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ABSTRACT

Large Language Models (LLMs) often undergo fine-tuning to adapt to new tasks.
However, recent studies have shown that such fine-tuning inadvertently compro-
mises their safety alignments. This paper investigates the challenges of preserving
safety during fine-tuning and provides guidelines to mitigate safety degradation.
We systematically evaluate safety degradation in 11 LLMs, revealing that certain
LLMs consistently exhibit higher safety degradation across all datasets, suggest-
ing that inherent model characteristics influence safety robustness. We explore
two training procedures with three different detoxification methods to mitigate
safety degradation. Our analysis shows that the ensemble procedure significantly
decreases safety degradation, indicating a crucial relationship between toxicity
and safety robustness. To elucidate the underlying interplay between detoxifica-
tion and safety degradation during fine-tuning, we conduct subspace similarity
analysis. Results reveal that the consecutive training procedure exhibits higher
similarity between subspaces of detoxification weight and task-specific weight,
explaining its ineffectiveness in mitigating safety degradation. This study pro-
vides critical insights into preserving LLM safety, highlighting the importance of
separating safety-related and task-specific parameters.

1 INTRODUCTION

In recent years, powerful LLMs such as Llama3 (AI@Meta, 2024), Claude 1, and GPT-4 (Ope-
nAI, 2024) have served as foundations for various AI applications. To alleviate the potential harm
posed by unsafe responses from LLMs, several safety alignment approaches have been proposed
to train LLMs to reject harmful requests, including safety-supervised fine-tuning, reinforcement
learning from human feedback (RLHF), and direct preference optimization (DPO) (Rafailov et al.,
2023). However, recent studies show that downstream fine-tuning LLMs can significantly compro-
mise their safety alignments even when the training data come from innocuous instruction datasets
such as Alpaca (Taori et al., 2023). This poses a serious safety issue for people who rely on fine-
tuning LLMs for specific use cases, especially when fine-tuning LLMs to perform customized tasks
or inference on private data. Recent studies (Yi et al., 2024; Bhardwaj et al., 2024) have proposed to
perform safety realignment following downstream fine-tuning, showing effectiveness in recovering
safety alignments, while also revealing potential trade-offs between LLMs’ safety and downstream
task performance. However, there remains a need for a more comprehensive understanding of safety
degradation patterns across different LLMs and exploration of mitigation strategies. This paper aims
to address these challenges by systematically evaluating different LLMs, exploring effective mitiga-
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tion strategies through various detoxification procedures, and examining the underlying mechanisms
via subspace similarity analysis. Our goal is to provide crucial insights into preserving LLM safety
alignments and offer practical guidelines for mitigating safety risks in fine-tuned models. In sec-
tion 2, we evaluate 11 Chinese LLMs’ safety degradation across 5 safety evaluation datasets. As
expected, all models exhibit safety degradation after fine-tuned with the Chinese Alpaca dataset.
Interestingly, some LLMs consistently show higher degradation across different evaluation datasets,
suggesting that an LLM’s inherent characteristic influences its extent of degradation in subsequent
fine-tuning. Following this observation, in section 3 we conduct detoxification on 3 selected LLMs
to investigate the relationship between toxicity and safety degradation. We adopt two training pro-
cedures to perform detoxification and downstream fine-tuning: Continual learning consecutively
performs detoxification and downstream fine-tuning on a LLM; Ensemble individually performs
detoxification and downstream fine-tuning on an LLM, and merge the trained weights. Results show
that the ensemble procedure successfully preserves the safety alignment, indicating the correlation
between toxicity and safety degradation. To investigate why the continual procedure fails to miti-
gate safety degradation, in section 4 we show that this performance gap stems from the similarity
between the subspace of detoxification weight and that of downstream fine-tuning weight. Empirical
analysis shows that Pearson’s correlation between subspace similarity and safety degradation is up
to 0.75 on average. Our contributions are thus threefold:

• Comprehensive evaluation of safety degradation in LLM customization: We conduct
an extensive assessment of safety degradation across multiple LLMs. This evaluation quan-
tifies the extent to which customization with innocuous instruction datasets can compro-
mise LLMs’ safety alignments, providing valuable insights into the widespread nature of
safety degradation in LLM fine-tuning processes.

• Investigation of the relationship between toxicity and safety degradation: Through
detoxification experiments on selected LLMs, we explore the connection between an
LLM’s inherent toxicity and its susceptibility to safety degradation during fine-tuning. The
success of the ensemble procedure in preserving safety alignment indicates how toxicity
influences safety robustness.

• Analysis of subspace similarity as a factor in safety degradation: We analyze the
subspace similarity between detoxification and downstream fine-tuning weights, finding
a strong correlation with safety degradation. This highlights the importance of training
separate weights (i.e. dissimilar in subspaces) for safety alignment and downstream appli-
cations. Our findings provide practical guidelines for customizing LLMs for applications
while preserving safety alignments.

1.1 RELATED WORK

Fine-tuning attacks and safety degradation While LLMs often undergo safety alignment pro-
cedures to mitigate the misuse of AI, recent studies (Qi et al., 2024; Yang et al., 2023; Bhardwaj
& Poria, 2023a) highlight its vulnerabilities by exposing the unalignment issues in LLMs. Yang
et al. (2023) and Bhardwaj & Poria (2023a) show that fine-tuning LLMs on only a few maliciously
crafted samples can easily break safety alignments. Qi et al. (2024) further explores three different
risk levels, including harmful instructions, identity-shifting instructions, and benign instructions.
Disconcertingly, they observe safety degradation after fine-tuning with instructions from any one
of the levels. In this study, we refer to the result of safety unalignment as safety degradation. Our
research delves deeper into this phenomenon, aiming to understand the underlying factors that cause
safety alignments to be disrupted by fine-tuning processes. Wei et al. (2024) identifies safety-critical
regions in LLMs. Additionally, they show that LLMs remain vulnerable to fine-tuning attacks even
when these regions are frozen. Bhardwaj et al. (2024) proposes to realign LLM safety after fine-
tuning. They add a safety vector to a fine-tuned LLM to compensate for the compromised safety
and employ Drop and REscale to improve the safety vector’s effectiveness.

Detoxification approaches Several approaches have been proposed to mitigate LLM toxicity. One
line of research focuses on modifying the parameters of LLMs: Wang et al. (2022) explores domain-
adaptive training to reduce toxicity. Lu et al. (2022) introduces an RL algorithm to train LLM to
unlearn toxic behaviors. Ouyang et al. (2022) utilize RLHF to teach LLMs to generate content
aligned with human preferences. Zhang et al. (2024b) identify the potential issue of LLM’s un-
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awareness of goal priority. They introduce goal prioritization in supervised fine-tuning, successfully
decreased the jailbreak success rate. Rafailov et al. (2023) proposes direct preference optimization
(DPO), eliminating the complex and unstable procedure in RLHF while effectively aligning with
human preferences.

Toxicity measurement and safety evaluation Different pre-trained large language models are
trained on data from various sources, which may exhibit significant differences in toxicity, ultimately
affecting the behavior of the models. Many toxicity evaluation benchmark datasets (de Wynter et al.,
2024; Jain et al., 2024) and detection tools (e.g. Perspective API 2) assess a model’s toxicity by
providing it with toxic prompts from datasets and evaluating its responses or completions. These
toxicity benchmark datasets often contain content related to violence, racism, pornography, illegal
activities, and other offensive material, designed to provoke models into completing these toxic
sentences. On the other hand, safety alignment is an important procedure in model training that
reinforces the models and ensures they reject harmful requests. Recent safety benchmark datasets
and studies (Bhardwaj & Poria, 2023b; Chen et al., 2022; Wang et al., 2023; Zhang et al., 2023;
Hartvigsen et al., 2022) can evaluate whether the safety-aligned models effectively maintain their
safety standards. Generally, safety usage policies restrict models from providing responses on the
following topics: Illegal Activities, Hate Speech and Violence, Personal and Sensitive Information,
Self-Harm and Dangerous Behavior, Misinformation, and Adult Content.

2 EVALUATING SAFETY DEGRADATION

In this section, we systematically measure different LLMs’ safety degradation. For a target LLM M ,
we prompt it with different harmful questions qi sampled from dataset D, and utilize an evalua-
tor Eval to classify its response as harmful or safe:

Eval(M(qi)) =

{
1, if M(qi) is harmful
0, if M(qi) is safe

(1)

Afterward, we follow Qi et al. (2024) to fine-tune M on downstream tasks, resulting in a customized
LLM Mft. Finally, we evaluate Mft with aforementioned questions and evaluator to quantify its
degradation:

Degradation =
Hpost −Hpre

Hpre
,where

Hpre =
1

|D|
∑
qi∈D

Eval(M(qi))

Hpost =
1

|D|
∑
qi∈D

Eval(Mft(qi))

(2)

2.1 EXPERIMENT SETUP

Selected models We aim to perform evaluations on LLMs with various degrees of toxicity. Since
continual pre-training of an LLM on different corpus can introduce different toxicity to the orig-
inal LLM, we select 11 widely used Chinese LLMs open-sourced on HuggingFace as evaluation
targets. These LLMs are all continually pre-trained from either Llama2-7B, Llama3-8B, or Mistral-
7B. Please refer to Appendix A.1 for the source of selected LLMs.

Safety evaluation datasets To comprehensively examine LLMs’ safety in different scenarios, we
choose 5 widely used and open-sourced safety evaluation datasets: HEx-PHI (Qi et al., 2024), Chi-
nese Do-Not-Answer(CDNA) (Wang et al., 2024), ForbiddenQuestions(FQ) (Shen et al., 2024),
CatQA (Bhardwaj et al., 2024), and SimpleSafetyTests(SST) (Vidgen et al., 2023). The selection
is based on the popularity or availability in Chinese. For datasets that are not in Chinese, we use
Google Translate to translate them into Chinese. All of the selected datasets consist of questions
that specifically target eliciting harmful responses. For the statistics and information on the datasets,
please refer to table 1.

2https://github.com/conversationai/perspectiveapi
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Table 1: Statistics and information of selected safety evaluation datasets

Dataset Number of Queries Language

HEx-PHI 330 En
CDNA 3041 Zh

FQ 390 En
CatQA 550 En, Zh, Vi

SST 100 En

Evaluator We employ ShieldLM (Zhang et al., 2024a), which outperforms Llama Guard 2 (Llama
Team, 2024) and GPT-4 in identifying harmful responses, to automatically classify LLMs’ generated
responses. The generation parameters can befound in Appendix A.2

Downstream fine-tuning For training dataset, we simulate Risk Level-3 in Qi et al. (2024) by
adopting Chinese Alpaca dataset 3, which consists of 45818 innocuous instruction-response pairs.
For training, we conduct supervised fine-tuning M with LoRA for 1 epoch. The detailed training
parameters are detailed in appendix A.3

2.2 RESULT AND DISCUSSION

The degradation result is shown in Table 2. Regardless of the model family, all LLMs exhibit
safety degradation after fine-tuning with the Chinese Alpaca dataset. In addition, Taiwan-LLM-7B-
v2.1-chat and Llama-3-Taiwan-8B-Instruct consistently degrade the least across 4 different datasets,
while Llama-3-8B-Instruct-Chinese and Mistral-7B-v0.3-Chinese-Chat degrade the most across 3
different datasets. This suggests that an LLM’s inherent characteristic may influence its extent
of safety degradation. Noticeably, the model family doesn’t hint at the extent of safety degrada-
tion: within the Llama 3-8B family, Llama-3-8B-Instruct-Chinese degrades the most while Llama-
3-Taiwan-8B-Instruct degrades the least. To study whether an LLM’s inherent toxicity contributes
to its safety degradation, in section 3 we detoxify LLMs to examine whether detoxification can
mitigate safety degradation.

Table 2: Safety degradation of different LLMs across different evaluation datasets. Column-wise,
two LLMs with lowest degradation are highlighted in bold text, while the highest are highlighted
with underlines.

Model
Safety Evaluation Dataset

CDNA FQ HEx-PHI CatQA SST

Atom-7B-Chat 1.03 1.64 1.47 6.90 3.81
chinese-alpaca-2-7b-rlhf 1.50 2.60 1.94 3.39 2.38
Breeze-7B-Instruct-v0 1 0.94 1.49 1.09 2.22 1.67

Taiwan-LLM-7B-v2.1-chat 0.08 0.52 0.33 0.37 0.02
TAIDE-LX-7B-Chat 1.43 1.67 0.93 3.63 1.79
firefly-llama2-7b-chat 0.24 0.52 0.01 1.34 0.55

llama-3-chinese-8b-instruct 0.90 1.08 0.55 1.61 2.67
Llama-3-Taiwan-8B-Instruct 0.09 0.16 0.82 0.89 0.54
Llama-3-8B-Instruct-Chinese 1.12 6.62 9.60 9.70 4.05

Chinese-Mistral-7B-Instruct-v0.1 1.28 0.91 1.07 0.99 2.12
Mistral-7B-v0.3-Chinese-Chat 2.12 3.30 4.92 5.33 2.73

3https://huggingface.co/datasets/silk-road/alpaca-data-gpt4-chinese
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3 DETOXIFICATION

This section aims to study whether detoxification can mitigate safety degradation. Formally, given
a prompt X , a target LLM M generate completion Y with the probability PM (Y |X). The goal of
detoxification is to fine-tune M to minimize PM (Ytoxic|X), the probability of PM generating toxic
content given X .

3.1 EXPERIMENT SETUP

We adopt two different procedures for detoxification and subsequent downstream fine-tuning.

• continual learning: This procedure consecutively performs detoxification followed by
downstream fine-tuning on the target LLM.

• ensemble: This procedure separately performs detoxification and downstream fine-tuning,
then merges the trained weights during inference.

We utilize RTP-LX (de Wynter et al., 2024), a multilingual toxic prompt dataset, as our detoxifi-
cation dataset. Each prompt is accompanied by both toxic and benign completions. Based on this
dataset, we select three methods to perform detoxification while ensuring the generalization of our
results.

• supervised fine-tuning: Given a toxic prompt, we directly fine-tune the target LLM to
minimize the loss on benign completions.

• proximal policy optimization: Given a toxic prompt, we fine-tune the target LLM to
maximize the reward, where the reward is the negative value of the toxicity of its own
completion. The rewards are generated using the Perspective API.

• direct preference optimization: DPO fine-tunes the target LLM to increase the relative log
probability of preferred responses over dispreferred ones. In this case, given a toxic prompt,
the preference data consists of the corresponding (toxic completion, benign completion)
pair.

Due to resource constraints, we only conduct experiments on three different LLMs. The training is
carried out using the TRL (von Werra et al., 2020) framework. For all LLMs, we train LoRA until
the loss converges.

3.2 RESULTS AND DISCUSSION

We first verify the success of detoxification by utilizing the Perspective API to score the target
LLMs’ completions given the toxic prompts sampled from RTP-LX. The toxicity levels before and
after detoxification are shown in Table 3. All three methods successfully detoxify the LLMs, result-
ing in less toxic completions. Additionally, DPO consistently demonstrates lower toxicity across
different LLMs.

Table 3: Toxicity of the LLMs before and after detoxification. Original column represents toxicity
before detoxification, while SFT, DPO, and PPO columns represent toxicity after applying differ-
ent detoxification methods. Note that continual procedure yields the same detoxification wights as
ensemble procedure.

Model Original SFT DPO PPO

Atom-7B-Chat 0.2576 0.1376 0.0752 0.1017
chinese-alpaca-2-7b-rlhf 0.2655 0.1330 0.0807 0.1215

llama-3-chinese-8b-instruct 0.2649 0.1409 0.0986 0.0793

After detoxification, we perform downstream fine-tuning on the target LLMs. The experiment setup
for downstream fine-tuning is the same as described in Section 2.1. The results of safety degradation
are presented in Table 4.
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Table 4: The safety degradation after detoxification. For one LLM and one dataset, the highest
degradation across different procedures and methods is highlighted in bold text, while the lowest is
highlighted with underline. The original row represents the LLM without detoxification.

Setting Safety evaluation dataset

Model Procedure-Method CDNA FQ HEx-PHI CatQA SST

Atom-7B-Chat

Original 1.03 1.64 1.47 6.90 3.81
Continual-SFT 1.99 3.34 2.33 10.63 2.59
Ensemble-SFT 0.85 1.31 0.56 2.23 0.56
Continual-DPO 3.30 5.08 6.90 9.77 14.20
Ensemble-DPO 1.46 2.39 3.09 2.71 5.50
Continual-PPO 1.08 1.35 1.30 2.22 2.52
Ensemble-PPO 0.55 0.61 0.59 0.94 1.13

chinese-alpaca-2-7b-rlhf

Original 1.50 2.60 1.94 3.39 2.38
Continual-SFT 2.90 7.39 6.01 8.08 10.23
Ensemble-SFT 1.05 2.77 1.95 1.94 3.50
Continual-DPO 2.37 3.92 3.12 6.29 12.37
Ensemble-DPO 0.84 1.46 0.88 2.30 2.47
Continual-PPO 2.37 3.05 2.95 6.49 2.03
Ensemble-PPO 1.08 1.05 1.03 2.46 0.63

llama-3-chinese-8b-instruct

Original 0.90 1.08 0.55 1.61 2.67
Continual-SFT 1.98 6.03 2.27 8.87 14.66
Ensemble-SFT 0.58 1.62 0.79 2.38 4.00
Continual-DPO 1.41 1.52 1.49 1.43 1.28
Ensemble-DPO 0.37 0.29 0.56 -0.36 0.07
Continual-PPO 1.30 1.35 0.94 2.14 3.10
Ensemble-PPO 0.28 0.33 0.26 0.60 1.12

First, regardless of the detoxification method, the ensemble procedure consistently mitigates safety
degradation. Notably, the degradation value is even negative for llama3-chinese-8b-instruct when
using the ensemble-DPO procedure. On the other hand, the continual procedure fails to maintain
safety alignment, with degradation levels higher than those of the model without detoxification.
Upon careful examination, we observe that the harmfulness of the LLM (Hpre) decreases imme-
diately after detoxification. However, following downstream fine-tuning, the harmfulness Hpost

rises back to the same level as the model without detoxification Hori, leading to a high degradation
value. We hypothesize that in the continual procedure, downstream fine-tuning may overwrite the
detoxification weights, thereby diminishing the detoxification effect. Overall, the results indicate
that toxicity plays a crucial role in safety degradation, and through detoxification, it is possible to
preserve safety alignment as intended.

4 SUBSPACE SIMILARITY ANALYSIS

In this section, we specifically analyze why the continual procedure fails to preserve safety align-
ment. Previous study (Saha et al., 2021) shows that learning new tasks by taking gradient steps in the
orthogonal direction to the gradient subspaces of past task can mitigate the catastrophic forgetting
problem. Inspired by this, we hypothesize that the failure may stem from catastrophic forgetting –
The downstream fine-tuning weight update, ∆WFT (the weight difference before and after down-
stream fine-tuning), interferes with the detoxification weight update, ∆WDT (the weight difference
before and after detoxification).

To verify this hypothesis, we conduct a subspace angle analysis of the respective weight updates.
This approach allows us to quantify the degree of overlap between the parameter spaces affected
by each process, namely detoxification and downstream fine-tuning. We first compute the singular
vectors of each weight update matrix using Singular Value Decomposition (SVD). To focus on
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Figure 1: Subspace similarity between ∆WFT and ∆WDT across layers of Atom-7B-Chat, consid-
ering only the weight update of the value projection module.

the most influential directions, we retain only the top r left singular vectors that preserve 90% of
the variance. This process yields UDT and UFT for ∆WDT and ∆WFT respectively. We then
calculate the similarity between the subspaces spanned by UDT and UFT using the principal angles
method (Åke Björck & Golub, 1973). For two subspaces represented by orthonormal bases UDT

and UFT , we compute:

similarity =
1

k

k∑
i=1

cos θi =
1

k

k∑
i=1

σi(U
T
DTUFT ) (3)

where k is the minimum of the dimensions of UDT and UFT , and σj(U
T
DTUFT ) are the j-th singular

value of UT
DTUFT . This method provides a similarity score ranging from 0 to 1, with higher values

indicating greater overlap between the subspaces.

4.1 RESULTS AND DISCUSSION

The subspace similarity between ∆WFT and ∆WDT is plotted in Figure. 1. For simplicity, we only
plot for Atom-7B-Chat value projection module. For complete results, please refer to Appendix A.4.
We observe that the continual procedure exhibits significantly higher subspace similarity compared
to the ensemble procedure. This indicates that, in the continual procedure, the downstream fine-
tuning weight frequently interferes with the detoxification weight, which helps explain why the
continual approach often fails to maintain safety alignments. To quantify the correlation between
subspace similarity and safety degradation, we average the similarity across layers and calculate the
Pearson correlation coefficient. The results are shown in Table 5. We find a high correlation between
subspace similarity and safety degradation regardless of the modules and evaluation datasets, all ex-
ceeding 0.65. When the subspaces are more similar between detoxification weight and downstream
fine-tuning weight, it is more prone to result in high safety degradation. These results underscore
the need for more sophisticated methods, ie. ensuring the downstream fine-tuning parameters have
dissimilar projections with safety-related parameters, to preserve safety properties while adapting
LLMs to new tasks.

5 CONCLUSION

In conclusion, our work provides insights into the safety degradation of LLMs during fine-tuning and
identifies effective strategies to mitigate this issue. Our comprehensive evaluation of safety degra-
dation reveals that safety degradation is a pervasive problem. Importantly, our finding also suggests
that inherent model characteristics play an important role in LLM safety robustness. Through detox-
ification experiments with the ensemble procedure, we demonstrate that reducing an LLM’s toxicity
can indeed mitigate safety degradation. Finally, the subspace similarity analysis provides a mech-
anistic explanation for the differing outcomes of the ensemble and continual procedures. The high
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Table 5: Correlation between subspace similarity and safety degradation. For one module, the
subspace similarity is averaged across different layers. Then Pearson correlation coefficient is cal-
culated between LLMs’ subspace similarity and their safety degradation evaluated with 5 different
datasets.

Dataset
Module

value projection query projection

CDNA 0.8172 0.7100
FQ 0.8201 0.7661

HEx-PHI 0.6781 0.6470
CatQA 0.8000 0.8300

SST 0.7300 0.6700

correlation between subspace similarity and safety degradation offers insights into why certain ap-
proaches are more effective in maintaining safety alignments during customization. These findings
underscore the need for careful consideration of safety preservation techniques when adapting LLMs
to specific tasks or domains. Our findings suggest that maintaining separate parameter spaces for
safety-related and task-specific learning could be a promising direction, providing practical guide-
lines for preserving safety alignments during fine-tuning.

6 LIMITATION

In the experiment focused on evaluating the toxicity of different models, due to the limited avail-
ability of Chinese resources, we exclusively use RTP-LX as our benchmark and rely solely on the
Perspective API as our toxicity evaluation metric. Despite the limitations of using a single bench-
mark and evaluation metric, our analysis remains reasonable. We have carefully ensured that RTP-
LX includes a diverse range of toxic prompts, allowing it to reflect various aspects of LLM toxicity
comprehensively. Additionally, the Perspective API covers a wide range of toxicity detection types,
which enhances the robustness of our analysis.

In Section 3 and subsequent experiments, we only select 3 models for analysis due to resource
constraints. However, we select LLMs that are continually pre-trained from two different base
models (i.e. Llama-2-7B and Llama-3-8B). The selected LLMs’ pre-training corpus and subsequent
instruction tuning and safety alignment datasets are dissimilar. Thus, we believe the conclusions we
draw from these experiments can be reasonably extended to other LLMs.

Finally, although ShieldLM’s performance is comparable to GPT-4 and Llama Guard 2, automatic
assessment has its own biases. Future research could be conducted with human annotations or more
robust assessment methods.
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A APPENDIX

A.1 SOURCE OF SELECTED LLMS

For accessibility and reproducibility, we select LLMs that are popular and available on HuggingFace.
Below we list the source of selected LLMs

• Atom-7B-Chat: https://huggingface.co/FlagAlpha/Atom-7B-Chat
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• chinese-alpaca-2-7b-rlhf:https://huggingface.co/hfl/
chinese-alpaca-2-7b-rlhf

• Breeze-7B-Instruct-v0 1:https://huggingface.co/MediaTek-Research/
Breeze-7B-Instruct-v0_1

• Taiwan-LLM-7B-v2.1-chat:https://huggingface.co/yentinglin/
Taiwan-LLM-7B-v2.1-chat

• TAIDE-LX-7B-Chat:https://huggingface.co/taide/TAIDE-LX-7B-Chat
• firefly-llama2-7b-chat:https://huggingface.co/YeungNLP/
firefly-llama2-7b-chat

• Chinese-Mistral-7B-Instruct-v0.1:https://huggingface.co/itpossible/
Chinese-Mistral-7B-Instruct-v0.1

• llama-3-chinese-8b-instruct:https://huggingface.co/hfl/
llama-3-chinese-8b-instruct

• Chinese-Llama-2-7b:https://huggingface.co/LinkSoul/
Chinese-Llama-2-7b

• Llama-3-Taiwan-8B-Instruct:https://huggingface.co/yentinglin/
Llama-3-Taiwan-8B-Instruct

• Llama-3-8B-Instruct-Chinese:https://huggingface.co/Rookie/
Llama-3-8B-Instruct-Chinese

• Mistral-7B-v0.3-Chinese-Chat:https://huggingface.co/shenzhi-wang/
Mistral-7B-v0.3-Chinese-Chat

A.2 GENERATION PARAMETERS

The generation parameters for selected LLMs differ depending on the probing tasks

• For probing safety, we use the same parameters for all LLMs:
max new tokens=128
do sample=True
temperature=1.0
top k=50
repetition penalty=1.0
length penalty=1
num return sequences=1

• For probing toxicity, we follow the generation parameters in RTP-LX (de Wynter et al.,
2024):
max new tokens=50
temperature=0.7
top p=1.0
do sample=True
num return sequences=5

We use greedy decoding to prompt ShieldLM for evaluation.

A.3 TRAINING PARAMETERS

The training parameters differ for downstream fine-tuning and detoxification

• For downstream fine-tuning, we use the same parameters for all LLMs:

– LoRA parameters:
r=8
lora alpha=32
lora dropout=0
bias=”none”
target modules=[q proj,v proj]

– Traning hyperparameters:
epoch=1
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batch size=24
learning rate=1e-4

A.4 COMPLETE RESULTS OF SUBSPACE SIMILARITY

Please refer to Figure 2, 3, 4, 5, and 6

Figure 2: Subspace similarity between ∆WFT and ∆WDT across layers of Atom-7B-Chat, only
the weight update of query projection module is considered.

Figure 3: Subspace similarity between ∆WFT and ∆WDT across layers of chinese-alpaca-2-7b-
rlhf, only the weight update of query projection module is considered.
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Figure 4: Subspace similarity between ∆WFT and ∆WDT across layers of chinese-alpaca-2-7b-
rlhf, only the weight update of value projection module is considered.

Figure 5: Subspace similarity between ∆WFT and ∆WDT across layers of llama-3-chinese-8b-
instruct, only the weight update of query projection module is considered.

Figure 6: Subspace similarity between ∆WFT and ∆WDT across layers of llama-3-chinese-8b-
instruct, only the weight update of value projection module is considered.
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