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ABSTRACT

DeePa is a deep learning framework that explores parallelism in all parallelizable
dimensions to accelerate the training process of convolutional neural networks.
DeePa optimizes parallelism at the granularity of each individual layer in the net-
work. We present an elimination-based algorithm that finds an optimal parallelism
configuration for every layer. Our evaluation shows that DeePa achieves up to
6.5× speedup compared to state-of-the-art deep learning frameworks and reduces
data transfers by up to 23×.

1 INTRODUCTION

Training convolutional neural networks (CNNs) is increasingly compute-intensive and time-
consuming. It takes days or even weeks to train deep CNNs from scratch (Szegedy et al., 2014;
Zeiler & Fergus, 2014; Simonyan & Zisserman, 2014; Szegedy et al., 2016). Existing deep learning
frameworks such as TensorFlow, PyTorch, and Caffe2 parallelize the training process onto multiple
processors (usually GPUs) using image parallelism1 dividing the entire image dataset into batches
with the same number of images and assigning each batch to a dedicated processor.

The standard parallelization of CNN training only exploits image parallelism. However, other di-
mensions can also parallelize the training process. For example, in CNNs for 2D images, data is
commonly organized as 4-dimensional tensors (i.e., image, height, width, channel). The image di-
mension includes an index for each image in the input dataset. The height and width dimensions
specify a position in an image. For a particular position, the channel dimension2 indexes different
neurons for that position. Exploring these other parallelizable dimensions can potentially reduce the
compute time and data transfer cost when training CNNs (see Section 2). Moreover, different layers
in a CNN may prefer different parallelism configurations for achieving optimal performance.

We propose DeePa, a deep learning framework that explores parallelism in all parallelizable dimen-
sions to accelerate the training of CNNs. To the best of our knowledge, DeePa is the first system that
models and exploits the parallelism of neural networks at the granularity of each individual layer.
To generate a parallelism configuration for each layer, DeePa uses an elimination-based algorithm
that automatically finds the configuration with the best estimated performance.

The main contributions of this paper are:

• We present DeePa, a deep learning framework that explores parallelism in all parallelizable
dimensions to accelerate the training of CNNs.

• The parallelization strategy is selected at the granularity of each individual layer.

• We present an elimination-based algorithm for finding the parallelism configuration with
optimal estimated performance for each layer.

• Our evaluation shows that, compared to state-of-the-art deep learning frameworks (e.g.,
TensorFlow and PyTorch), DeePa achieves 6.5×, 1.9×, and 1.5× speedup for AlexNet,

1Some papers use the term data parallelism to refer to parallelism across images. Since this paper involves
parallelizing the training dataset in other data dimensions, we use image parallelism to distinguish this from
other parallelization strategies.

2Some papers use the term depth to refer to different neurons for a position. In this paper, depth refers to
the number of layers for an entire neural network and we use channel for the neurons for a position.
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Table 1: Detailed information for the example convolutional layers used in Figure 1 and 2.

Name Input Output Height Width Kernel Stride DescriptionChannels Channels
C1 128 128 112 112 3x3 1x1 Conv4 in VGG-16
C2 512 512 28 28 3x3 1x1 Conv8, Conv9, and Conv10 in VGG-16
C3 192 64 35 35 1x1 1x1 Conv1x1 in an Inception-v3 module
C4 48 64 35 35 5x5 1x1 Conv5x5 in an Inception-v3 module
C5 64 192 27 27 5x5 1x1 Conv2 in AlexNet
C6 256 256 13 13 3x3 1x1 Conv5 in AlexNet
C7 32 64 147 147 3x3 1x1 Conv3 in Inception-v3
C8 448 384 8 8 3x3 1x1 Conv3x3 in an Inception-v3 module

VGG-16, and Inception-v3, respectively. The performance improvement comes from re-
ducing overall data transfers, automatically overlapping computation with data movement,
and accelerating computation throughput.

2 MOTIVATION

This work is motivated by the following observations.

2.1 ACCELERATING COMPUTATION THROUGHPUT
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Figure 1: Relative performance for training
different convolutional layers. Computation
throughput is calculated by dividing the batch
size with computation time (both forward pro-
cessing and back propagation) and is normal-
ized by the worst case.
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Figure 2: Computation and data transfer time
to process a batch of 512 images using image
parallelism for the third layer, an intermediate
layer, and the last layer of Inception-v3.

Convolutional layers generally consume the bulk of the training time in CNNs, and paralleliz-
ing training in different data dimensions results in significantly different performance. Figure 1
shows the relative speed of training six different convolutional layers from AlexNet, VGG-16, and
Inception-v3. The properties of the convolutional layers are shown in Table 1. For each convo-
lutional layer, we tried parallelizing the computation in each individual parallelizable dimension
as well as combinations of different parallelizable dimensions, and we report the performance of
the standard parallelization over images along with the worst and best parallelization strategies we
discovered. Figure 1 shows that different parallelism configurations result in very different perfor-
mance, and image parallelism generally achieves suboptimal performance. Therefore, exploring
parallelism in other dimensions can potentially accelerate the training of convolutional layers.

2.2 REDUCING DATA TRANSFER COST

Different parallelization strategies can also result in significantly different amounts of data move-
ment. Figure 3 shows an example of parallelizing the first fully-connected layer of VGG-16 on two
GPUs in different dimensions. In image parallelism (Figure 3a), each GPU processes a batch of
images and computes the gradient for the entire fully-connected layer. This requires each GPU to
synchronize the gradients for the entire fully-connected layer (shown as the shadow rectangles) after
each step. An alternative approach (Figure 3b) parallelizes in the channel dimension by assigning
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(a) Parallelism in the image dimension.
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(b) Parallelism in the channel dimension.

Figure 3: Different configurations for parallelizing the first fully-connected layer of VGG-16. Rect-
angles with solid lines indicate tensors managed by the local GPU, while rectangles with dot lines
are tensors managed by a remote GPU. The shadow rectangles indicate data transfers for each step.

a subset of the output channels to each GPU. As a result, different GPUs compute the gradients for
disjoint subsets of the fully-connected layer, which eliminates transferring the fully-connected layer
but introduces additional data transfers for input tensors (shown as the shadow rectangles). For this
particular case, using parallelism in the channel dimension reduces data transfer costs by 12×.

2.3 OPTIMIZING PER-LAYER PERFORMANCE

When processing a batch of images, increasing the number of workers does not always improve
overall execution time, due to the data transfer overhead to synchronize gradients across different
workers. Figure 2 shows the per-step training time for three different layers in Inception-v3 for
a batch size of 512 images on up to 16 GPUs. The training time includes forward processing,
backward propagation, and gradient aggregation. The figure shows that different layers in a neural
network may prefer different hardware configurations, and there is no single configuration that is
optimal for all layers. For example, the third layer performs best on 16 GPUs while the last layer
performs best on 4 GPUs. Thus, a parallelism configuration includes both selecting the data dimen-
sions to be parallelized and the number of parallel workers (or, equivalently, the number of subsets
into which the data is partitioned).

3 DEEPA
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Figure 4: Example configurations that parallelize an operation in a single dimension or combinations
of multiple dimensions. The figure shows how each image is partitioned in different configurations.
Each configuration needs a total of 4 workers.

Similar to TensorFlow and PyTorch, DeePa uses computation graphs to describe dependencies be-
tween operations. In a computation graph G = (V,E), each node n ∈ V is an operation (e.g., a
convolution or matrix-multiply), and each directed edge (u, v) ∈ E is a tensor that is an output of u
and an input of v.

One key difference between DeePa and TensorFlow or PyTorch is that each node in the DeePa
computation graph also includes a configuration that describes how the corresponding operation is
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parallelized across different workers. For each parallelizable dimension (i.e., image, height, width,
and channel), the configuration includes an integer that describes the degree of parallelism in that
dimension. For a configuration, the product of the integers over all dimensions is the number of
workers needed to process the operation in that configuration. Figure 4 demonstrates some example
configurations that explore parallelism in a single dimension as well as combinations of different
dimensions. DeePa assumes equal partitioning in each dimension. As a result, each worker receives
the same size input, which provides well-balanced workload distribution in our experiments.

For each node in the computation graph, its configuration describes how the output tensor is di-
vided onto multiple workers. Each worker computes a disjoint subset of the output tensor, and thus
each worker can process the operation in parallel without data dependencies. Given a node’s con-
figuration, DeePa calculates the input sets for each worker and automatically schedules proper data
transfers between operations.

DeePa also provides three additional functions:

• For each node v and configuration c, v.compute(c) estimates the time to process the corre-
sponding operation under the parallelism configuration c. This includes both the forward
processing and back propagation time and is estimated by running the operation in that
configuration multiple times on the device and measuring the average execution time.

• For each edge e = (u, v), e.xfer(cu, cv) estimates the time to transfer the input tensor
e to each worker, using the size of the data to be moved and the known communication
bandwidth. Note that e.xfer(cu, cv) is zero if u and v have the same configuration (i.e.,
cu = cv), in which case no data is transferred. As with compute(), we precompute the
xfer() function for each edge in the graph by calculating the overall data transfer size for
all possible source and destination configurations.

• For each node v and configuration c, v.update(c) estimates the time to update parameters
for the corresponding operation. We use the data transfer time to approximate the update
time, since the data transfer time is much longer than the compute time for updating pa-
rameters. Note that different configurations can have significantly different update time, as
described in Section 2.2.

A global configuration g includes a parallelism configuration for each node in a computation graph:
g(v) describes the parallelism configuration for node v. Using the functions defined above, we can
model the per-step execution time for a computation graph:

Cost(g, (V,E)) =
∑
v∈V

{v.compute(g(v)) + v.update(g(v))}+
∑

e=(u,v)∈E

e.xfer(g(u), g(v)) (1)

Cost(g, (V,E)) estimates the per-step execution time if the computation graph (V,E) is parallelized
using global configuration g. This execution time includes forwarding processing, backward propa-
gation, and gradient aggregation. Equation 1 expresses the problem of finding the configuration for
each individual node as a global optimization problem.

4 FINDING OPTIMAL GLOBAL CONFIGURATIONS
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Figure 5: Performing a node/edge elimination on a computation graph.
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We now describe our algorithm for finding a global configuration that minimizes Equation 1. In
DeePa, each node can select any of a fixed (but large) set of parallelism configurations. Therefore
the number of potential global configurations is exponential in the number of nodes in a computation
graph, which makes it impractical to enumerate all global configurations for deep CNNs such as
VGG-16 and Inception-v3.

However, the CNNs we have seen in practice exhibit strong locality: each node is only connected
to a few nodes with similar depth in a computation graph. Based on this observation, we use the
following two elimination strategies to iteratively simplify the computation graph while preserving
the globally optimal configuration.

Node elimination. For each node w with a single in-edge e1 = (u,w) and a single out-edge
e2 = (w, v), we remove node w and the two edges e1 and e2 from the graph and insert a new edge
e′ = (u, v) (shown in Figure 5a). The xfer() function for node e′ is

e′.xfer(cu, cv) = min
cw
{e1.xfer(cu, cw) + w.compute(cw) + w.update(cw) + e2.xfer(cw, cv)} (2)

Note that because we have precomputed the xfer() function for edges in the original graph, we can
similarly compute the xfer() function for the transitive edge added by a node elimination; i.e., we use
dynamic programming to compute the optimal configuration for node w for every possible choice
of configurations for nodes u and v. For CNNs with a linear computation graph (e.g., AlexNet and
VGG-16), node elimination is sufficient to reduce the original graph to a graph with only 2 nodes.

Edge elimination. For two edges with the same source and destination node (i.e., e1 = (u, v) and
e2 = (u, v)), we can remove e1 and e2 from the graph and insert a new edge e′ = (u, v) (shown in
Figure 5b). The xfer() function for node e′ is

e′.xfer(cu, cv) = e1.xfer(cu, cv) + e2.xfer(cu, cv) (3)
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Figure 6: Iteratively performing node/edge eliminations on an Inception module.

As with node elimination, we compute the xfer() function for e′ using the already computed xfer()
functions for e1 and e2. Figure 6 shows how DeePa iteratively eliminates nodes and edges for an
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Inception-v3 module. The full Inception-v3 computation graph has 120 nodes, which DeePa reduces
to a 2-node graph.

DeePa iteratively uses node and edge eliminations to simplify a computation graph until neither
elimination can be applied. DeePa then enumerates all global configurations for the final graph and
chooses the one that minimizes the Cost function in Equation 1.

After deciding the configuration for each node in the final graph, DeePa then decides the configu-
ration for the eliminated nodes by undoing the node and edge eliminations in reverse order. When
undoing a node elimination for node w, DeePa selects the configuration that minimizes Equation 2
for node w. After undoing all eliminations, DeePa has a configuration for every node in the origi-
nal graph. In Appendix A.1, we prove that our algorithm finds an optimal global configuration. In
our experiments, DeePa finds an optimal configuration for parallelizing the largest CNN we have
worked with, Inception-v3, on 16 GPUs in about 100ms.

5 IMPLEMENTATION

We found that it is non-trivial to parallelize the training of CNNs in the height, width, and channel
dimensions in existing frameworks (e.g., TensorFlow, PyTorch, and Caffe2), and none provides
an interface for controlling per-operation parallelism. We implemented DeePa in Legion (Bauer
et al., 2012), a high-performance parallel runtime for distributed heterogeneous architectures, and
use cuDNN (Chetlur et al., 2014) and cuBLAS (cub, 2016) as the underlying libraries for processing
neural network operations. The following Legion features significantly simplify our implementation
for DeePa. First, Legion supports high-dimensional partitioning that allows us to parallelize any
operation in any combination of the dimensions. Second, Legion allows DeePa to control parallelism
at the granularity of each operation. Third, Legion allows fine-grain control over the placement of
data in memory. Fourth, Legion’s asynchronous tasking model makes it easy to exploit task as well
as image parallelism. We also include two critical optimizations that help achieve good performance.

Overlapping computation with data transfers. DeePa manages the gradients of each operation
separately and transfers an operation’s gradients as long as its back propagation is completed. We
have found that this can effectively hide the data transfer overhead for gradient synchronization.
As a result, the synchronous training performance matches asynchronous training in DeePa, which
allows users to use synchronous training with its better algorithmic efficiency.

Distributing parameter servers. Existing frameworks use parameter servers to store and update
variables for a CNN model. Parameter servers are located in CPU memory in TensorFlow and Py-
Torch. Because DeePa manages the parameters for each operation separately, DeePa can opportunis-
tically distribute the parameter server onto the GPU memories whenever possible. This eliminates
data transfers for operations whose gradients and parameter server are located on the same GPU and
transforms all GPU to CPU copies into faster GPU to GPU copies.

6 RELATED WORK

To the best of our knowledge, DeePa is the first deep learning framework that controls and optimizes
the parallelism of neural networks in all dimensions at the granularity of each operation.

Existing frameworks such as TensorFlow (Abadi et al., 2016), Caffe2 (Caf, 2016), and PyTorch (Pyt,
2017) use image parallelism to distribute the training of CNNs and only explore parallelism in the
image dimension. The standard image parallelism configuration keeps a replica of the entire network
on each worker, which results in large data transfers for synchronizing the gradients in each step.

Mirhoseini et al. (2017) uses model parallelism that assigns each operation to a dedicated processor
for training Inception-v3. It uses a reinforcement learning algorithm to optimize the placement of
each operation on a GPU device. The learned device placement on 4 GPUs achieves 19% speedup
compared to single GPU performance. However, parallelism in each operation is not explored.

Krizhevsky (2014) introduces “one weird trick” (OWT) that combines image parallelism with model
parallelism to accelerate the distributed training of AlexNet, which efficiently reduces the data trans-
fer cost compared to the standard image parallelism configuration. In Section 7.1.2, we show that
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DeePa further reduces the overall data transfers for AlexNet by 3× and the per-step training time by
2.3× compared to OWT.

Goyal et al. (2017) empirically shows no loss of accuracy for training ResNet-50 on the ImageNet
dataset with a large minibatch size of 8192 images3. It uses the standard image parallelism configu-
ration to distribute the training onto 256 GPUs and includes a number of optimizations for reducing
communication overhead. As communication is a bottleneck in distributed deep learning, we be-
lieve our techniques for reducing data transfers can substantially benefit training on large numbers
of GPUs.

7 EVALUATION
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We use AlexNet (Krizhevsky, 2014), VGG-16 (Simonyan & Zisserman, 2014), and Inception-
v3 (Szegedy et al., 2016) as benchmark CNNs and use the ImageNet dataset (Russakovsky et al.,
2015) as the input. For each CNN, we compare the performance of DeePa against TensorFlow, Py-
Torch, and OWT. We implement OWT in DeePa by restricting all convolutional and pooling layers
to use image parallelism and all fully-connected layers to use model parallelism.

7.1 CASE STUDY ON A 16-GPU MACHINE

We conduct a detailed case study for training the three CNNs on a 16-GPU machine, with two Intel
10-core E5-2680 Xeon processors, 256 GB main memory, and 16 NVIDIA Tesla K80 GPUs4. We
use all 16 GPUs for training each CNN model with a minibatch size of 512 images. As a result,
each GPU processes a batch of 32 images in the image parallelism configuration. DeePa uses the
search algorithm in Section 4 to find the optimal parallelism configurations, which requires 0.7, 1.1,
and 4.8 seconds for AlexNet, VGG-16, and Inception-v3, respectively.

Figure 7 shows the synchronous training throughput for a minibatch size of 512 images on 16 GPUs.
When DeePa uses image parallelism for all operations, DeePa achieves competitive performance
compared to the best of TensorFlow and PyTorch. The OWT approach that uses model parallelism
for fully-connected layers speeds up the training throughput by 1.4×, 1.2×, and 1.07× compared to
image parallelism using DeePa. The best configurations found by DeePa achieve 6.5×, 1.9×, and
1.5× speedup compared to TensorFlow and PyTorch.

Three main optimizations in DeePa achieve most of the performance benefit over the other frame-
works. First, DeePa significantly reduces data transfers in each step, as shown in Figure 8. Com-
pared to image parallelism, the OWT approach reduces data transfers by 1.05-8.4×. However, the
best configuration used by DeePa further reduces data transfers by 1.2-2.7× compared to OWT.
Second, the optimization for overlapping computation with data transfers (described in Section 5)
effectively hides data transfer latency and achieves better GPU utilization. The grey bars in Figure 7

3In SGD, the parameters are updated after processing a minibatch of training examples.
4The machine is equipped with 8 GPU cards, each of which has 2 Tesla K80 GPUs.
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Table 2: The cost for different configurations for the first fully-connected of AlexNet.

Configuration # GPU Transfer Compute Update Total Parallelism
Workers Cost Cost Cost Cost Configurations

{n=16, c=1} 16 0 +1.28 +1075 = 1076 Image Parallelism
{n=1, c=16} 16 134.4 +1.28 +0 = 135.7 OWT
{n=1, c=4} 4 33.6 +5.1 +0 = 38.7
{n=1, c=2} 2 16.8 +10.2 +0 = 27.0 DeePa
{n=1, c=1} 1 8.4 +20.4 +0 = 28.8

illustrate DeePa’s performance when the overlap optimization is disabled, which shows that over-
lapping computation with data transfers can improve the training throughput by 10%-30%. Third,
DeePa also improves performance by exploring parallelism in the height and width dimensions (see
Section 7.1.3).

7.1.1 THE BEST CONFIGURATIONS

We describe the best configurations discovered for AlexNet, VGG-16, and Inception-v3 in Sec-
tions 7.1.2 to 7.1.4. The best configurations have several similarities.

First, for the beginning layers with large height/width dimensions and small channel dimensions,
DeePa uses image parallelism on all available GPUs, since the data transfers for synchronizing
gradients are much smaller than the data transfers for moving tensors between operations.

Second, deeper layers in CNNs tend to have smaller height/width dimensions and larger channel
dimensions. As a result, the cost for moving tensors between different operations decreases, while
the cost for synchronizing gradients increases. DeePa adaptively reduces the number of GPU work-
ers for these layers to reduce the expensive data transfers for synchronizing gradients at the cost of
introducing cheaper data transfers for moving tensors.

Third, DeePa uses model parallelism on a small number of GPU workers for fully-connected layers,
because synchronizing gradients and moving tensors are both much more expensive than the com-
pute time for fully-connected layers. DeePa reduces the data transfers for synchronizing gradients
and moving tensors at the cost of using fewer GPUs.

7.1.2 ALEXNET

Configurations: {n=16, c=1, h=1,w=1} {n=1, c=2} {n=1, c=4}

Conv11x11 Pooling Conv5x5 Pooling Conv3x3 Conv3x3 Conv3x3 Pooling Linear Linear Linear Softmax

Figure 9: The global configuration for parallelizing AlexNet on 16 GPU workers.

Figure 9 shows the global configuration for AlexNet on 16 GPU workers. Note that DeePa selects
the parallelism configuration that optimizes the performance for each layer. Table 2 lists the cost for
different configurations of the first fully-connected layer. The standard image parallelism configura-
tion eliminates the cost for transferring the input tensors but introduces additional data transfers for
synchronizing gradients. The OWT approach completely eliminates gradient synchronization at the
cost of replicating the input tensors on every GPU worker. The configuration chosen by DeePa only
uses 2 GPU workers for training the first fully-connected layer, which prolongs the compute time
but significantly reduces the cost for both transferring input tensors and synchronizing gradients. As
a result, DeePa reduces the total cost by 5× compared to other approaches.

DeePa uses image parallelism for all convolutional and pooling layers, because the additional data
transfer cost introduced by transforming configurations outweighs any performance benefits.

7.1.3 VGG-16

Configurations: {n=16, c=1, h=1,w=1} {n=1, c=1, h=2,w=2} {n=1, c=4} {n=1, c=2}

2 x Conv3x3 + Pooling 2 x Conv3x3 + Pooling 3 x Conv3x3 + Pooling 3 x Conv3x3 + Pooling 3 x Conv3x3 + Pooling Linear Linear Linear Softmax

Figure 10: The global configuration for parallelizing VGG-16 on 16 GPU workers.
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Table 3: The cost for different configurations for the last three convolutional layers of VGG-16.

Configuration # GPU Transfer Compute Update Total Parallelism
Workers Cost Cost Cost Cost Configurations

{n=16, c=1, h=1, w=1} 16 0 +15.9 +134.4 = 150.3 Image Parallelism & OWT
{n=8, c=1, h=1, w=1} 8 39.2 +31.8 +67.2 = 138.2
{n=4, c=1, h=1, w=1} 4 39.2 +63.7 +33.6 = 136.5
{ n=1, c=1, h=2, w=2} 4 39.2 +54.7 +33.6 = 127.5 DeePa
{n=2, c=1, h=1, w=1} 2 39.2 +127.4 +16.8 = 183.4

DeePa uses similar configurations for parallelizing the fully-connected layers in VGG-16 (Fig-
ure 10). In addition, DeePa also uses a different configuration to cooperatively accelerate the last
three convolutional layers (the yellow node in Figure 10). Table 3 lists the cost for different par-
allelism configurations for the last three convolutional layers. The configuration with optimal total
cost uses only four GPU workers for the last three convolutional layers to reduce data transfers
for synchronizing gradients. DeePa also exploits parallelism in the height and width dimensions to
further reduce the compute time.

7.1.4 INCEPTION-V3

3 x Conv + Pooling 2 x Conv + Pooling 3 x InceptionA InceptionB 4 x InceptionC InceptionD InceptionE1 InceptionE2 Linear Softmax

Configurations: {n=16, c=1, h=1, w=1} {n=8, c=1, h=1, w=1} {n=1, c=4} {n=1, c=2}

Figure 11: The global configuration for parallelizing Inception-v3 on 16 GPU workers. Each module
is shown as a single node for simplicity.
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Figure 12: The configurations for parallelizing the InceptionE1 module.

The Inception-v3 model has multiple Inception modules (Szegedy et al., 2016). Each module has
several branches of convolutional and pooling layers, which are then concatenated as the output ten-
sor of the module. Figure 11 shows the global configuration for Inception-v3. DeePa uses different
configurations to parallelize different branches for the InceptionE1 module, as shown in Figure 12.
We found that this configuration reduces data transfers by 30% in InceptionE1 and InceptionE2 and
reduces overall data transfers by 20%.

7.2 MINIBATCH SIZE

The minibatch size plays an important rule on the performance of CNNs. Figure 13 compares
DeePa, PyTorch, and TensorFlow with different minibatch sizes. All three networks were trained on
16 Tesla K80 GPUs on a single node, as described in Section 7.1. We were not able to train VGG-16
and Inception-v3 with a minibatch size of 2048 images, because the required metadata size exceeds
the aggregate memory capacity of the 16 GPUs.

Figure 13 shows that, DeePa achieves constant speedups compared to PyTorch and TensorFlow for
various minibatch sizes. In particular, DeePa achieves 4.6-6.5×, 1.6-1.9×, and 1.2-1.5× speedup
for AlexNet, VGG-16, and Inception-v3, respectively.

7.3 MULTI-NODE RESULTS

We evaluate the scalability of different frameworks by comparing their training throughput with
different number of GPUs and compute nodes. The experiments were performed on a GPU cluster
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Figure 13: Performance comparisons among DeePa, PyTorch, and TensorFlow with different mini-
batch sizes.
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Figure 14: Performance results for DeePa, PyTorch, and TensorFlow on up to 4 nodes. We perform
weak-scaling, where each GPU worker processes a batch of 32 images in every iteration. We use all
4 GPUs on each node in the last two subfigures.

with 4 nodes, each of which is equipped with two Intel 10-core E5-2600 Xeon processors, 256G
main memory, and four NVIDIA Tesla P100 GPUs. GPUs on the same node are connected by
NVLink, and nodes are connected over 100Gb/s EDR Infiniband.

Figure 14 shows the performance comparison among DeePa, PyTorch, and TensorFlow for weak-
scaling. DeePa achieves competitive performance compared to PyTorch and TensorFlow for training
on a single GPU, in which all three frameworks place all operations on a single GPU. For training
on 4 GPUs on a single node, DeePa achieves 3.1×, 1.6×, and 1.3× speedup for AlexNet, VGG-16,
and Inception-v3, respectively. DeePa achieves even better performance speedups for trainings on
multiple nodes, where the data transfer time becomes a larger component of the per-iteration training
time. For training on 4 nodes, DeePa achieves 8.1×, 3.2×, and 1.8× speedup for AlexNet, VGG-16,
and Inception-v3, respectively.

8 CONCLUSION

We have presented DeePa, a deep learning framework that explores parallelism in all parallelizable
dimensions to accelerate the training of CNNs. DeePa optimizes the parallelism configuration cho-
sen at the granularity of individual layers. DeePa achieves up to 6.5× for training CNNs and reduces
overall data transfers by up to 23× compared to state-of-the-art deep learning frameworks.
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A APPENDIX

A.1 NODE AND EDGE ELIMINATION

We prove the correctness of the node and edge eliminations in Section 4. In particular, we prove that
after applying node and edge eliminations, the modified graph has the same optimal configuration
as the original graph.

A.1.1 NODE ELIMINATION

For a given computation graph G = (V,E), applying a node elimination on w requires w having
a single in-edge e1 = (u,w) and a single out-edge e2 = (w, v). The node elimination results in a
modified graph G′ = (V ′, E′), where V ′ = V − {w}, E′ = E − e1 − e2 + e′, and e′ = (u, v).
Theorem 1. Consider graphs (V,E) and the result of a single node elimination (V ′, E′). Then
an optimal configuration of V,E) is also an optimal configuration of (V ′, E′), and an optimal
configuration of (V ′, E′) is extensible to a an optimal configuration of (V,E).

11

https://pytorch.org
https://pytorch.org
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1706.04972
http://arxiv.org/abs/1706.04972
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842


Under review as a conference paper at ICLR 2018

Proof. The Cost function is defined in Equation 1. Let g be any configuration. We first compute the
difference between Cost(g, (V,E)) and Cost(g, (V ′, E′)).

Cost(g, (V,E))− Cost(g, (V ′, E′))

=
∑
v∈V

{v.compute(g(v)) + v.update(g(v))}+
∑

e=(u,v)∈E

e.xfer(g(u), g(v))

−
∑
v∈V ′

{v.compute(g(v)) + v.update(g(v))}+
∑

e=(u,v)∈E′

e.xfer(g(u), g(v))

=w.compute(g(w)) + w.update(g(w))

+ e1.xfer(g(u), g(w)) + e2.xfer(g(w), g(v))− e′.xfer(g(u), g(v))

(4)

Now assume g is an optimal configuration for (V,E). Then we have

w.compute(g(w)) + w.update(g(w)) + e1.xfer(g(u), g(w)) + e2.xfer(g(w), g(v))
=min

cw
{w.compute(cw) + w.update(cw) + e1.xfer(g(u), cw) + e2.xfer(cw, g(v))} (5)

Therefore, g is an optimal configuration of (V ′, E′). For the other direction, note that if g is an
optimal configuration of (V ′, E′), then it can be extended to an optimal configuration of (V,E) by
adding the node w with the same minimal assignment.

A.1.2 EDGE ELIMINATION

For a computation graph G(V,E), applying an edge elimination on e1 = (u, v) and e2 = (u, v)
results in a modified graph G′ = (V,E′), where E′ = E − e1 − e2 + e′ and e′ = (u, v). We prove
that Cost(g, (V,E)) = Cost(g, (V,E′)) for any global configuration g of (V,E).

Theorem 2. For any global configuration g of graph G = (V,E), Cost(g, (V,E)) =
Cost(g, (V,E′)), where (V,E′) is the modified graph of (V,E) after an edge elimination.

Proof. We compute the difference between Cost(g, (V,E)) and Cost(g, (V,E′)).

Cost(g, (V,E))− Cost(g, (V,E′))

=e1.xfer(g(u), g(v))− e2.xfer(g(u), g(v)) + e′.xfer(g(u), g(v))
=0

(6)

The last equation uses Equation 3.

A.2 RELATED WORK ON OVERLAPPING COMMUNICATION WITH DATA TRANSFER

The overlap optimization in Section 5 is motivated by Goyal et al. (2017), which performs gradient
aggregation in parallel with back propagation to scale synchronous training to large number of GPUs.
We extend their design and implementation by also enabling the optimization for asynchronous
training in DeePa.

A.3 PROFILING RESULTS

We show profiling results for visualizing the performance bottlenecks in different parallelism ap-
proaches. The experiment was performed on a single node with four Tesla P100 GPUs (as described
in Section 7.3). We enable overlapping computation with data transfers (described in Section 5) in
this experiment.

Figure 15 shows the profiling results for training VGG-16 on 4 GPUs with different parallelism
configurations. Note that DeePa with image parallelism achieves 10% higher training throughput
compared to PyTorch and TensorFlow, as shown in Figure 14. Figure 15a shows that all GPUs are
highly utilized during forward and backward passes, as indicated by the tight packing of tasks in
the timeline. However, the image parallelism approach requires moving 4GB of metadata in every
iteration, which cannot be fully overlapped with back propagation, therefore the image parallelism
approach has a performance gap between iterations (shown as the white space on the GPU timelines).
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Back Propagation Forward Update 

(a) Image parallelism.

Forward Back Propagation 
Update 

(b) DeePa’s parallelism configuration.

Figure 15: Timelines for training VGG-16 with a minibatch size of 128 images on 4 GPUs. The first
horizontal line in each figure shows the overall GPU utilization at different timesteps, and each of
the following lines shows the run times for individual operations on each GPU.

Figure 15b shows the profiling of the optimal parallelism configuration chosen by DeePa, which
uses image parallelism on 4 GPUs for all convolutional layers and pooling layers and uses model
parallelism on 2 GPUs for the fully connected layers. Therefore, the training with the optimal
configuration includes data transfers for each fully connected layers, which adds small performance
gaps at the end of the forward pass and the beginning of the backward pass (shown as the small
white space on the GPU timelines). However, the optimal configuration reduces the per-iteration
data transfers from 4GB to 490MB, which effectively hides data transfer overhead and achieves
better GPU utilization. As a result, the optimal configuration reduces the per-iteration training time
from 0.34 seconds to 0.24 seconds.

A.4 IMANGENET-22K

We compare the performance of DeePa, PyTorch, and TensorFlow on the ImageNet-22K
dataset (Russakovsky et al., 2015) that contains 21,841 different categories (the ImageNet dataset
used in Section 7 contains 1,000 catagories). The last fully-connected layer in AlexNet, VGG-16,
and Inception-v3 originally have 1,000 neurons followed by a 1,000-way softmax layer. To train
the three networks on the ImageNet-22K dataset, we change the last fully-connected layer to have
21,841 neurons and use a 21,841-way softmax layer at the end. The modified networks were trained
on 16 Tesla K80 GPUs on a single node with a minibatch size of 512 images.

Figure 16 compares the training throughput and per-iteration data transfers among DeePa, Py-
Torch, and TensorFlow on the ImageNet and ImageNet-22K datasets. Figure 16a shows that, on
the ImageNet-22K dataset, the training throughput of PyTorch and TensorFlow is reduced by 20%-
45%, while DeePa’s throughput falls off by 3%, compared to training on the original ImageNet
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Figure 16: Performance comparisons among DeePa, PyTorch, and TensorFlow on the ImageNet-22k
dataset.

dataset. Figure 16b compares the per-iteration data transfers between image parallelism and the
global configurations used by DeePa. Using image parallelism increases the data transfers in each
iteration by 5-10GB, while DeePa only increases the per-iteration data transfers by 40MB. As a
result, for training on the ImageNet-22K dataset, DeePa reduces the per-iteration data transfers by
3.7-44.5× compared to image parallelism.
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