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A Simple but Effective Approach for Unsupervised
Few-Shot Graph Classification

Anonymous Author(s)

ABSTRACT
Graphs, as a fundamental data structure, have proven efficacy in

modeling complex relationships between objects and are therefore

found in wide web applications. Graph classification is an essential

task in graph data analysis, which can effectively assist in extracting

information and mining content from the web. Recently, few-shot

graph classification, a more realistic and challenging task, has gar-

nered great research interest. Existing few-shot graph classification

models are all supervised, assuming abundant labeled data in base

classes for meta-training. However, sufficient annotation is often

challenging to obtain in practice due to high costs or demand for ex-

pertise. Moreover, they commonly adopt complicatedmeta-learning

algorithms via episodic training to transfer prior knowledge from

base classes. To break free from these constraints, in this paper, we

propose a simple yet effective approach named SMART for unsu-

pervised few-shot graph classification without using any labeled

data. SMART employs transfer learning philosophy instead of the

previously prevailing meta-learning paradigm, avoiding the need

for sophisticated meta-learning algorithms. Additionally, we adopt

a novel mixup strategy to augment the original graph data and

leverage unsupervised pretraining on these data to obtain the ex-

pressive graph encoder. We also utilize the prompt tuning technique

to alleviate the overfitting and low fine-tuning efficiency caused by

the limited support samples of novel classes. Extensive experimen-

tal results demonstrate the superiority of our proposed approach,

significantly surpassing even leading supervised few-shot graph

classification models. Our anonymous code is available here.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
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1 INTRODUCTION
A wealth of data on the web can be presented by graphs, which has

fostered the flourishing development of a wide range of Web ap-

plications [43]. As a fundamental task in graph data mining, graph

classification aims to accurately predict the labels of given graphs.

Many real-world scenarios can be formulated as this task, such as

molecular property predictions [66], social network analysis [59],

and online article classification [34]. Recently, effectively learning

graph-level representations via graph neural networks (GNNs) and

making predictions based on the learned representations has be-

come the dominant paradigm in this field [15, 56]. However, the

remarkable performance achieved by these GNN-based models re-

lies on numerous labeled instances. When faced with label-scarcity

scenarios, the trained models suffer from severe overfitting and

significant performance degradation [9, 35]. Hence, the problem

of few-shot graph classification, where only limited support data

is available to label query data, has attracted continuous attention

from researchers. Several efforts have been made to address this

problem and have achieved desired performance [5, 37, 58].

Despite their fruitful success, they all assume the existence of

sufficient labeled graphs in the base classes for meta-training. How-

ever, in the real-world scenario, this assumption is easily shattered

as the number of labeled graphs in the base classes is limited or, in

some cases, there are no available labeled graphs due to the imprac-

ticality, demanding domain knowledge or high cost associated with

the annotation process [19, 53]. For example, conducting drug test-

ing in the field of biomedical research requires expensive in-vivo

experiments and labor-intensive wet experiments to label drug and

protein graphs [8, 19]. In light of this situation, a natural question

arises: Can we break free from reliance on label information while
extracting transferable knowledge from these unlabeled graphs that
can help adapt to novel classes? One possible approach is to employ

self-supervised learning. However, a formidable challenge is that

the limited amount of data can greatly restrict the performance

of self-supervised learning [32]. Graph datasets typically have a

few base class samples, such as the ENZYMES dataset [44] with

only 207 base class samples, which is much fewer than those in

image and text datasets. For example, the miniImageNet dataset

[57] commonly used for few-shot image classification has 48,000

base class samples. Directly applying self-supervised learning on

the base data may result in suboptimal performance. Therefore, it

is necessary to expand the diversity of base data to fully utilize the

advantage of self-supervised learning.

Moreover, previous studies are developed under complicated

meta-learning algorithms by the episodic training manner. Con-

cretely, it samples numerous meta-training tasks (or episodes) from

a specific task distribution in the base classes to simulate the real

test environment, which aims to quickly transfer prior knowledge

from the base classes to the novel ones. Nevertheless, this paradigm

not only requires intricate manual model design, but also is prone
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to overfitting due to the defined complex hypothesis space [55].

Hence, is there an elegant approach that can ensure model per-

formance while avoiding sophisticated meta-learning algorithms?

Meanwhile, during the meta-testing stage, existing models only

utilizes limited support set of novel classes to fine-tune the entire

model with numerous parameters trained in themeta-training stage,

which inevitably leads to overfitting and low fine-tuning efficiency.

Therefore, how to alleviate model overfitting and further improve

fine-tuning efficiency with limited data is crucial for few-shot graph

classification, yet remains unexplored.

To address these limitations mentioned above, we propose a

SiMple but effective Approach for unsupeRvised few-shoT graph

classification, coined SMART. Specifically, we use a simple trans-

fer learning paradigm to replace the complicated meta-learning

paradigm. It necessitates merely pretraining a graph encoder via

self-supervised learning on a single task amalgamated from the

unlabeled graphs during pretraining, instead of employing metic-

ulously crafted episodic learning-based algorithms. Contrastive

learning, as a kind of typical self-supervised techniques, can spon-

taneously discover supervisory signals from the data itself to learn

distinctive representations without explicit labels. Thus, we employ

it as the pretraining method to obtain a powerful graph encoder.

To increase the diversity of the original data, a straightforward

method is to apply mixup for linear interpolation. However, unlike

regular Euclidean data such as images and texts, graph-structured

data exhibits interdependency and irregularity, meaning two ran-

domly sampled graphs generally have different numbers of nodes

and topological structures. It is infeasible that directly applying

classical mixup on graphs. To this end, we employ a novel mixup

strategy to augment both the unlabeled graphs during pretraining

and a few labeled graphs of support set during fine-tuning. Given a

pair of graphs, we first compute a transition matrix based on the

feature similarity of nodes. Then, we apply this matrix to transform

the feature and topology of one graph to align with those of the

other. By doing so, we can perform interpolation on any given pair

of graphs to synthesize new graphs for training.

Moreover, to mitigate the risk of model overfitting and enhance

the efficiency of model fine-tuning, inspired by the huge success

of prompt-tuning in the natural language processing, we attempt

to introduce this technique to shift its powerful capabilities to

our targeted problem. Prompt-tuning typically prepends language

prompts in the input text to better guide the language model to

understand new tasks. However, given the vast differences between

graphs and texts, it is infeasible to design discrete language prompts

for target tasks. Recently, a series of studies utilize continuous vec-

tors as soft prompts in the embedding space and have achieved

promising performance [22, 28, 52]. Therefore, instead of creat-

ing discrete prompts in the original graph data space, we add the

trainable vectors as graph-specific features into graphs during fine-

tuning, which facilitates extracting extensive knowledge from the

pretrained graph encoder. Particularly, we further provide in-depth

analysis on the rationale of how prompt-tuning work in our task.

In a nutshell, our main contributions are summarized as follows.

•We propose a simple but effective approach named SMART for

few-shot graph classification tasks without using any labels. To the

best of our knowledge, this is the first work to specifically solve

this task by the unsupervised manner.

•We attempt to replace the meta-learning paradigm with transfer

learning, and employ a graph-specific mixup strategy to augment

the graph data while also utilizing prompt-tuning techniques to

further boost model performance.

•We conduct extensive experiments on several datasets. The results

demonstrate the superiority of the proposed approach compared to

other models, which even outperforms leading supervised models

by a large margin.

2 RELATEDWORK
We briefly review related work from the following four aspects, i.e.,
graph classification, few-shot learning on graphs, graph contrastive

learning, and graph prompt-tuning.

Graph Classification. Current graph classification models can be

mainly categorized into two classes [58]. The first class is graph

kernel methods, which used to be the dominant technique for graph

classification [26]. These methods typically leverage kernel func-

tions to measure the similarity between two given graphs, and

then easily classify graphs using the SVM classifier. The represen-

tative graph kernels include Shortest Path (SP) [3], Graphlet [46],

and Weisfeiler-Lehman (WL) [45]. The second class encompasses

GNN-based models [24, 33, 56], which leverage GNNs to iteratively

aggregate information from neighboring nodes with specific ag-

gregation mechanisms to learn informative latent embeddings of

target nodes. A readout function is then applied to aggregate the

updated node features to obtain the whole graph embedding for

classification. The readout function can be designed as a simple

permutation invariant function such as summation or averaging,

or a more complicated graph-level pooling function, such as dif-

ferentiable pooling [63] and self-attention pooling [27]. However,

GNN-based models typically rely on a significant amount of labeled

graph supervision to achieve optimal performance. When applied

directly to scenarios with limited labeled data, i.e., few-shot scenar-
ios, these models may experience severe overfitting, leading to a

significant decline in performance.

Few-shot Learning on Graphs. The goal of few-shot learning is

to rapidly adapt to new tasks with only a few labeled data by lever-

aging meta-knowledge learned from the abundant training data of

base classes [11, 47]. Most previous models address this problem by

employing a meta-learning paradigm, which have achieved remark-

able success in few-shot scenarios such as few-shot image classi-

fication and few-shot text classification. Some classical methods

include MAML [11], prototypical networks (PN) [47], and relation

networks (RN) [51]. Recently, there has been a growing interest in

few-shot learning on graph-structured data. Several studies have

focused on integrating GNNs with meta-learning algorithms for

various downstream tasks, including few-shot node classification

[9, 20, 35, 53, 67], few-shot graph classification [5, 8, 37, 58], and

few-shot link prediction [1, 6, 62]. In our focused task, AS-MAML

[37] directly integrates MAML with GNNs, enabling efficient adap-

tation and capturing of substructures in previously unseen graphs

for classification. FAITH [58] constructs a hierarchical task graph

to model task correlations and employs a loss-based strategy for

task sampling to facilitate classification. These specialized models

for few-shot graph classification are heavily dependent on labeled

data from base classes, which restricts their practical applications.

2
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Graph Contrastive Learning. The core concept of contrastive
learning is to maximize agreement between embeddings of positive

sample pairs while minimizing agreement between negative sample

pairs in the embedding space. It has achieved great success in the

field of computer vision [7, 17]. Subsequently, contrastive learning

has been introduced to the graph domain and has proven to be

effective for node representation learning. Some efforts have been

made to demonstrate the great potential of contrastive learning on

graphs. For example, InfoGraph [48] maximizes mutual information

between graph-level representations and substructures at different

granularities, enabling the graph-level representations to encode

shared information from various substructures. MVGRL [16] trains

the graph encoder by maximizing mutual information between

representations obtained from different structural views of the

graph. Although these methods can obtain decent node embeddings

when applied directly to few-shot scenarios, the scarcity of support

samples during meta-testing leads to overfitting of the classifier,

resulting in suboptimal performance.

Graph Prompt-tuning. The concept of prompt-tuning in natu-

ral language processing is to facilitate adaptation of pretrained

language models to various downstream tasks while reducing the

number of parameters used. This is achieved by incorporating learn-

able soft prompts [29]. Current studies follow the similar paradigm

by freezing the parameters of pretrained language models and in-

troducing a few trainable prompt parameters to bridge the gap

between downstream tasks and pretraining objectives [13, 18, 30].

Prompt-tuning approaches have achieved tremendous success in

natural language processing and have recently been introduced

to graph learning as well [10, 36, 50]. Two representative works

are GPPT [49] and GraphPrompt [36], which both use link predic-

tion for pretraining and introduce virtual prototype nodes with

learnable links into the input graphs to make downstream tasks

more compatible with link prediction. However, these methods face

challenges when it comes to adapting to other pretraining tasks.

3 PRELIMINARY
In this section, we first introduce the notations used and then

formally define the problem studied and give relevant preliminary

knowledge.

Given a graph dataset D = {G𝑖 }𝜘𝑖=1, we can denote each graph

as G𝑖 = {V𝑖 , E𝑖 ,X𝑖 ,A𝑖 }, where V𝑖 , E𝑖 , X𝑖 ∈ R |V𝑖 |×𝑑
, and A𝑖 ∈

R |V𝑖 |× |V𝑖 |
are the set of nodes, the set of edges, the 𝑑-dimensional

node feature matrix, and the adjacency matrix of the graph G𝑖 ,

respectively. Moreover, we denote the set of graph classes as C,
which can be further divided into two disjoint sets C𝑏𝑎 and C𝑛𝑜 .
Here, C𝑏𝑎 represents the set of graph base classes that are available
during meta-training. C𝑛𝑜 represents the set of graph novel classes
that need to be predicted given a limited number of labeled graphs

during meta-testing. Specifically, C𝑏𝑎 ∪C𝑛𝑜 = C and C𝑏𝑎 ∩C𝑛𝑜 = ∅.
Generally, C𝑛𝑜 is invisible during meta-training. Previous models

all assume that there exists abundant labeled data per class in the

base classes for training. Formally, we can define the supervised

few-shot graph classification problem as follows:

Definition 1. Supervised few-shot graph classification:Given
a graph dataset D = {G𝑖 }𝜘𝑖=1 and a meta-test task T = {S,Q} sam-
pled fromYC𝑛𝑜 , the goal is to develop a learning model trained on the

base labeled graphs B = (GC𝑏𝑎 ,YC𝑏𝑎 ) that can accurately predict
labels for (G𝑞 ∈ GC𝑛𝑜 ) (i.e., query set Q) after fine-tuning limited
labeled graphs (G𝑠 ,Y𝑠 ) ∈ (GC𝑛𝑜 ,YC𝑛𝑜 ) (i.e., support set S).

Considering that the labels of base classes are inaccessible in real-

world scenarios, we generalize the above definition to unsupervised

few-shot graph classification as follows:

Definition 2. Unsupervised few-shot graph classification:
Given a graph datasetD = {G𝑖 }𝜘𝑖=1 and a meta-test task T = {S,Q}
sampled fromYC𝑛𝑜 , the goal is to develop a learning model trained on
the base unlabeled graphs B = (GC𝑏𝑎 ) that can accurately predict
labels for (G𝑞 ∈ GC𝑛𝑜 ) (i.e., query set Q) after fine-tuning limited
labeled graphs (G𝑠 ,Y𝑠 ) ∈ (GC𝑛𝑜 ,YC𝑛𝑜 ) (i.e., support set S).

We can observe that the significant difference between the two

definitions lies in whether labels are provided for the base class

data. Following the traditional setting in few-shot learning [11], if

the support set S of the test task T sampled fromYC𝑛𝑜 contains 𝑁

target classes, and each class has 𝐾 labeled graphs, this is referred

to as an 𝑁 -way 𝐾-shot task. The model is evaluated on the query

set Q, which has the same classes as the support set, but with 𝑅

graphs to be classified per class.

Graph Neural Networks. The core concept of GNNs is to iter-

atively update target nodes by aggregating feature vectors from

neighboring nodes through a message passing mechanism [56, 60].

After 𝑘 iterations of aggregation, the updated representations of the

target node can capture structural information within its 𝑘-order

neighbors. Formally, the 𝑘-layer GNNs can be expressed as:

𝑎𝑘𝑣 = AGG
𝑘 ({ℎ𝑘−1𝑢 |𝑢 ∈ N𝑣}), ℎ𝑘𝑣 = COM

𝑘 (ℎ𝑘−1𝑣 ,𝑚𝑘
𝑣 ) (1)

where 𝑎𝑘𝑣 denotes the aggregated message from the set of neighbor-

ing nodes N𝑣 . ℎ
𝑘
𝑣 is the 𝑘-layer feature of node 𝑣 and ℎ0𝑣 = X. AGG

and COM denote the aggregation and combination functions, which

are crucial factors that determine the properties of GNNs. Different

choices of the two functions lead to different GNN architectures

[15].

For graph-level prediction, we need to apply a readout function

on the node representations after the last iteration to obtain the

graph representation, which can be formulated as follows.

ℎG = READOUT({ℎ𝑘𝑣 |𝑣 ∈ V}) (2)

where the resulting graph representation ℎG is used for the down-

stream classification task.

4 METHOD
In this section, we elaborate on the proposed SMART in detail,

which consists of two main components: graph contrastive pretrain-
ing with mixup and mixup and prompt-tuning at fine-tuning. In
summary, we obtain a discriminative graph encoder via graph con-

trastive pretraining. During fine-tuning, we augment the support

set for novel classes using mixup while simultaneously improv-

ing fine-tuning efficiency via prompt tuning techniques. To better

understand our proposed approach, we illustrate its overall archi-

tecture in Fig. 1.

3
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Figure 1: The overall architecture of our proposed SMART.

4.1 Graph Contrastive Pretraining with Mixup
As stated before, previous models all explicitly leverage the la-

beled data from base classes and are designed with elaborate meta-

learning algorithms by the episodic training manner to enable fast

adaptation to novel classes under label scarcity scenarios. Here,

we adopt a simple transfer learning paradigm, which merges all

the unlabeled graph from base classes into a single task. However,

we cannot directly perform contrastive learning on the merged

dataset due to the limited amount of graphs. Therefore, we pro-

pose to augment the base data using mixup techniques. Specifically,

we first randomly sample two graphs G1 = {V1, E1,X1,A1} and
G2 = {V2, E2,X2,A2}, then obtain a transition matrix based on

the feature similarity between their nodes. This process can be

formulated as:

T = X1X⊤
2

(3)

whereX1 ∈ R |V1 |×𝑑
andX2 ∈ R |V2 |×𝑑

are the corresponding node

feature matrices. T ∈ R |V1 |× |V2 |
is the computed transition matrix,

where rows represent nodes from graph G1, and columns represent

nodes from graph G2.

Next, we can use the transition matrix T to transform the feature

and topology of G2 to align with G1, which can be expressed as:

X̃2 = TX2, Ã2 = TA2T⊤ (4)

where X̃2 ∈ R |V1 |×𝑑
and Ã2 ∈ R |V1 |× |V1 |

are the aligned feature

and adjacency matrices. In this way, we acquire the transformed

graph
˜G2 = { ˜V2, ˜E2, X̃2, Ã2}.

We perform linear interpolation on G1 and
˜G2 from the per-

spectives of features and topological structures through mixup

operations, defined as:

X̂ = 𝜆X1 + (1 − 𝜆)X̃2, Â = 𝜆A1 + (1 − 𝜆)Ã2 (5)

where X̂ and Â are node feature matrix and adjacency matrix of

the generated graph
ˆG, respectively. 𝜆 ∈ [0, 1] is a random variable

sampled from the Beta(𝛼 , 𝛼) distribution parameterized by 𝛼 . By

performing Eqs.4 and 5, we can generate sufficient graphs to form

an augmented dataset
ˆB = { ˆG𝑖 }𝑚𝑖=1 to enhance the original base

data and increase diversity for pretraining. Note that we do not

perform mixup on the labels since labels are inaccessible in this

stage.

In the following, wemerge the original base dataB with𝑛 graphs

and augmented base data
ˆB with𝑚 graphs into one dataset B′

with

(𝑚 + 𝑛) graphs, i.e., B′ = B ∪ ˆB, and perform graph contrastive

learning on it to learn the intrinsic consistency within the data.

Specifically, for each graph in B′
, we first perform data augmenta-

tion operations, such as node dropping or edge perturbation. In this

way, we can obtain 2(𝑚+𝑛) graphs in total, with the two correlated

augmented views as the positive sample pair, and the remaining

2(𝑚 + 𝑛 − 1) views as the negative samples.

4
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Next, we feed these graphs into the graph encoder to get the

corresponding graph representations. Here, we employ the GIN

[60] architecture as the graph encoder, which has been shown to

be effective in learning graph-level representations. The specific

graph layer of GIN can be described as:

ℎ𝑘𝑣 = MLP
𝑘 ((1 + 𝜖𝑘 )ℎ𝑘−1𝑣 +

∑︁
𝑢∈N𝑣

ℎ𝑘−1𝑢 ) (6)

where ℎ𝑘𝑣 is the node embeddings at 𝑘 layer of node 𝑣 and 𝜖𝑘 is the

learnable parameter. The final node embeddings are obtained by

concatenating the outputs from all layers, i.e., ℎ𝑣 = ℎ0𝑣 | |ℎ1𝑣 · · · | |ℎ𝑘𝑣 .
The graph-level representation ℎG is produced by performing sum-

mation pooling over all nodes, i.e., ℎG =
∑

𝑣∈V ℎ𝑣 . Briefly, we can

represent the above graph encoding as ℎG = 𝑓𝜃 (G), where 𝜃 de-

notes all the trainable parameters of the graph encoder. Then we

use a projection head 𝑔(·) to map the graph representation to the

hidden space that contrastive loss applied, and conduct 𝑙2 normal-

ization, i.e., 𝑧G = 𝑔(ℎG) and 𝑧G = 𝑧G/| |𝑧G | |2. The concrete graph
contrastive loss can be defined as:

L𝑐𝑙 = − 1

2(𝑚 + 𝑛)

2(𝑚+𝑛)∑︁
𝑘=1

log

exp(𝑧G𝑘
· 𝑧G𝑖

/𝜏)∑
𝑎∈I exp(𝑧G𝑘

· 𝑧G𝑎
/𝜏)

(7)

where I = {1, 2, · · · ,𝑚 + 𝑛}\{𝑘} denotes the set of indices exclud-
ing the anchor index 𝑘 and “·” is the inner product. 𝜏 represent a
scale temperature parameter. After performing graph contrastive

pretraining, we retain only the graph encoder 𝑓𝜃 (·), which extracts

task-agnostic priors, for fine-tuning and discard the remaining

components at this stage.

4.2 Mixup and Prompt-tuning at Fine-tuning
4.2.1 Mixup. Due to the limited number of support graphs for

novel classes in a task during fine-tuning, directly adopting them

for linear classification would lead to severe overfitting. To alleviate

this issue, we utilize the mixup strategy to enhance the diversity of

the support set data. Following the previous stage, we first randomly

sample two graphs (G𝑠1 ,Y𝑠1 ) and (G𝑠2 ,Y𝑠2 ) from the support set

S of task T . Here, Y𝑠1 and Y𝑠2 are one-hot class labels of graphs.

We then compute the transition matrix T𝑠 to obtain the aligned
˜G𝑠2

for G𝑠1 . Finally, we perform linear interpolation on the features and

topological structures of the two graphs to generate an augmented

graph. The above process can be formulated as follows:

T𝑠 = X𝑠1X
⊤
𝑠2
, X̃𝑠2 = T𝑠X𝑠2 , Ã𝑠2 = T𝑠A𝑠2T

⊤
𝑠 ,

X̂𝑠 = 𝜆X𝑠1 + (1 − 𝜆)X̃𝑠2 , Â𝑠 = 𝜆A𝑠1 + (1 − 𝜆)Ã𝑠2

ˆY𝑠 = 𝜆Y𝑠1 + (1 − 𝜆)Y𝑠2

(8)

where G𝑠1 = {V𝑠1 , E𝑠1 ,X𝑠1 ,A𝑠1 }, G𝑠2 = {V𝑠2 , E𝑠2 ,X𝑠2 ,A𝑠2 }, and
ˆG𝑠 = { ˆV𝑠 , ˆE𝑠 , X̂𝑠 , Â𝑠 } in which

ˆG𝑠 is the generated graph. Note

that the significant difference in the fine-tuning phase, is that we

explicitly perform mixup operation on the corresponding labels

as well. By performing Eq.8, we can synthesize abundant graphs

to form an augmented support set
ˆS = {( ˆG𝑠,𝑖 , ˆY𝑠,𝑖 )}ℓ𝑖=1, and the

final support set for fine-tuning can be denoted as S′ = S ∪ ˆS.
With the above procedure, the adopted mixup extends the data

distribution and imposes regularization on the neural network,

promoting simplified linear behavior among the training examples

and reducing undesirable oscillations in the test data [65].

4.2.2 Prompt-tuning. Although the support graphs for novel classes
are enriched through mixup, it is highly inefficient to fine-tune the

graph encoder contained numerous parameters and train a linear

classifier. Moreover, directly transferring embeddings from the pre-

trained graph encoder results in suboptimal performance, owing

to the inherent discrepancy between the training objectives of the

proxy task and that of the downstream few-shot graph classifica-

tion task. To this end, we add the prompt token to the graph to

effectively fine-tune the pretrained graph encoder and customize

the pretrained graph embeddings for target graphs. Concretely, we

introduce a randomly initialized 𝑑-dimensional trainable vector as

the prompt token, denoted as 𝑃 ∈ R𝑑 . Then, we add the prompt vec-

tor 𝑃 to the original features X𝑠 of the graph from the final support

set S′
, i.e., [X𝑠 + 𝑃] ∈ R |V𝑠 |×𝑑

, and feed them to the pretrained

graph encoder. The above procedure can be expressed by:

ℎG𝑠
= 𝑓𝜃 (X′

𝑠 ), X′
𝑠 = X𝑠 + 𝑃 = {X𝑠,1 + 𝑃,X𝑠,2 + 𝑃, · · · ,X𝑠, |V𝑠 | + 𝑃}

(9)

where ℎG𝑠
is the graph embeddings contextualized by the prompt

vector. Note that in this process, we freeze the weights of the pre-

trained graph encoder and only allow the prompts 𝑃 to be trainable.

In other words, the number of trainable parameters becomes tiny,

being just a single vector, which is beneficial for improved fine-

tuning efficiency.

Why prompt-tuning works? A natural question is, why can such

good performance be achieved merely through a single trainable

vector, and why is it effective? From a theoretical perspective, there
has been proven that for any graph prompt function Φ(·), such as

changing node features or adding/removing edges, the following

equation holds [10]:

𝑓𝜃 (A,X + 𝑃) = 𝑓𝜃 (Φ(A,X)) (10)

This implies that the prompting strategy utilized in this context

has the potential to achieve the upper performance bound of any

prompting function. If optimizing a specific prompting function

Φ(·) can yield informative graph representations, it follows that

directly optimizing the vector 𝑃 can also achieve the same effect.

This intuition arises from the inherent interdependence between

the adjacency matrix and the feature matrix in the graph. By ap-

propriately modifying node features, it is possible to influence the

structural modifications of the final graph representation. Further-

more, contrary to the commonly acknowledged notion in natural

language processing that fine-tuning achieves the theoretical upper

bound compared to prompt-tuning [28, 31], this approach demon-

strates that conducting prompt-tuning in such a manner can yield

superior performance compared to full fine-tuning [10]. From an
empirical perspective, we find the trained prompt vector tends to

focus on the features that are relevant to the graph class. For ex-

ample, when performing feature selection using Recursive Feature

Elimination (RFE) [14] on the protein structure dataset ENZYMES,

we find significant overlap between the selected features and the

dimensions of the final prompt vector sorted by absolute values,

indicating that important features are highlighted.

By performing Eq.9, we can obtain the graph embeddings in the

merged support set S′
, and train the prompt vectors and a simple

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

linear classifier using cross-entropy loss, defined as:

𝑃∗,Ψ∗ = argmin

𝑃,Ψ
L𝑐𝑒 (S′

; 𝑃,Ψ) (11)

Finally, we use the resulting prompt vectors 𝑃∗ and the linear classi-
fier 𝑓Ψ∗ to predict unlabeled graphs of the query set Q from the task

T . The training procedure of SMART can be found in Algorithm 1.

Additionally, we derive the generalization error bound for the pro-

posed approach by introducing an integral probability metric [40],

which depends on the number of graphs in the support set of novel

classes, theoretically proving that SMART has good generalization

capability. The concrete procedure can be found in Appendix A.1.

Algorithm 1 SMART Algorithm

Input: A graph dataset D = {G𝑖 }𝜘𝑖=1, Base data B = (GC𝑏𝑎 ), A
test task T = {S,Q}.

Output: Graph encoder 𝑓𝜃 (·), linear classifier 𝑓Ψ (·), prompt vector

𝑃 .

# Pretraining stage
1: Obtain augmented data

ˆB = { ˆG𝑖 }𝑚𝑖=1 by mixup with Eqs.3, 4, 5.

2: Feed Merged data B′ = B ∪ ˆB to the graph encoder 𝑓𝜃 (·) with
Eq.6.

3: Train 𝑓𝜃 (·) by contrastive learning loss with Eq.7.

# Fine-tuning stage
4: Augment the support set S by mixup with Eq.8.

5: Perform prompt-tuning for the merged support set S′ = S ∪ ˆS
with Eq.9.

6: Train a linear classifier 𝑓Ψ (·) using S′
.

7: Update 𝑃 and Ψ by cross-entropy loss with Eq.11.

5 EXPERIMENT
Datasets. To validate the effectiveness of our proposed model, we

adopt several datasets widely used for few-shot graph classification

[5, 58]. The statistics of these datasets are presented in Table 1,

where “Novel” indicates the number of novel classes during the

fine-tuning phase. We follow the same train/test class splits as

previous studies [5, 58]. The used datasets are described in detail

as follows. We also provide the visualization of each dataset in

Appendix A.2 for clarity.

Table 1: Statistics of the evaluated datasets.

Dataset # Graphs # Nodes # Edges # Classes # Novel

ENZYMES 600 32.63 62.14 6 2

Letter-high 2,250 4.67 4.50 15 4

Reddit 1,111 391.41 456.89 11 4

TRIANGLES 2,000 20.85 35.50 10 3

• ENZYMES [44] is a protein tertiary structure dataset composed of

enzymes from the BRENDAdatabase, with each class corresponding

to a top-level enzyme.

• Letter-high [42] contains graphs that represent distorted English

letters, where each label denotes the corresponding type of alphabet.

• Reddit [61] consists of graphs representing threads, where each

node denotes a user, and different graph labels correspond to dif-

ferent types of discussion forums.

• TRIANGLES [25] comprises graphs whose classes are deter-

mined by the count of triangles/3-cliques present in each graph.

Baselines.We compare our proposed method with many super-
vised and unsupervised models comprehensively. We mainly

select three types of supervised models: (I) classical GNN models,
including GCN [24], GAT [56], and GIN [60]; (II) classical meta-
learning models, consisting of PN [47], RN [51], andMAML [11];

(III) supervised few-shot graph classification models, containingGSM
[5], AS-MAML [37], and FAITH [58]. We also select two types

of unsupervised models: (I) graph embedding methods, includ-
ing AWE [21], Graphlet [46],WL [45], and Graph2Vec [41]; (II)
graph contrastive learning methods, InfoGraph [48], GraphCL
[64], MVGRL [16], and BGRL [54]. Detailed descriptions of these

baselines can be found in Appendix A.3. Note that for the classi-
cal GNN models, we follow the way in [67] to merely modify the

dataset split, allowing these methods to be adapted to few-shot

settings. For the graph embedding and graph contrastive learning
methods, we train a Logistic Regression classifier on the learned

graph embeddings to perform graph classification. Moreover, we

utilize the hyperparameters of these baselines suggested by their

original works.

Implementation Details. In the pretraining stage, we employ

node dropping and attribute masking as graph augmentation tech-

niques and determine suitable ratios by grid search from 0 to 0.4.

The number of generated graphs in
ˆB is 500, i.e., 𝑚 = 500. We

adopt 3-layer GIN with 128 dimensional hidden units as the graph

encoder 𝑓𝜃 . In graph contrastive learning, the projection head 𝑔 is

implemented by an MLP layer with a hidden layer and activated by

the ReLU function. The temperature parameter 𝜏 in Eq.7 is 0.2. In

the fine-tuning stage, the number of generated graphs ℓ in ˆS is 20𝑁 ,

that is, 20 additional graphs are generated by mixup for each class

in the support set. We use the Adam [23] method to optimize the

whole model. The learning rate and weight decay are 0.001 and 1e-7.

An early stopping strategy is utilized during training of the linear

classifier 𝑓Ψ , where model training is stopped if the training loss

does not decrease for five consecutive epochs. All the experiments

are conducted in the Python 3.7 and PyTorch 1.13 environment,

with a single 24GB NVIDIA GeForce RTX 3090Ti GPU.

EvaluationMetric.We adopt accuracy as the metric for evaluating

model performance following previous researches [5, 58]. Due to the

limited novel categories in used datasets, we set 𝑁 = |Novel|, that
is, a testing task contains a support set of |Novel| ×𝐾 labeled graphs

and a query set of |Novel| × 𝑅 unlabeled graphs where 𝐾 ∈ {5, 10}
and 𝑅 = 10. To ensure the stability and fairness of the experiment,

we sample 200 testing tasks to evaluate model performance, and

repeat the execution 10 times to report the average accuracy and

related standard deviation.

6 RESULT
Model Performance.We show the results of our proposed SMART

and other competitive methods on the evaluation datasets in Ta-

ble 2. According to the results, we observe our proposed method

achieve excellent performance on all datasets, achieving the best
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Table 2: Results of different models in various few-shot experimental settings on several datasets. Best: bold. Runner-up:
underline.

Model

ENZYMES Letter-high Reddit TRIANGLES

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

S
u
p
e
r
v
i
s
e
d

GCN 54.30 ± 5.60 57.19 ± 4.36 60.15 ± 7.62 65.67 ± 5.29 38.52 ± 3.92 41.15 ± 4.22 66.39 ± 6.22 68.22 ± 3.55

GAT 55.40 ± 5.23 59.26 ± 5.19 66.20 ± 6.67 71.25 ± 6.22 39.16 ± 5.22 42.25 ± 3.55 67.50 ± 5.19 71.36 ± 3.92

GIN 55.73 ± 5.80 58.83 ± 5.32 65.83 ± 7.17 69.16 ± 5.14 40.36 ± 4.69 43.70 ± 3.98 63.80 ± 5.61 67.30 ± 4.35

PN 53.72 ± 4.37 55.79 ± 3.95 68.48 ± 3.28 72.60 ± 3.01 42.31 ± 2.32 43.23 ± 2.01 69.56 ± 3.97 73.12 ± 3.62

RN 41.39 ± 4.73 43.27 ± 3.49 51.14 ± 4.21 52.54 ± 4.04 34.89 ± 3.76 37.76 ± 3.09 46.09 ± 3.10 49.15 ± 3.49

MAML 51.96 ± 7.22 53.62 ± 7.19 67.49 ± 4.59 71.55 ± 5.15 31.62 ± 5.11 36.49 ± 4.25 72.32 ± 3.42 74.49 ± 4.62

GSM 55.42 ± 5.74 60.64 ± 3.84 69.91 ± 5.90 73.28 ± 3.64 41.59 ± 4.12 45.67 ± 3.68 71.40 ± 4.34 75.60 ± 3.67

AS-MAML 49.83 ± 1.12 52.30 ± 1.43 69.44 ± 0.75 75.93 ± 0.53 36.96 ± 0.74 41.47 ± 0.83 78.42 ± 0.67 80.39 ± 0.56

FAITH 57.89 ± 4.65 62.16 ± 4.11 71.55 ± 3.58 76.65 ± 3.26 42.71 ± 4.18 46.63 ± 4.01 79.59 ± 4.05 80.79 ± 3.53

U
n
s
u
p
e
r
v
i
s
e
d

AWE 43.75 ± 1.85 45.58 ± 2.11 40.60 ± 3.91 42.20 ± 2.87 30.24 ± 2.34 33.44 ± 2.04 39.36 ± 3.85 42.58 ± 3.11

Graphlet 53.17 ± 5.92 55.30 ± 3.78 33.76 ± 6.95 37.59 ± 4.60 33.76 ± 6.94 37.59 ± 4.60 40.17 ± 3.18 43.76 ± 3.09

WL 55.78 ± 4.72 58.37 ± 3.84 65.27 ± 7.67 69.39 ± 4.69 40.26 ± 5.17 42.57 ± 3.69 51.25 ± 4.02 53.26 ± 2.95

Graph2Vec 55.88 ± 4.86 58.22 ± 4.30 66.12 ± 5.21 68.17 ± 4.26 27.85 ± 4.21 29.97 ± 3.17 48.38 ± 3.85 50.16 ± 4.15

InfoGraph 51.11 ± 2.05 56.84 ± 2.75 64.83 ± 2.11 68.21 ± 2.62 39.29 ± 3.66 41.32 ± 3.71 57.65 ± 1.75 64.40 ± 2.50

GraphCL 53.69 ± 1.42 55.78 ± 1.77 69.66 ± 2.42 73.04 ± 2.83 42.20 ± 4.83 45.76 ± 4.19 51.13 ± 2.39 54.76 ± 1.21

MVGRL 48.33 ± 1.65 52.63 ± 1.84 70.55 ± 5.10 72.32 ± 2.43 40.15 ± 3.99 43.22 ± 3.79 48.30 ± 2.29 56.89 ± 5.40

BGRL 57.78 ± 2.87 60.42 ± 2.65 51.07 ± 2.69 55.00 ± 3.26 41.19 ± 3.12 44.22 ± 3.99 63.78 ± 7.90 54.76 ± 1.21

SMART 59.80 ± 3.39 65.11 ± 2.70 74.17 ± 2.75 76.89 ± 1.55 43.83 ± 2.21 47.75 ± 2.77 79.39 ± 2.45 80.43 ± 2.12

results in three of the four datasets and the second-best results

in the remaining dataset, which demonstrates its effectiveness for

few-shot graph classification tasks. SMART not only outperforms

unsupervised models by a large margin, but also surpasses super-

vised models specifically designed for this task. For example, on

the ENZYMES dataset, SMART achieves absolute improvements

of 1.91% and 2.95% over FAITH in the 5-shot and 10-shot few-shot

scenarios, respectively. We believe that the underlying reason is

that the mixup used in the pretraining stage generates a sufficient

variety of graphs, which allows the potential of graph contrastive

learning to be fully unleashed, resulting in a discriminative graph

encoder. Additionally, the mixup used in the fine-tuning stage ef-

fectively expands the original data distribution in the support set,

resulting in a linear transition of the decision boundary from one

class to another, which provides a smoother uncertainty estimation.

Moreover, the adopted prompt-tuning strategy further leverages

the pretrained graph encoder and improves fine-tuning efficiency

with few trainable parameters.

We find that supervised few-shot graph classification models

achieve better performance compared to models from other cate-

gories. This can be attributed to their tailored designs for few-shot

scenarios while explicitly utilizing graph structural information.

However, due to the scarcity of support set data, they still suf-

fer from overfitting issues, thus their performance lags far behind

our model. Additionally, classic GNN models show unsatisfactory

performance, owing to their inability to sufficiently learn graph

structural features and category information under the few-shot

scenario with insufficient label data, resulting in poor generaliza-

tion capability. Notably, graph contrastive learning models do not

achieve ideal performance, sometimes even underperforming un-

supervised graph embedding methods. A possible reason is that

the small scale of graph datasets greatly limits the capability of

contrastive learning, which reflects the necessity of our data aug-

mentation on base classes.

Ablation Study. To validate the effectiveness of the adopted strate-
gies, we conduct comprehensive ablation studies on several de-

signed model variants formed by sequentially adding the utilized

techniques over all evaluation datasets. (I) Raw model: We perform

graph contrastive pretraining on base data to obtain a graph en-

coder, and then directly utilize the graph embeddings of support set

data obtained from the frozen graph encoder to train a linear classi-

fier for evaluating the query set. (II) +𝑚𝑖𝑥𝑢𝑝𝑝𝑟𝑒 : We use the mixup

strategy during pretraining to generate abundant graphs for poten-

tially training amore expressive graph encoder. (III) +𝑚𝑖𝑥𝑢𝑝𝑡𝑒𝑠𝑡 :We

further leverage the mixup strategy at fine-tuning stage to enrich

graph diversity in the support set to alleviate classifier overfitting.

(IV) +pt: We continue to employ the prompt-tuning strategy at

fine-tuning to improve fine-tuning efficiency by bridging the gap

between pretraining and downstream tasks.

By analyzing the results shown in Table 3, we can clearly ob-

serve that all the adopted strategies are crucial for improving model

performance. In particular, the𝑚𝑖𝑥𝑢𝑝𝑝𝑟𝑒 strategy used during pre-

training brings significant gains to SMART, aligning with our ex-

pectation. A reasonable explanation is that it provides more diverse

samples, facilitating contrastive learning to learn richer feature

representations. Additionally, the𝑚𝑖𝑥𝑢𝑝𝑡𝑒𝑠𝑡 strategy used at fine-

tuning stage also leads to considerable improvements for SMART.

We attribute this to this operation enriching the limited support set

and alleviating the data scarcity issue. Finally, the prompt-tuning
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Table 3: Ablation results on the evaluated datasets.

Dataset

ENZYMES Letter-high Reddit TRIANGLES

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Raw model 53.69 ± 1.42 58.78 ± 1.77 69.66 ± 2.42 73.04 ± 2.83 42.20 ± 4.83 45.76 ± 3.19 73.13 ± 2.39 74.76 ± 2.21

+𝑚𝑖𝑥𝑢𝑝𝑝𝑟𝑒 56.46 ± 2.36 62.12 ± 2.55 71.39 ± 3.22 74.59 ± 1.95 42.79 ± 3.29 46.79 ± 2.59 76.02 ± 2.19 77.19 ± 2.35

+𝑚𝑖𝑥𝑢𝑝𝑡𝑒𝑠𝑡 58.30 ± 2.25 63.29 ± 2.20 73.11 ± 2.30 75.09 ± 2.58 43.02 ± 2.52 47.36 ± 2.10 78.19 ± 2.10 79.06 ± 2.45

+pt 59.80 ± 3.39 65.11 ± 2.70 74.17 ± 2.75 76.89 ± 1.55 43.83 ± 2.21 47.75 ± 2.77 79.39 ± 2.45 80.43 ± 2.12
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Figure 2: Evaluation performance with different hyperparameters.

strategy offers certain improvements, by reducing overfitting and

improving fine-tuning efficiency with fewer trainable parameters.

Hyperparameter Sensitivity.Wemainly investigate the effects of

three hyperparameters on model performance, with results shown

in Fig. 2. All datasets are tested under the 𝑁 -way 10-shot exper-

imental setting. Note that when exploring one hyperparameter,

others are fixed to default values. As exhibited in Fig. 2 (a), the

model performance steadily increases as𝑚 increases, owing to the

beneficial diversity for contrastive learning. Fig. 2 (b) shows the

model performance also demonstrates increasing trends with larger

ℓ , while the optimal ℓ value varies across datasets. Moreover, the

satisfactory results can be achieved with relatively small 𝜏 . Specifi-

cally, as depicted in Fig. 2 (c), we find the peak model performance

is generally attained at 𝜏 = 0.2.

Parameter Efficiency. We compare the number of parameters

needed for updating when performing the downstream few-shot

graph classification task between our proposed SMART and several

representative models. As shown in Table 4, the results demonstrate

the tunable parameters in SMART are significantly less than other

models, even smaller by orders of magnitude. For example, on the

ENZYMES dataset, the tunable parameters of our model are only

0.107% of that in the FAITH model, which sufficiently validates the

high tuning efficiency of our model. Since other models require

full fine-tuning of parameters, which is expensive in resources and

prone to overfitting, while our proposed model alleviates this issue

by employing prompt-tuning techniques.

Table 4: Number of parameters on several datasets. The last
row represents the percentage of parameter count of SMART
compared to FAITH.

Model ENZYMES Letter-high Reddit TRIANGLES

GAT 165,120 153,140 224,155 166,325

GIN 120,494 119,970 187,959 120,625

GSM 294,130 294,061 361,790 29,4456

FAITH 989,838 992,917 1,057,297 991,505

SMART 1,035 1,545 2,064 1,293

Ratio 0.104% 0.156% 0.195% 0.130%

7 CONCLUSION
In this work, we propose a simple but effective approach named

SMART for solving few-shot graph classification tasks in an unsu-

pervised manner. Specifically, we adopt a simple transfer learning

paradigm to replace the previously complicated meta-learning par-

adigm. In the pretraining stage, we utilize a modified mixup to

enrich data diversity for obtaining a powerful graph encoder. Dur-

ing the fine-tuning stage, we leverage the same modified mixup and

prompt-tuning techniques to alleviate the overfitting and inefficient

fine-tuning issues caused by limited support set data. Experimental

results on multiple datasets demonstrate that our proposed model

even surpasses previous competitive supervised models, which suf-

ficiently validates its effectiveness. We hope our work could provide

inspirations for future research on unsupervised few-shot graph

classification.
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A APPENDIX
A.1 Theoretical Analysis
In this section, we theoretically analyze for the good generaliza-

tion capability of our proposed approach. The goal of SMART is to

rapidly generalize the meta-knowledge obtained from base classes

to novel ones, which essentially minimizes the distribution diver-

gence between GC𝑏𝑎 and GC𝑛𝑜 . Inspired by integral probability

metric (IPM) [40] utilized for analyzing various models, we lever-

age it to derive the upper bound. Formally, the definition of IPM as

follows:

𝛾F (P,Q) = sup

𝑓 ∈F,G∈D
|EP 𝑓 (G) − EQ 𝑓 (G)| (12)

where P and Q are two probability distributions. EP (·) denotes the
expectation of a variable over a probability distribution P. F is a

class of real-valued bounded measurable functions and D is the

defined data space.

Moreover, we also need to utilize the empirical Rademacher

complexity, which is defined as:

R(F |G1, · · · ,G𝑈 ) = E𝜎 sup
𝑓 ∈F

1

𝑈

���� 𝑈∑︁
𝑖=1

𝜎𝑖 𝑓 (G𝑖 )
���� (13)

where {𝜎1, · · · , 𝜎𝑈 } are the i.i.d. Rademacher random variables.

According to the empirical Rademacher complexity, we have the

following lemma about a standard uniform deviation bound [2].

Lemma 1. Uniform deviation with empirical Rademacher
complexity: Let {G1, · · · ,G𝑈 } be sampled i.i.d. from the distribution
P on D, and let F denote a class of functions mapping from D to
[𝑎, 𝑏]. For 𝜖 > 0, we derive that with a probability at least (1 − 𝜖)
over the draw of the sample,

sup

𝑓 ∈F
|E

ˆP 𝑓 (G)−EP 𝑓 (G)| ≤ 2R(F |G1, · · · ,G𝑈 )+3
√︂

(𝑏 − 𝑎)2 log(2/𝜖)
2𝑈

(14)

where ˆP denotes the empirical distribution of the sample, andR(F |G1,

· · · ,G𝑈 ) denotes the empirical Rademacher complexity of the func-
tion class F .

In our scenario, we denote the empirical data distribution in G𝑏𝑎
as

ˆP, the empirical data distribution of the enriched support set S′

from the meta-test task as
ˆQ, and the expected data distribution

of the query set Q as Q, respectively. Then, essentially, we aim to

minimize the 𝛾F ( ˆP,Q), which satisfies the following equation:

𝛾F ( ˆP,Q) = sup

𝑓 ∈F
|E

ˆP 𝑓 (G) − EQ 𝑓 (G)| (15)

We can obtain the upper bound of 𝛾F ( ˆP,Q) by introducing the

following theorem [4, 39].

Theorem 1. For any function 𝑓 in a class F and 𝑓 (G) ∈ [𝑎, 𝑏],
suppose that training and testing data are independent and drawn
independent identically distributed (i.i.d.), with a probability at least
(1 − 𝜖) over the draws of the training and query samples,

𝛾F ( ˆP,Q) ≤ 𝛾F ( ˆP, ˆQ) + 2R(F |G1, · · · ,G𝑈 ) + 3

√︂
(𝑏 − 𝑎)2 log(2/𝜖)

2𝑈
(16)

where𝑈 = ℓ+𝑁𝐾 is the number of enriched support set andR(F |G1,

· · · ,G𝑈 ) is the empirical Rademacher complexity of the function class
F with respect to support graphs.

Proof.We can prove the above theorem as follows:

𝛾F ( ˆP,Q) = sup

𝑓 ∈F
|E

ˆP 𝑓 (G) − EQ 𝑓 (G)|

= sup

𝑓 ∈F
|E

ˆP 𝑓 (G) + E ˆQ
𝑓 (G) − E

ˆQ
𝑓 (G) − EQ 𝑓 (G)|

≤
𝑎
sup

𝑓 ∈F

[
|E

ˆP 𝑓 (G) − E ˆQ
𝑓 (G)| + |E

ˆQ
𝑓 (G) − EQ 𝑓 (G)|

]
≤
𝑏

sup

𝑓 ∈F
|E

ˆP 𝑓 (G) − E ˆQ
𝑓 (G)| + sup

𝑓 ∈F
|E

ˆQ
𝑓 (G) − EQ 𝑓 (G)|

=
𝑐
𝛾F ( ˆP, ˆQ) + sup

𝑓 ∈F
|E

ˆP 𝑓 (G) − EP 𝑓 (G)|

≤
𝑑
𝛾F ( ˆP, ˆQ) + 2R(F |G1, · · · ,G𝑈 ) + 3

√︂
(𝑏 − 𝑎)2 log(2/𝜖)

2𝑈
(17)

Inequality (a) becomes valid by utilizing the triangle inequality.

Splitting the previous term gives rise to inequality (b). Leveraging

Eq.12 leads to the establishment of equality (c). Finally, applying

Lemma 1 results in the validity of equality (d).

From the Theorem 1, we can conclude that the generalization

error upper bound involves purely empirical quantities, i.e., the
empirical IPM and empirical Rademacher complexity. The first en-

try, i.e., empirical IPM, can be optimized by transferring pretrained

graph embeddings during testing. According to [12], the empirical

Rademacher complexity is inversely proportional to the number

of support graphs 𝑈 , i.e., R(F |G1, · · · ,G𝑈 ) ∝ 1

𝑈
. Assume all the

selected methods can optimize to achieve the optimal empirical

IPM, but for previous methods, since 𝑈 is particularly small, the

second and third terms become larger, increasing the generalization

error bound. While SMART explicitly increases𝑈 through mixup,

making the second and third terms significantly smaller, even ap-

proaching 0, thereby obtaining better generalization capability.

A.2 Dataset Visualization
We provide visualizations of typical examples from each dataset

here, for better clarity, as shown in Fig.3.

A.3 Baseline Descriptions
Supervised Models.
(I) Classical GNN models.
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Figure 3: Visualization of a graph contained in each dataset.

GCN [24]: It learns the hidden embeddings of nodes by defining

graph convolution operations in the spectral domain.

GAT [56]: It assigns different weights to the neighboring nodes

of the target node based on their importance in the neighborhood,

unlike treating each node equally by previous studies.

GIN [60]: It ensures that the aggregation and readout functions of

GNNs satisfy the injective property, thereby endowing GNNs with

powerful representation comparable to the WL test in distinguish-

ing graph structures.

(II) Classical meta-learning methods.
PN [47]: It learns the metric function in the embedding space that

allows data of the same category to be closer to its prototype while

being farther away from prototypes of different categories.

RN [51]: It learns to perform deep distance metric learning by

computing relation similarity scores between unlabeled data and

few labeled data.

MAML [11]: It computes the second-order gradients of the model

to find optimal initialization parameters, enabling faster adaptation

to new categories.

(III) Supervised few-shot graph classification models.
GSM [5]: It utilizes graph spectral measures to generate a set of

super-classes and constructs a corresponding super-graph to model

the relationships between classes.

AS-MAML [37]: It combines GNNs with MAML for fast adaption

on unseen test graphs, and proposes a step controller for improving

the robustness of meta-learner.

FAITH [58]: It captures task correlations by constructing graphs at

different granularities — instance-level, prototype-level, and task-

level graphs.

Unsupervised Models.
(I) Graph embeddings models.

AWE [21]: It proposes to leverage the anonymous walks strategy to

learn discriminative graph embeddings, which provides characteris-

tic graph traits and accurately reconstructs the network proximity

of nodes.

Graphlet [46]: It is a well-known graph kernel method that intro-

duces a kernel based on counting the occurrences of fixed-size sub-

graph patterns to compute the similarity between pairs of graphs.

WL [45]: It presents a neighborhood aggregation kernel for graphs

with discrete labels based on 1-dimensional WL to solve the graph

isomorphism problem.

Graph2Vec [41]: It follows the assumption that graphs with similar

subgraphs and structures have similar embeddings, and utilizes the

Skip-gram model of word2vec [38] to maximize the prediction of

the probability of subgraphs existing in the input graph.

(II) Graph contrastive learning models.
InfoGraph [48]: It learns generalizable graph-structured represen-

tations for downstream graph classification tasks by maximizing

the mutual information between graph-level representations and

representations of different scales of substructures.

GraphCL [64]: It introduces various graph augmentations applied

to the original graph to incorporate diverse priors, and develops a

graph contrastive learning framework for learning unsupervised

representation of graph-structed data.

MVGRL [16]: It performs graph contrastive learning by extracting

first-order neighbors and generalized graph diffusion from the in-

put graph to obtain different structural views and achieve better

performance in several downstream tasks.

BGRL [54]: It designs a graph contrastive learning architecture

that does not require graph augmentation or numerous negative

samples, yet still achieves high-quality latent representations.
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