
A Unified Framework for Data Poisoning Attack to
Graph-based Semi-supervised Learning

Xuanqing Liu
Department of Computer Science

UCLA
xqliu@cs.ucla.edu

Si Si
Google Research

sisidaisy@google.com

Xiaojin Zhu
Department of Computer Science
University of Wisconsin-Madison

jerryzhu@cs.wisc.edu

Yang Li
Google Research

liyang@google.com

Cho-Jui Hsieh
Department of Computer Science

UCLA
chohsieh@cs.ucla.edu

Abstract

In this paper, we proposed a general framework for data poisoning attacks to graph-
based semi-supervised learning (G-SSL). In this framework, we first unify different
tasks, goals and constraints into a single formula for data poisoning attack in G-
SSL, then we propose two specialized algorithms to efficiently solve two important
cases — poisoning regression tasks under `2-norm constraint and classification
tasks under `0-norm constraint. In the former case, we transform it into a non-
convex trust region problem and show that our gradient-based algorithm with
delicate initialization and update scheme finds the (globally) optimal perturbation.
For the latter case, although it is an NP-hard integer programming problem, we
propose a probabilistic solver that works much better than the classical greedy
method. Lastly, we test our framework on real datasets and evaluate the robustness
of G-SSL algorithms. For instance, on the MNIST binary classification problem
(50000 training data with 50 labeled), flipping two labeled data is enough to make
the model perform like random guess (around 50% error).

1 Introduction

Driven by the hardness of labeling work, graph-based semi-supervised learning (G-SSL) [1, 2, 3]
has been widely used to boost the quality of models using easily accessible unlabeled data. The core
idea behind it is that both labeled and unlabeled data coexist in the same manifold. For instance,
in the transductive setting, we have label propagation [1] that transfers the label information from
labeled nodes to neighboring nodes according to their proximity. While in the inductive case, a
graph-based manifold regularizer can be added to many existing supervised learning models to
enforce the smoothness of predictions on the data manifold [4, 5]. G-SSL has received a lot of
attention; many of the applications are safety-critical such as drug discovery [6] and social media
mining [7].

We aim to develop systematic and efficient data poisoning methods for poisoning G-SSL models.
Our idea is partially motivated by the recent researches on the robustness of machine learning models
to adversarial examples [8, 9]. These works mostly show that carefully designed, slightly perturbed
inputs – also known as adversarial examples – can substantially degrade the performance of many
machine learning models. We would like to tell apart this problem from our setting: adversarial
attacks are performed during the testing phase and applied to test data [10, 11, 12, 13, 14, 15], whereas
data poisoning attack is conducted during training phase [16, 17, 18, 19, 20], and perturbations are

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

added to training data only. In other words, data poisoning attack concerns about how to imperceptibly
change the training data to affect testing performance. As we can imagine, this setting is more
challenging than testing time adversarial attacks due to the hardness of propagating information
through a sophisticated training algorithm.

Despite the efforts made on studying poisoning attack to supervised models [16, 17, 18, 19, 20], the
robustness of semi-supervised algorithms has seldom been studied and many related questions remain
unsolved. For instance, are semi-supervised learning algorithms sensitive to small perturbation of
labels? And how do we formally measure the robustness of these algorithms?

In this paper, we initiate the first systematic study of data poisoning attacks against G-SSL. We mainly
cover the widely used label propagation algorithm, but similar ideas can be applied to poisoning
manifold regularization based SSL as well (see Appendix 4.2). To poison semi-supervised learning
algorithms, we can either change the training labels or features. For label poisoning, we show it
is a constrained quadratic minimization problem, and depending on whether it is a regression or
classification task, we can take a continuous or discrete optimization method. For feature poisoning,
we conduct gradient-based optimization with group Lasso regularization to enforce group sparsity
(shown in Appendix 4.2). Using the proposed algorithms, we answer the questions mentioned above
with several experiments. Our contributions can be summarized as follows:

• We propose a framework for data poisoning attack to G-SSL that 1) includes both classification
and regression cases, 2) works under various kinds of constraints, and 3) assumes both complete
and incomplete knowledge of algorithm user (also called “victim”).

• For label poisoning to regression task, which is a nonconvex trust region problem, we design a
specialized solver that can find a global minimum in asymptotically linear time.

• For label poisoning attack to classification task, which is an NP-hard integer programming problem,
we propose a novel probabilistic solver that works in combination with gradient descent optimizer.
Empirical results show that our method works much better than classical greedy methods.

• We design comprehensive experiments using the proposed poisoning algorithms on a variety of
problems and datasets.

In what follows, we refer to the party running poisoning algorithm as the attacker, and the party doing
the learning and inference work as the victim.

2 Related Work

Adversarial attacks have been extensively studied recently. Many recent works consider the test
time attack, where the model is fixed, and the attacker slightly perturbs a testing example to change
the model output completely [9]. We often formulate the attacking process as an optimization
problem [10], which can be solved in the white-box setting. In this paper, we consider a different
area called data poisoning attack, where we run the attack during training time — an attacker can
carefully modify (or add/remove) data in the training set so that the model trained on the poisoned
data either has significantly degraded performance [18, 16] or has some desired properties [21, 19].
As we mentioned, this is usually harder than test time attacks since the model is not predetermined.
Poisoning attacks have been studied in several applications, including multi-task learning [20], image
classification [21], matrix factorization for recommendation systems [19] and online learning [22].
However, they did not include semi-supervised learning, and the resulting algorithms are quite
different from us.

To the best of our knowledge, [23, 24, 25] are the only related works on attacking semi-supervised
learning models. They conduct test time attacks to Graph Convolutional Network (GCN). In
summary, their contributions are different from us in several aspects: 1) the GCN algorithm is quite
different from the classical SSL algorithms considered in this paper (e.g. label propagation and
manifold regularization). Notably, we only use feature vectors and the graph will be constructed
manually with kernel function. 2) Their works are restricted to testing time attacks by assuming the
model is learned and fixed, and the goal of attacker is to find a perturbation to fool the established
model. Although there are some experiments in [24] on poisoning attacks, the perturbation is still
generated from test time attack and they did not design task-specific algorithms for the poisoning in
the training time. In contrast, we consider the data poisoning problem, which happens before the
victim trains a model.

2

3 Data Poisoning Attack to G-SSL

3.1 Problem setting

We consider the graph-based semi-supervised learning (G-SSL) problem. The input include labeled
data Xl ∈ Rnl×d and unlabeled data Xu ∈ Rnu×d, we define the whole features X = [Xl;Xu].
Denoting the labels of Xl as yl, our goal is to predict the labels of test data yu. The learner
applies algorithm A to predict yu from available data {Xl,yl,Xu}. Here we restrict A to label
propagation method, where we first generate a graph with adjacency matrix S from Gaussian kernel:
Sij = exp(−γ‖xi − xj‖2), where the subscripts xi(j) represents the i(j)-th row of X . Then the
graph Laplacian is calculated by L = D − S, where D = diag{∑n

k=1 Sik} is the degree matrix.
The unlabeled data is then predicted through energy minimization principle [2]

min
ŷ

1

2

∑
i,j

Sij(ŷi − ŷj)2 = ŷᵀLŷ, s.t. ŷ:l = yl. (1)

The problem has a simple closed form solution ŷu = (Duu − Suu)−1Sulyl, where we define
Duu = D[0:u,0:u], Suu = S[0:u,0:u] and Sul = S[0:u,0:l]. Now we consider the attacker who wants
to greatly change the prediction result yu by perturbing the training data {Xl,yl} by small amounts
{∆x, δy} respectively, where ∆x ∈ Rnl×d is the perturbation matrix , and δy ∈ Rnl is a vector. This
seems to be a simple problem at the first glance, however, we will show that the problem of finding
optimal perturbation is often intractable, and therefore provable and effective algorithms are needed.
To sum up, the problem have several degrees of freedom:

• Learning algorithm: Among all graph-based semi-supervised learning algorithms, we primarily
focus on the label propagation method; however, we also discuss manifold regularization method
in Appendix 4.2.

• Task: We should treat the regression task and classification task differently because the former
is inherently a continuous optimization problem while the latter can be transformed into integer
programming.

• Knowledge of attacker: Ideally, the attacker knows every aspect of the victim, including training
data, testing data, and training algorithms. However, we will also discuss incomplete knowledge
scenario; for example, the attacker may not know the exact value of hyper-parameters.

• What to perturb: We assume the attacker can perturb the label or the feature, but not both. We
made this assumption to simplify our discussion and should not affect our findings.

• Constraints: We also assume the attacker has limited capability, so that (s)he can only make small
perturbations. It could be measured `2-norm or sparsity.

3.2 Toy Example

Positive

Negative

Unlabel

Before Attack

After Attack

flip the label
of node i

node i

Figure 1: We show a toy example that
illustrates the main idea of the poisoning
attack against SSL. By flipping just one
training data from positive to negative,
the prediction of the whole shaded area
will be changed.

We show a toy example in Figure 1 to motivate the data
poisoning attack to graph semi-supervised learning (let
us focus on label propagation in this toy example). In
this example, the shaded region is very close to node-i
and yet quite far from other labeled nodes. After running
label propagation, all nodes inside the shaded area will
be predicted to be the same label as node-i. That gives
the attacker a chance to manipulate the decision of all
unlabeled nodes in the shaded area at the cost of flipping
just one node. For example, in Figure 1, if we change
node-i’s label from positive to negative, the predictions in
the shaded area containing three nodes will also change
from positive to negative.

Besides changing the labels, another way to attack is to per-
turb the featuresX so that the graph structure S changes
subtly (recall the graph structure is constructed based on
pair-wise distances). For instance, we can change the fea-
tures so that node i is moved away from the shaded region,
while more negative label points are moved towards the

3

shaded area. Then with label propagation, the labels of the shaded region will be changed from
positive to negative as well. We will examine both cases in the following sections.

3.3 A unified framework

The goal of poisoning attack is to modify the data points to maximize the error rate (for classification)
or RMSE score (for regression); thus we write the objective as

min
δy∈R1

∆x∈R2

−1

2

∥∥∥g((D′uu−S′uu)−1S′ul(yl + δy)
)
− h(yu)

∥∥∥2

2
s.t. {D′,S′} = Kerγ(Xl + ∆x). (2)

To see the flexibility of Eq. (2) in modeling different tasks, different knowledge levels of attackers or
different budgets, we decompose it into following parts that are changeable in real applications:

• R1/R2 are the constraints on δy and ∆x. For example, R1 = {‖δy‖2 ≤ dmax} restricts the
perturbation δy to be no larger than dmax; while R1 = {‖δy‖0 ≤ cmax} makes the solution to
have at most cmax non-zeros. As to the choices of R2, besides `2 regularization, we can also
enforce group sparsity structure, where each row of ∆x could be all zeros.

• g(·) is the task dependent squeeze function, for classification task we set g(x) = sign(x) since the
labels are discrete and we evaluate the accuracy; for regression task it is identity function g(x) = x,
and `2-loss is used.

• h(·) controls the knowledge of unlabeled data. If the adversary knows the ground truth very well,
then we simply put h(yu) = yu; otherwise one has to estimate it from Eq. (1), in other words,
h(yu) = ŷu = g

(
(Duu − Suu)−1Sulyl

)
.

• Kerγ is the kernel function parameterized by γ, we choose Gaussian kernel throughout.
• Similar to S, the new similarity matrix S′ is generated by Gaussian kernel with parameter γ,

except that it is now calculated upon poisoned dataXl + ∆x.
• Although not included in this paper, we can also formulate targeted poisoning attack problem by

changing min to max and let h(yu) be the target.

There are two obstacles to solving Eq. 2, that make our algorithms non-trivial. First, the problem is
naturally non-convex, making it hard to determine whether a specific solution is globally optimal;
secondly, in classification tasks where our goal is to maximize the testing time error rate, the objective
is non-differentiable under discrete domain. Besides, even with hundreds of labeled data, the domain
space can be unbearably big for brute force search and yet the greedy search is too myopic to find a
good solution (as we will see in experiments).

In the next parts, we show how to tackle these two problems separately. Specifically, in the first part,
we propose an efficient solver designed for data poisoning attack to the regression problem under
various constraints. Then we proceed to solve the discrete, non-differentiable poisoning attack to the
classification problem.

3.4 Regression task, (un)known label

We first consider the regression task where only label poisoning is allowed. This simplifies Eq. (2) as

min
‖δy‖2≤dmax


−1

2

∥∥∥(Duu − Suu)−1Sulδy

∥∥∥2

2
(estimated label) (3a)

−1

2

∥∥∥(Duu − Suu)−1Sul(yl + δy)− yu
∥∥∥2

2
(true label) (3b)

Here we used the fact that ŷu = Kyl, where we define K = (Duu − Suu)−1Sul. We can solve
Eq. (3a) by SVD; it’s easy to see that the optimal solution should be δy = ±dmaxv1 and v1 is the
top right sigular vector if we decompose (Duu − Suu)−1Sul = UΣV ᵀ. However, (3b) is less
straightforward, in fact it is a non-convex trust region problem, which can be generally formulated as

min
‖z‖2≤dmax

f(z) =
1

2
zᵀHz + gᵀz, H is indefinite. (4)

Our case (3b) can thus be described as H = −KᵀK � 0 and g = Kᵀ(yu − ŷu). Recently [26]
proposed a sublinear time solver that is able to find a global minimum in O(M/

√
ε) time. Here

4

Algorithm 1: Trust region problem solver

Data: Vector g, symmetric indefinite matrixH for problem min‖z‖≤1
1
2z

ᵀHz + gᵀz.
Result: Approximate solution z∗.

1 Initialize z0 = −0.5 g
‖g‖ and step size η;

/* Phase I: iterate inside sphere ‖zt‖ < 1 */
2 while ‖zt‖ < 1 do
3 zt+1 = zt − η(Hzt + g);
4 end
/* Phase II: iterate on the sphere ‖zt‖ = 1 */

5 zt′ = zt;
6 while t < max_iter do
7 Choose αt′ by line search and do the following projected gradient descent on sphere;

8 zt′+1 =
zt′−αt′ (Id−zt′zᵀ

t′)(Hzt′+g)

‖zt′−αt′ (Id−zt′zᵀ
t′)(Hzt′+g)‖ ;

9 end
10 Return zmax_iter

we propose an asymptotic linear algorithm based purely on gradient information, which is stated in
Algorithm 1 and Theorem 2. In Algorithm 1 there are two phases, in the following theorems, we
show that the phase I ends within finite iterations, and phase II converges with an asymptotic linear
rate. We postpone the proof to Appendix 1.

Theorem 1 (Convergent) Suppose the operator norm ‖H‖op = β, by choosing a step size η < 1/β

with initialization z0 = −α g
‖g‖ , 0 < α < min(1, ‖g‖

3

|gᵀHg|). Then iterates {zt} generated from
Algorithm 1 converge to the global minimum.

Lemma 1 (Finite phase I) SinceH is indefinite, λ1 = λmin(H) < 0, and v1 is the corresponding
eigenvector. Denote a(1) = aᵀv1 is the projection of any a onto v1, let T1 be number of iterations in
phase I of Algorithm 1, then:

T1 ≤ log(1− ηλ1)−1
[

log
(1

η|g(1)| −
1

ηλ1

)
− log

(−z(1)
0

ηg(1)
− 1

ηλ1

)]
. (5)

Theorem 2 (Asymptotic linear rate) Let {zt} be an infinite sequence of iterates generated by
Algorithm 1, suppose it converges to z∗ (guaranteed by Theorem 1), let λH,min and λH,max be the
smallest and largest eigenvalues of H . Assume that z∗ is a local minimizer then λH,min > 0 and
given r in the interval (r∗, 1) with r∗ = 1 −min

(
2σᾱλH,min, 4σ(1 − σ)β

λH,min

λH,max

)
, ᾱ, σ are line

search parameters. There exists an integer K such that:

f(zt+1)− f(z∗) ≤ r
(
f(zt)− f(z∗)

)
for all t ≥ K.

3.5 Classification task

As we have mentioned, data poisoning attack to classification problem is more challenging, as we can
only flip an unnoticeable fraction of training labels. This is inherently a combinatorial optimization
problem. For simplicity, we restrict the scope to binary classification so that yl ∈ {−1,+1}nl , and the
labels are perturbed as ỹl = yl�δy , where� denotes Hadamard product and δy = [±1,±1, . . . ,±1].
For restricting the amount of perturbation, we replace the norm constraint in Eq. (3a) with integer
constraint

∑nl

i=1 I{δy [i]=−1} ≤ cmax, where cmax is a user pre-defined constant. In summary, the
final objective function has the following form

min
δy∈{+1,−1}nl

−1

2

∥∥∥g(K(yl � δy)
)
− (yu or ŷu)

∥∥∥2

, s.t.
∑nl

i=1
I{δy [i]=−1} ≤ cmax, (6)

where we define K = (Duu − Suu)−1Sul and g(x) = sign(x), so the objective function directly
relates to error rate. Notice that the feasible set contains around

∑cmax

k=0

(
nl

k

)
solutions, making it

5

almost impossible to do an exhaustive search. A simple alternative is greedy search: first initialize
δy = [+1,+1, . . . ,+1], then at each time we select index i ∈ [nl] and try flip δy[i] = +1 → −1,
such that the objective function (6) decreases the most. Next, we set δy[i] = −1. We repeat this
process multiple times until the constraint in (6) is met.

Doubtlessly, the greedy solver is myopic. The main reason is that the greedy method cannot explore
other flipping actions that appear to be sub-optimal within the current context, despite that some
sub-optimal actions might be better in the long run. Inspired by the bandit model, we can imagine
this problem as a multi-arm bandit, with nl arms in total. And we apply a strategy similar to ε-greedy:
each time we assign a high probability to the best action but still leave non-zero probabilities to other
“actions”. The new strategy can be called probabilistic method, specifically, we model each action
δy = ±1 as a Bernoulli distribution, the probability of “flipping” is P [δy = −1] = α. The new loss
function is just an expectation over Bernoulli variables

min
α

{
L(α) := −1

2
E

z∼B(1,α)

[∥∥g(K(yl � z)
)
− (yu or ŷu)

∥∥2
]

+
λ

2
· ‖α‖22

}
. (7)

Here we replace the integer constraint in Eq. 6 with a regularizer λ2 ‖α‖22, the original constraint is
reached by selecting a proper λ. Once problem (7) is solved, we craft the actual perturbation δy by
setting δy[i] = −1 if α[i] is among the top-cmax largest elements.

To solve Eq. (7), we need to find a good gradient estimator. Before that, we replace g(x) = sign(x)
with tanh(x) to get a continuously differentiable objective. We borrow the idea of “reparameterization
trick” [27, 28] to approximate B(1,α) by a continuous random vector

z , z(α,∆G) =
2

1 + exp
(

1
τ

(
log α

1−α + ∆G

)) − 1 ∈ (−1, 1), (8)

where ∆G ∼ g1 − g2 and g1,2
iid∼ Gumbel(0, 1) are two Gumbel distributions. τ is the temperature

controlling the steepness of sigmoid function: as τ → 0, the sigmoid function point-wise converges
to a stair function. Plugging (8) into (7), the new loss function becomes

L(α) := −1

2
E

∆G

[∥∥g(K(yl � z(α,∆G))
)
− (yu or ŷu)

∥∥2
]

+
λ

2
· ‖α‖22. (9)

Therefore, we can easily obtain an unbiased, low variance gradient estimator via Monte Carlo
sampling from ∆G = g1 − g2, specifically

∂L(α)

∂α
≈ −1

2

∂

∂α

∥∥g(K(yl � z(α,∆G))
)
− (yu or ŷu)

∥∥2
+ λα. (10)

Based on that, we can apply many stochastic optimization methods, including SGD and Adam [29],
to finalize the process. In the experimental section, we will compare the greedy search with our
probabilistic approach on real data.

4 Experiments

In this section, we will show the effectiveness of our proposed data poison-
ing attack algorithms for regression and classification tasks on graph-based SSL.

Table 1: Dataset statistics. Here n is the total num-
ber of samples, d is the dimension of feature vector
and γ∗ is the optimal γ in validation. mnist17 is
created by extracting images for digits ‘1’ and ‘7’
from standard mnist dataset.

Name Task n d γ∗

cadata Regression 8,000 8 1.0
E2006 Regression 19,227 150,360 1.0

mnist17 Classification 26,014 780 0.6
rcv1 Classification 20,242 47,236 0.1

4.1 Experimental settings and baselines

We conduct experiments on two regression and
two binary classification datasets1. The meta-
information can be found in Table 4. We use a
Gaussian kernel with width γ to construct the
graph. For each data, we randomly choose nl
samples as the labeled set, and the rest are un-
labeled. We normalize the feature vectors by

1Publicly available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

6

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

x′ ← (x − µ)/σ, where µ is the sample mean, and σ is the sample variance. For regression
data, we also scale the output by y′ ← (y − ymin)/(ymax − ymin) so that y′ ∈ [0, 1]. To evaluate
the performance of label propagation models, for regression task we use RMSE metric defined
as RMSE =

√
1
nu

∑nu

i=1(yi − ŷi)2, while for classification tasks we use error rate metric. For
comparison with other methods, since this is the first work on data poisoning attack to G-SSL,
we proposed several baselines according to graph centrality measures. The first baseline is random
perturbation, where we randomly add Gaussian noise (for regression) or Bernoulli noise (for regres-
sion) to labels. The other two baselines based on graph centrality scores are more challenging, they
are widely used to find the “important” nodes in the graph. Intuitively, we need to perturb “important”
nodes to attack the model, and we decide the importance by node degree or PageRank. We explain
the baselines with more details in the appendix.

4.2 Effectiveness of data poisoning to G-SSL

In this experiment, we consider the white-box setting where the attacker knows not only the ground
truth labels yu but also the correct hyper-parameter γ∗. We thus apply our proposed label poisoning
algorithms in Section 3.4 and 3.5 to attack regression and classification tasks, respectively. In
particular, we apply `2 constraint for perturbation δy in the regression task and use the greedy method
in the classification task. The results are shown in Figure 2, as we can see in this figure, for both

0.0 2.5 5.0 7.5

dmax

0.175

0.200

0.225

0.250

0.275

0.300

R
M

SE

cadata
nl = 500
nl = 1000
nl = 2000

0 2 4

dmax

0.10

0.15

0.20

0.25

R
M

SE

E2006
nl = 100
nl = 300
nl = 700

0.0 2.5 5.0 7.5
cmax

0

10

20

30

40

50
Er

ro
r

ra
te

(%
)

mnist17
nl = 50
nl = 100
nl = 200

0.0 2.5 5.0 7.5
cmax

10

20

30

40

Er
ro

r
ra

te
(%

)

rcv1
nl = 500
nl = 1000
nl = 3000

0 2 4

dmax

0.20

0.22

0.24

0.26

0.28

R
M

SE

cadata
Poisoning
Noise
Degree
PageRank

0 1 2 3

dmax

0.100

0.125

0.150

0.175

0.200

0.225

R
M

SE

E2006
Poisoning
Noise
Degree
PageRank

0.0 2.5 5.0 7.5
cmax

0

10

20

30

40

50

Er
ro

r
ra

te
(%

)

mnist17
Poisoning
Noise
Degree
PageRank

0.0 2.5 5.0 7.5
cmax

10

15

20

25

30
Er

ro
r

ra
te

(%
)

rcv1
Poisoning
Noise
Degree
PageRank

Figure 2: Top row: testing the effectiveness of poisoning algorithms on four datasets shown in
Table (4). The left two datasets are regression tasks, and we report the RMSE measure. The right two
datasets are classification tasks in which we report the error rate. For each dataset, we repeat the same
attacking algorithm w.r.t. different nl’s. Bottom row: compare our poisoning algorithm with three
baselines (random noise, degree-based attack, PageRank based attack). We follow our convention
that dmax is the maximal `2-norm distortion, and cmax is the maximal `0-norm perturbation.

regression and classification problems, small perturbations can lead to vast differences: for instance,
on cadata, the RMSE increases from 0.2 to 0.3 when applied a carefully designed perturbation
‖δy‖ = 3 (this is very small compared with the norm of label ‖yl‖ ≈ 37.36); More surprisingly, on
mnist17, the accuracy can drop from 98.46% to 50% by flipping just 3 nodes. This phenomenon
indicates that current graph-based SSL, especially the label propagation method, can be very
fragile to data poisoning attacks. On the other hand, using different baselines (shown in Figure 2,
bottom row), the accuracy does not decline much, this indicates that our proposed attack algorithms
are more effective than centrality based algorithms.

Moreover, the robustness of label propagation is strongly related to the number of labeled data nl: for
all datasets shown in Figure 2, we notice that the models with larger nl tend to be more resistant to
poisoning attacks. This phenomenon arises because, during the learning process, the label information
propagates from labeled nodes to unlabeled ones. Therefore even if a few nodes are “contaminated”
during poisoning attacks, it is still possible to recover the label information from other labeled nodes.

7

Hence this experiment can be regarded as another instance of “no free lunch” theory in adversarial
learning [30].

4.3 Comparing poisoning with and without truth labels

0 2 4

dmax

0.20

0.22

0.24

0.26

0.28

R
M

SE

cadata

w/o yu

w/ yu

0 1 2 3

dmax

0.100

0.125

0.150

0.175

0.200

0.225

R
M

SE

E2006

w/o yu

w/ yu

0.0 2.5 5.0 7.5
cmax

0

10

20

30

40

50

Er
ro

r
ra

te
(%

)

mnist17

w/o yu

w/ yu

0.0 2.5 5.0 7.5
cmax

10

20

30

40

Er
ro

r
ra

te
(%

)

rcv1

w/o yu

w/ yu

Figure 3: Comparing the effectiveness of label poisoning attack with and without knowing the ground
truth labels of unlabeled nodes yu. Interestingly, even if the attacker is using the estimated labels ŷu,
the effectiveness of the poisoning attack does not degrade significantly.

We compare the effectiveness of poisoning attacks with and without ground truth labels yu. Recall
that if an attacker does not hold yu, (s)he will need to replace it with the estimated values ŷu. Thus
we expect a degradation of effectiveness due to the replacement of yu, especially when ŷu is not
a good estimation of yu. The result is shown in Figure 3. Surprisingly, we did not observe such
phenomenon: for regression tasks on cadata and E2006, two curves are closely aligned despite that
attacks without ground truth labels yu are only slightly worse. For classification tasks on mnist17
and rcv1, we cannot observe any difference, the choices of which nodes to flip are exactly the same
(except the cmax = 1 case in rcv1). This experiment provides a valuable implication that hiding the
ground truth labels cannot protect the SSL models, because the attackers can alternatively use the
estimated ground truth ŷu.

4.4 Comparing greedy and probabilistic method

0 10 20 30
cmax

10

20

30

40

Er
ro

r
ra

te
(%

)

rcv1

Greedy
Probablistic

0 10 20 30
cmax

−2

0

2

4

6

R
el

at
iv

e
er

ro
r

ra
te

(%
)

rcv1

Probablistic

Figure 4: Comparing the relative performance of three approximate solvers to discrete optimization
problem (6). For clarity, we also show the relative performance on the right (probabilistic − greedy).

In this experiment, we compare the performance of three approximate solvers for problem (6) in
Section 3.5, namely greedy and probabilistic methods. We choose rcv1 data as oppose to mnist17
data, because rcv1 is much harder for poisoning algorithm: when nl = 1000, we need cmax ≈ 30
to make error rate ≈ 50%, whilst mnist17 only takes cmax = 5. For hyperparameters, we set
cmax = {0, 1, . . . , 29}, nl = 1000, γ∗ = 0.1. The results are shown in Figure 4, we can see that
for larger cmax, greedy method can easily stuck into local optima and inferior than our probabilistic
based algorithms.

4.5 Sensitivity analysis of hyper-parameter

8

2−8 2−5 2−2 21

γadv

0.216

0.218

0.220

0.222
R

M
SE

cadata, γtrue = 1.0, nl = 1000

w/o yu

w/ yu

Figure 5: Experiment result on imperfect esti-
mations of γ∗.

Since we use the Gaussian kernel to construct the
graph, there is an important hyper-parameter γ (ker-
nel width) that controls the structure of the graph
defined in (1), which is often chosen empirically by
the victim through validation. Given the flexibility of
γ, it is thus interesting to see how the effectiveness of
the poisoning attack degrades with the attacker’s im-
perfect estimation of γ. To this end, we suppose the
victim runs the model at the optimal hyperparameter
γ = γ∗, determined by validation, while the attacker
has a very rough estimation γadv ≈ γ∗. We conduct
this experiment on cadata when the attacker knows
or does not know the ground truth labels yu, the re-
sult is exhibited in Figure 5. It shows that when the
adversary does not have exact information of γ, it
will receive some penalties on the performance (in
RMSE or error rate). However, it is entirely safe to
choose a smaller γadv < γtruth because the perfor-

mance decaying rate is pretty low. Take Figure 5 for example, even though γadv = 1
8γtruth, the

RMSE only drops from 0.223 to 0.218. On the other hand, if γadv is over large, the nodes become
more isolated, and thus the perturbations are harder to propagate to neighbors.

5 Conclusion

We conduct the first comprehensive study of data poisoning to G-SSL algorithms, including label
propagation and manifold regularization (in the appendix). The experimental results for regression
and classification tasks exhibit the effectiveness of our proposed attack algorithms. In the future, it
will be interesting to study poisoning attacks for deep semi-supervised learning models.

Acknowledgement

Xuanqing Liu and Cho-Jui Hsieh acknowledge the support of NSF IIS-1719097, Intel faculty award,
Google Cloud and Nvidia. Zhu acknowledges NSF 1545481, 1561512, 1623605, 1704117, 1836978
and the MADLab AF COE FA9550-18-1-0166.

References
[1] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label

propagation. 2002.

[2] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pages 912–919, 2003.

[3] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning (chapelle,
o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3):542–542,
2009.

[4] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of machine learning
research, 7(Nov):2399–2434, 2006.

[5] Vikas Sindhwani, Partha Niyogi, Mikhail Belkin, and Sathiya Keerthi. Linear manifold regular-
ization for large scale semi-supervised learning.

[6] Ping Zhang, Fei Wang, Jianying Hu, and Robert Sorrentino. Label propagation prediction of
drug-drug interactions based on clinical side effects. Scientific reports, 5:12339, 2015.

9

[7] Michael Speriosu, Nikita Sudan, Sid Upadhyay, and Jason Baldridge. Twitter polarity classifi-
cation with label propagation over lexical links and the follower graph. In Proceedings of the
First workshop on Unsupervised Learning in NLP, pages 53–63. Association for Computational
Linguistics, 2011.

[8] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

[9] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[10] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 IEEE Symposium on Security and Privacy (SP), pages 39–57. IEEE, 2017.

[11] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-net
attacks to deep neural networks via adversarial examples. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[12] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

[13] Minhao Cheng, Jinfeng Yi, Huan Zhang, Pin-Yu Chen, and Cho-Jui Hsieh. Seq2sick: Evaluating
the robustness of sequence-to-sequence models with adversarial examples. arXiv preprint
arXiv:1803.01128, 2018.

[14] Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and Richard Harang. Crafting adver-
sarial input sequences for recurrent neural networks. In Military Communications Conference,
MILCOM 2016-2016 IEEE, pages 49–54. IEEE, 2016.

[15] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query-
efficient hard-label black-box attack: An optimization-based approach. In ICLR, 2019.

[16] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks on
machine learners. In AAAI, 2015.

[17] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
arXiv preprint arXiv:1703.04730, 2017.

[18] Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and Fabio Roli. Support
vector machines under adversarial label contamination. Neurocomputing, 160:53–62, 2015.

[19] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning attacks on
factorization-based collaborative filtering. In Advances in neural information processing
systems, pages 1885–1893, 2016.

[20] Mengchen Zhao, Bo An, Yaodong Yu, Sulin Liu, and Sinno Jialin Pan. Data poisoning attacks
on multi-task relationship learning. 2018.

[21] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[22] Yizhen Wang and Kamalika Chaudhuri. Data poisoning attacks against online learning. arXiv
preprint arXiv:1808.08994, 2018.

[23] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial
attack on graph structured data. In ICML, 2018.

[24] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on classification
models for graphs. In KDD, 2018.

[25] Xiaoyun Wang, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolutional networks
by adding fake nodes. arXiv preprint arXiv:1810.10751, 2018.

10

[26] Elad Hazan and Tomer Koren. A linear-time algorithm for trust region problems. Mathematical
Programming, 158(1-2):363–381, 2016.

[27] Michael Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradients.
arXiv preprint arXiv:1805.08498, 2018.

[28] George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein.
Rebar: Low-variance, unbiased gradient estimates for discrete latent variable models. In NIPS,
2017.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[30] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. 2018.

11

	Introduction
	Related Work
	Data Poisoning Attack to G-SSL
	Problem setting
	Toy Example
	A unified framework
	Regression task, (un)known label
	Classification task

	Experiments
	Experimental settings and baselines
	Effectiveness of data poisoning to G-SSL
	 Comparing poisoning with and without truth labels
	Comparing greedy and probabilistic method
	Sensitivity analysis of hyper-parameter

	Conclusion

