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Abstract

This work aims at reconstructing 3D ultrasound volumes from sequences of free-
hand images acquired with standard 2D probes without any expensive or cumbers-
ome external tracking hardware. We extend our previous method based on deep
learning to integrate and also learn from measurements of an inertial measurement
unit (IMU). Our system is evaluated on a dataset of 600 in vivo ultrasound sweeps,
yielding accurate reconstructions with a median normalized drift of 5.2% even on
long sweeps with complex trajectories, hence paving the way towards translation
into clinical routine.

This extended abstract is adapted from a journal paper to appear [4].
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Figure 1: Our system turns 2D standard ultrasound clips into 3D volumes. The method is based on a
frame-to-frame motion estimation performed by a neural network with the help of an IMU.
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1 Introduction

Ultrasound imaging (US) combines a number of advantages that makes it a popular medical imaging
modality: it is affordable, safe for both patients and clinicians, and is convenient to set up and use.
Since a lot of clinical applications require three dimensional data (e.g. measurements, registration),
a significant effort has been dedicated to the development of 3D US systems. This is usually done
by acquiring a series of 2D images over the region of interest and then compounding them into an
actual 3D volume. Such a solution requires the knowledge of the relative position from one image to
the next, which is often achieved via special probes or external (electromagnetic or optical) tracking
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Figure 2: Architecture of our
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systems. Our goal is instead to build a system capable of reconstructing 3D ultrasound volumes from
a series of 2D images without any expensive or cumbersome hardware.

Such a system must therefore be able to estimate the motion of the probe between two successive
frames by using solely the image content of those frames (see Figure[T). This has been an active topic
of research since seminal papers introduced the speckle decorrelation approach [[1,2]. It relies on the
fact that two successive frames are highly correlated and consists in estimating a displacement field
by modeling the correlation of image patches as a function of their out-of-plane distance. Despite
recent improvements, this algorithm unfortunately still has not proved itself accurate enough to be
used in a clinical product. Recently, we proposed in [3] a completely different approach based on
deep learning. By alleviating the necessity of designing a complex physical model of the image
formation but instead relying on a statistical analysis of a large number of data, we were able to
demonstrate significant improvements in terms of accuracy of the reconstruction.

However, while this method works well for ultrasound sweeps acquired with a simple linear motion,
the accuracy decreases significantly whenever the probe motion contains out-of-plane rotational
components. This is because the motion-from-image estimation problem is ill-posed and it is for
instance very difficult (if not impossible) to understand in which direction an out-of-plane rotation
happens. In order to accommodate more realistic motions, we therefore propose to augment our
system with an inertial measurement unit (IMU), as suggested by [5]]. Such chips have a very small
footprint (less than 1cm) but contain a gyroscope that provides accurate estimates of the device
orientation. We will show that integrating such an information in the deep learning-based method is
straightforward and provides significant improvements.

2 Methods

Our method uses deep learning in an end-to-end approach. We design a neural network that takes as
input a pair of successive frames, and is trained to output a vector of 6 parameters (3 translations, 3
rotations) that represent the relative probe motion between the two frames. Following [3]], we also
use a pre-computed optical flow between the two images as additional input channels, which is a
valuable information about the in-plane motion.

The new information, namely the IMU orientation, can be integrated into such a network architecture
by simply concatenating the three rotation angles 9.V, 9IMU IMU measured by the IMU to the
penultimate layer of the network, as shown in Figure 2]

Network Training We acquired a large set of ultrasound sweeps on a Cicada®) research ultrasound
machine (Cephasonics, Inc.) with a linear probe composed of 128 elements at a frequency of 5 MHz,
onto which we mounted an Xsens MTi-3 (Xsens Technologies) IMU chip. In order to acquire a ground
truth, the probe was also equipped with an optical target tracked by a Stryker NAV3™ (Stryker
Co.) system originally intended for surgical navigation. This allowed us to record the position and
the orientation of the probe during the acquisitions with a much higher accuracy and precision than
standard electromagnetic systems. Using such data, the weights of the layers are then trained by
minimizing the squared Euclidean distance between the network output and the ground truth.
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Figure 3: Comparison of the trajectories reconstructed with and without incorporation of the IMU
information in the convolutional neural network on three sweeps with weaving and tilting motions.

Data Average absolute error [mm/°] Final drift [mm]
Flow IMU te ty t, [ 0, 6. min. med. max.
X v 6.56 | 7.23 1670 | 094 | 2.65 | 2.80 | 3.12 | 29.22 | 186.83
v X 8.89 | 6.61 5.73 5.21 7.38 | 4.01 322 | 27.34 139.02
v v 275 | 241 4.36 0.19 | 021 | 0.13 | 0.76 10.42 3522

Table 1: Error metrics depending on the input of the network (with or without optical flow channels
and IMU information). The parameter-wise errors are computed for each frame of each sweep with
respect to the absolute (not frame-to-frame) transformation. Final drift is the distance between the
estimated center and the true center position of the last frames.

Trajectory Estimation The trajectory reconstruction algorithm then consists in feeding the successive
pair of images to the neural network and chaining all the estimated transformations. The algorithm
can therefore be executed in real-time on a standard computer.

3 Experiments and Results

We conducted several studies on a large dataset composed of more than 600 real ultrasound sweeps
acquired on the forearms of 15 volunteers, with diverse trajectories that cover the potential motions
that can occur during an actual clinical exam. Each sweep contains in average 500 frames and spans
over 20 cm. This is, to the best of our knowledge, the largest and most clinically representative
database used in a study on freehand 3D ultrasound reconstruction without external tracking.

We trained multiple networks with/without the optical flow channels and with/without the IMU
measurements, following a two-fold cross-validation. The results are reported in Table[T]and clearly
indicate the benefits of using an IMU to get an accurate reconstruction of complex trajectories.
Qualitative results shown in Figure 3] also confirm our hypothesis. The median drift of the system
is around 10 mm after approximately 20 cm, which represents a 5.2% drift and a 3.4% error on
length measurements. The detail of all experiments will be available in our journal paper [4]. Finally,
a video demonstrating our first prototype is available at https://www.youtube.com/watch?v=
TXNFbzYKRZY and shows the potential of our system for clinical applications.
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