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ABSTRACT

In this paper, we propose novel Gradient Estimation black-box attacks to generate
adversarial examples with query access to the target model’s class probabilities,
which do not rely on transferability. We also propose strategies to decouple
the number of queries required to generate each adversarial example from the
dimensionality of the input. An iterative variant of our attack achieves close to
100% attack success rates for both targeted and untargeted attacks on DNNs. We
show that the proposed Gradient Estimation attacks outperform all other black-box
attacks we tested on both MNIST and CIFAR-10 datasets, achieving attack success
rates similar to well known, state-of-the-art white-box attacks. We also apply the
Gradient Estimation attacks successfully against a real-world content moderation
classifier hosted by Clarifai.

1 INTRODUCTION

The ubiquity of machine learning provides adversaries with both opportunities and incentives to
develop strategic approaches to fool learning systems and achieve their malicious goals. Many attack
strategies devised so far to generate adversarial examples to fool learning systems have been in the
white-box setting, where adversaries are assumed to have access to the learning model (Szegedy
et al.} 2014} |Goodfellow et al.l 2015} |(Carlini & Wagner, |2017; Kurakin et al.,[2016). However, in
many realistic settings, adversaries may only have black-box access to the model, i.e. they have
no knowledge about the details of the learning system such as its parameters, but they may have
query access to the model’s predictions on input samples, including class probabilities. Most existing
black-box attacks on DNNs have relied on transferability (Papernot et al.l 2016} [Moosavi-Dezfooli
et al.,|2016; Papernot et al.,|2017)), where adversarial examples crafted for a local surrogate model
can be used to attack the target model.

New black-box attacks. In this short paper, we provide an overview of our powerful new black-box
Gradient Estimation attacks on DNNs using limited query access which achieve attack success
rates close to that of white-box attacks and do not rely on transferability. These attacks do not
need any access to a representative dataset or any knowledge of the target model architecture. In
the Gradient Estimation attacks, the adversary adds perturbations proportional to the estimated
gradient, instead of the true gradient as in white-box attacks. More details and results can be found
in our technical report (Bhagoji et al., |2017). The code to reproduce our results can be found at
https://github.com/sunblaze-ucb/blackbox—attacks.

Query-reduction strategies. In order to reduce the number of queries needed to the target model,
we propose two novel strategies: random feature grouping and principal component analysis (PCA)
based query reduction. In our experiments with the Gradient Estimation attacks on state-of-the-art
models on MNIST (784 dimensions) and CIFAR-10 (3072 dimensions) datasets, we find that they
match white-box attack performance, achieving attack success rates up to 90% for single-step attacks
in the untargeted case and up to 100% for iterative attacks in both targeted and untargeted cases
(Tables[I]and [2). We achieve this performance with just 200 to 800 queries per sample for single-step
attacks and around 8,000 queries for iterative attacks.

*Work done while visiting UC Berkeley
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Figure 1: Sample adversarial images of Gradient Estimation attacks on Clarifai’s Content Moderation
model. Left: original image, classified as ‘drug’ with a confidence of 0.99. Right: adversarial sample
with € = 32, classified as ‘safe’ with a confidence of 0.96.

Attacking real-world systems. To demonstrate the effectiveness of our Gradient Estimation attacks
in the real world, we also carry out a practical black-box attack using these methods against the Not
Safe For Work (NSFW) classification and Content Moderation models developed by |Clarifai, which
we choose due to their socially relevant application. We have demonstrated successful attacks (Figure
[T) with just around 200 queries per image, taking around a minute per image. The full set of images
can be found at https://sunblaze-ucb.github.io/blackbox—attacks/

Related Work. To the best of our knowledge, the only previous literature on query-based black-box
attacks in the deep learning setting is independent work by Narodytska & Kasiviswanathan|(2016)
and Chen et al.| (2017). [Narodytska & Kasiviswanathan| (2016)) propose a greedy local search to
generate adversarial examples by perturbing randomly chosen pixels and using those which have
a large impact on the output probabilities. |Chen et al.| (2017) propose a black-box attack method
named ZOO, which also uses the method of finite differences to estimate the derivative of a function.
However, while we propose attacks that compute an adversarial perturbation, approximating FGSM
and iterative FGS; ZOO approximates the Adam optimizer, while trying to perform coordinate descent
on the loss function proposed by (Carlini & Wagner (2017).

2  QUERY BASED ATTACKS: GRADIENT ESTIMATION ATTACK

In this section, we present our novel Gradient Estimation based attacks in the targeted setting. Attacks
in the untargeted setting are simple extensions which can be found in our technical report (Bhagoji
et al.,[2017).

Threat model and justification: We assume that the adversary can obtain the vector of output
probabilities for any input x. The set of queries the adversary can make is then Q; = {p”(x), Vx}.
Note that an adversary with access to the softmax probabilities will be able to recover the logits
(outputs of the penultimate layer) up to an additive constant, by taking the logarithm of the softmax
probabilities. The logits are represented as a vector ¢/ (x) € Rl

Let the function whose gradient is being estimated be ¢g(x). The input to the function is a d-
dimensional vector x, whose elements are represented as x;, where ¢ € [1,...,d]. The canonical
basis vectors are represented as e;, where e; is 1 only in the i*" component and 0 everywhere else.
Then, a two-sided finite difference estimation of the gradient of g with respect to x is given by

g(x+de1)—g(x—de1)
26

FD(g(x), ) = : . (1)

g(x+deq)—g(x—deaq)
26

The logit loss (Carlini & Wagner, 2017) of a network f at an input x with respect to a target 7" is
{(x,y) = max{¢’ (x); : i # T} — ¢’ (x)7. White-box adversarial examples based on this loss are
Xadv = X — € - sign(Vx(max(¢p(x); : i # T') — ¢(x)r)). Since an adversary with query access to
the softmax probabilities can estimate the logits up to an additive constant which cancels out for
the logit loss, she just has to plug in the finite difference estimate of the gradient of the logit loss
to obtain an adversarial sample:X,q, = X — € - sign(FDy (max(¢p(x); : ¢ # T) — ¢p(x)7,0)). An
iterative attack with step size «, H as the constraint set and ¢ 4 1 iterations using the logit loss is:

Xt = Ty (xly, — o - sign(FDy, (max(@(xla,)i 1 £ T) = $(xta)r6)) . @
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2.1 QUERY REDUCTION

The major drawback of the approximation based black-box attacks is that the number of queries
needed per adversarial sample is large. For an input with dimension d, the number of queries will be
exactly 2d for a two-sided approximation. This may be too large when the input is high-dimensional.

Random grouping. The simplest way to group features is to choose, without replacement, a random
set of features. The gradient can then be simultaneously estimated for all these features. If the size
of the set chosen is &, then the number of queries the adversary has to make is (%l When k =1,
this reduces to the case where the partial derivative with respect to every feature is found, as in the
previous section. Thus, the quantity being estimated is not the gradient itself, but an index-wise
averaged version of it.

Query reduction using PCA components. A more principled way to reduce the number of queries
the adversary has to make to estimate the gradient is to compute directional derivatives (Hildebrand,
1962) along the principal components as determined by principal component analysis (PCA) (Shlens,
2014), which requires the adversary to have access to a set of data which is representative of the
training data. The estimate of the gradient used is then an approximation of the true gradient by the
sum of its projection along the top % principal components.

3 EXPERIMENTAL RESULTS

Our empirical evaluation is on state-of-the-art neural networks on the MNIST (LeCun & Cortes|
1998) and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets. The architecture and training details for
all models are given in Appendix We use the logit loss (abbreviated as logit). In all of these
attacks, the adversary’s perturbation is constrained using the L., distance. The attack success rate,
is the fraction of examples that meets the adversary’s goal: f(x.q4y) # y for untargeted attacks and
f(xXaay) = T for targeted attacks with target 7. For the Iterative Gradient Estimation attacks, we
use @ = 0.01 and ¢ = 40 for MNIST and & = 1.0 and ¢ = 10 for CIFAR-10 throughout. Table[3|
(Appendix) contains a brief summary of all the attacks we evaluated. We show some examples of
successful untargeted adversarial examples in Figure [2]

MNIST | White-box | Gradient Estimation (FD) | Gradient Estimation (Query Reduction)
Single-step Iterative Single-step [1568]  Iterative [62720] Single-step [~ 200] Iterative [8000]
Model FGS (logit) IFGS (logit) FD-logit IFD-logit PCA-100 RG-8 PCA-100 RG-8
A 30.1 (6.1) 99.6 (2.7) 29.9 (6.1) 99.7 (2.7) 23.2(5.9) 159 (5.9) 96.2 (3.3) 73.8(2.5)
B 29.6 (6.2) 98.7 (2.4) 29.3 (6.3) 98.7 (2.4) 29.0 (6.3) 17.8 (6.3) 93.9 (2.9) 73.7 (2.6)
CIFAR-10 | White-box | Gradient Estimation (FD) | Gradient Estimation (Query Reduction)
Single-step Iterative Single-step [6144]  Iterative [61440] Single-step [~ 800] Tterative [8000]
Model FGS (logit) IFGS (logit) FD-logit IFD-logit PCA-400 RG-8 PCA-400 RG-8
Resnet-32 23.5(436.0) 100.0 (89.5) 23.0 (437.0) 100.0 (89.5) 21.0(438.2) 19.0(438.1) 81.0(222.8) 97.0 (126.1)
Resnet-28-10 | 27.6 (436.5)  100.0 (99.0) 28.0 (436.1) 100.0 (98.3) 23.0(433.7) 20.0(433.7) 72.0(253.1) 94.0(132.4)

Table 1: Targeted black-box attacks: attack success rates. The number in parentheses () for each
entry is A(X, X,4v), the average Lo distortion over all examples used in the attack. This is used to
compare the stealth of different attacks. The number in brackets [] beside the Single-step and Iterative
descriptors gives the number of queries needed for each type of attack. The per-pixel perturbation
limits are ¢ = 0.3 for MNIST (Top) and ¢ = 8 for CIFAR-10 (Bottom).

Targeted attack success. From Table|l} it is clear that the Gradient Estimation attacks match attack
success rates for white-box attacks in the targeted case. Further, the query reduction methods reduce
the number of queries greatly while maintaining high attack success rates.

Untargeted attacks and other query-based attacks. In Table |2|in the Appendix, attack success
rates for untargeted Gradient Estimation attacks are given and compared with other query-based
attacks for completeness. We experimented with Particle Swarm Optimization (PSO)/)'|a com-
monly used evolutionary optimization strategy, to construct adversarial examples, but found it to
be prohibitively slow even for MNIST. We also used the Simultaneous Perturbation Stochastic
Approximation (SPSA) method, which is similar to the method of Finite Differences, but estimates
the gradient of the loss along a random direction r at each step, instead of along the canonical basis
vectors. We find that the Gradient Estimation attack outperforms the other black-box attacks.

!Using freely available code from http://pythonhosted.org/pyswarm/
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A APPENDIX

A.1 MODEL TRAINING DETAILS

In this section, we present the architectures and training details for models trained on both the MNIST
and CIFAR-10 datasets.

MNIST. The model details for the 2 models trained on the MNIST dataset are as follows:

1. Model A (3,382,346 parameters): Conv(64, 5, 5) + Relu, Conv(64, 5, 5) + Relu,
Dropout(0.25), FC(128) + Relu, Dropout(0.5), FC + Softmax

2. Model B (710,218 parameters) - Dropout(0.2), Conv(64, 8, 8) + Relu, Conv(128, 6, 6) +
Relu, Conv(128, 5, 5) + Relu, Dropout(0.5), FC + Softmax

Model A has both convolutional layers as well as fully connected layers. Model B, on the other hand,
does not have fully connected layers and has an order of magnitude fewer parameters.

Models A and B achieve greater than 99% classification accuracy on the test data.

WB FGS FD-logit GE-QR-PCA

MNIST

Single-step
CIFAR-10 4

s '1}- ‘&'-
WB IFGS IFD-logit IGE-QR-PCA

MNIST

4
CIFAR-10 | o

Iterative

Figure 2: Untargeted adversarial examples on Model A on MNIST and Resnet-32 on CIFAR-10.
All attacks use the logit loss. Perturbations in the images generated using single-step attacks are far
smaller than those for iterative attacks. The ‘7° from MNIST is classified as a ‘3’ by all single-step
attacks and as a ‘9’ by all iterative attacks. The dog from CIFAR-10 is classified as a bird by the
white-box FGS and Finite Difference attack, and as a frog by the Gradient Estimation attack with
query reduction.

Query-based attack \ Attack success (Distortion) No. of queries Time per sample (s)
Finite Diff. 92.9 (6.1) 1568 8.8 x 1072
Gradient Estimation (RG-8) 61.5 (6.0) 196 1.1 x 1072
Iter. Finite Diff. 100.0 (2.1) 62720 35
Iter. Gradient Estimation (RG-8) 98.4 (1.9) 8000 0.43
Particle Swarm Optimization 84.1 (5.3) 10000 21.2
SPSA 96.7 (3.9) 8000 1.25

Table 2: Comparison of untargeted query-based black-box attack methods. All results are for
attacks using the first 1000 samples from the MNIST dataset on Model A and with an L, constraint
of 0.3. The logit loss is used for all methods expect PSO, which uses the class probabilities.

CIFAR-10. As their name indicates, Resnet-32 and Resnet-28-10 are ResNet variants (He et al.]
2016; [Zagoruyko & Komodakis, 2016). In particular, Resnet-32 is a standard 32 layer ResNet
with no width expansion, and Resnet-28-10 is a wide ResNet with 28 layers with the width set
to 10, based on the best performing ResNet from Zagoruyko & Komodakis| (TensorFlow Authors).
The width indicates the multiplicative factor by which the number of filters in each residual layer is
increased.
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‘ Attack Abbreviation Untargeted Targeted
Finite-difference gradient estimation Steps Loss function
Single-step  Cross-entropy ~ FD-xent + +
Logit-based FD-logit + +
%5 Iterative Cross-entropy  IFD-xent + +
E Logit-based IFD-logit + +
S | Query-reduced gradient estimation Technique Steps Loss function
= Random grouping  Single-step  Logit-based GE-QR (RG-F, logit) + +
Iterative Logit-based IGE-QR (RG-k, logit) + +
PCA Single-step  Logit-based GE-QR (PCA-£, logit) + +
Iterative Logit-based IGE-QR (PCA-E, logit) + +
.. | Fast gradient sign (FGS) Steps Loss function
S Single-step ~ Cross-entropy WB FGS-xent + +
2 Logit-based WB FGS-logit + +
= Iterative Cross-entropy WB IFGS-xent + +
& Logit-based  WB IFGS-logit + +

Table 3: Attacks evaluated in this paper

For each model architecture, we train 3 models, one on only the CIFAR-10 training data, one using
standard adversarial training and one using ensemble adversarial training. Resnet-32 is trained for
125,000 steps, Resnet-28-10 is trained for 167,000 steps and Std.-CNN is trained for 100,000 steps
on the benign training data. All models were trained with a batch size of 128. The two ResNets
achieve close to state-of-the-art accuracy (Benenson) on the CIFAR-10 test set, with Resnet-32 at
92.4% and Resnet-28-10 at 94.4%.
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