightforward. To give the reader an idea of how that
would look like, we refer them to Seddik et al. (2023). In particular, Theorem 3.4 outlines a
system of equations describing the Hotelling-type asymmetric tensor deflation for general
ranks/orders.

• Evaluation on Real-World Data. While the application in real-world contexts is quite
straightforward, given the plethora of applications listed in the introduction, we limit this
work to showcase the potential of utilizing a theoretical algorithmic interplay to design
new theoretically interpretable, robust and highly accurate tensor deflation/decomposition
methods. We benchmark against prevalent tensor decomposition approaches CP and Tucker,
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and show that our approach performs optimally while the latter collapse in the presence of
higher levels of correlation.

• On a Theoretical Level. We highlight the following points
– Our main results rely on Assumptions 3.1 and 3.4 which basically suppose the almost

convergence of the singular values and alignments of interest. Similar Assumptions
were made and discussed (in (Goulart et al., 2021; Seddik et al., 2021)) which also
relied on a RMT approach. A formal proof of these statements is still required and
would make our analysis more complete.

– The second point concerns the existence and uniqueness of the solutions of the involved
systems of equations. In essence, the asymptotic behavior of the second deflation step
is described by a set of seven polynomial equations in λ2 and the alignments θ2i, ρ2i, κ
and η. Again, we do not address the existence and uniqueness of such solutions, and we
solve the system in equation 13 numerically starting from the simulated singular value
and alignments from one realization of T1. Contrarily to the first deflation step, we
highlight that the Stieltjes transform q(z) depends on the alignment κ. Therefore, we
alternate solving the system in equation 13 with the fixed point equations in equation 11
for τ = γκ2 − 1 + κ(γ − 1) as per Theorem 3.

– The third point concerns a proof of consistency of the underlying model parameters
estimation. Specifically, proving a Central Limit Theorem (CLT) about the convergence
of our estimates to the true parameters and the related conditions.

– On a further note, we also outline that there might also exist a theoretical-algorithmic
spectral gap, that needs to be determined for the present deflation procedure, in the
same spirit as that in Richard & Montanari (2014) for the rank-1 case.

We do not address these questions in our present analysis and we defer them to a future study.
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