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ABSTRACT

Tracking particles in a collider is a challenging problem due to collisions, imper-
fections in sensors and the nonlinear trajectories of particles in a magnetic field.
Presently, the algorithms employed to track particles are best suited to capture lin-
ear dynamics. We believe that incremental optimization of current LHC (Large
Halidron collider) tracking algorithms has reached the point of diminishing re-
turns. These algorithms will not be able to cope with the 10-100x increase in
HL-LHC (high luminosity) data rates anticipated to exceed O(100) GB/s by 2025,
without large investments in computing hardware and software development or
without severely curtailing the physics reach of HL-LHC experiments. An op-
timized particle tracking algorithm that scales linearly with LHC luminosity (or
events detected), rather than quadratically or worse, may lead by itself to an order
of magnitude improvement in the track processing throughput without affecting
the track identification performance, hence maintaining the physics performance
intact. Here, we present preliminary results comparing traditional Kalman filter-
ing based methods for tracking versus an LSTM approach. We find that an LSTM
based solution does not outperform a Kalman fiter based solution, arguing for
exploring ways to encode apriori information.

1 INTRODUCTION

Deep Learning has played a phenomenal role in making advances in many fields such as computer
vision |Goodfellow et al.| (2014])), speech recognition Hinton et al.| (2012)) and robotics [Levine et al.
(2016) amongst other fields. While there has been some work on applying deep learning techniques
to searching for particles in high energy physics (HEP) Baldi et al.[{(2014) there has not yet been any
concerted effort in applying it to problems of tracking.

In this work, we explore the role of deep learning for problems of tracking in high energy physics
experiments. First, we present the complexities of the problem in detecting particles. Next, we
present preliminary results on the applications of LSTMs to tracking particles in a detector array.
We hope, with this work, to reach out to the broader machine learning community to both present
our findings and seek out methods for solving challenging problems in high energy physics .

2 THE PATTERN RECOGNITION PROBLEMS IN HIGH ENERGY PHYSICS
DETECTORS

In a typical HEP experiment, building-sized underground detectors collect TBs of data per second
coming from high-energy collisions of two particle beams. The detectors are composed of concen-
tric cylindrical layers of electronic sensors surrounding the collision region. Each collision event
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Figure 1: left Visualization of hits from trajectories from the ATLAS general-purpose LHC. The
figure shows a slice view of the detector ands hits on the various layers of the detectors. right a
schematic describing how a single particle generates hits that are used as inputs. The particle travels
from its origin and passes through pixel detectors which help form the seed for track fitting. The
particle then continues to travel through the various detector layers sometimes resulting in multiple
or missed hits in layers due to various physical interactions

consists of O(10?) particles that traverse the detectors in various directions and different charge,
energy, and momentum as seen in Figure[T} The topologies of the events offer insight into the nature
of the collisions, allowing to probe the properties of elementary particles and the fundamental laws
of nature on a statistical basis.

The most demanding pattern recognition task in HEP is to reconstruct the trajectories ("tracks”) of
millions of charged particles per second as they propagate through a tracking system of a detector.
Given a 3D image I(z,y, z) with triplets of inputs where each pixel has a binary value, with 1 sig-
nifying a hit on the detector layer, the pattern recognition task is to group together all hits generated
by each particle as seen in Figure[T] This task is made complicated by detector effects (such as noise
in the sensors and an imperfect magnetic field) as well by stochastic perturbations to the particle
trajectory derived from particle interactions with detector material.

The similarities in problems between those explored in computer vision, robotics and the HEP field
are obvious. The obvious differences lie in the fact that in the case of HEP-LHC typically we would
need to estimate the parameters of millions of tracks in parallel. Further, the required reliability of
a model is significantly higher. For example, the existing state of the art methods can detect tracks
with an efficiency between 90-99% depending of the particle type and its momentum.

3 MODELING

For the tracking problem, one is provided with a seed. A seed is a n-tuple of three points in 3D
space, where n is the minimum number of points required to fit a parametric curve to a set of points
in 3D.

Seed generation is a pattern recognition problem in of itself. But given the seed, our approach has
been to fit an LSTM to predict the location of the next hit. The loss function in this case is to
minimize the predicted hits across an entire sequence of a trajectory.

Input vectors are fed into LSTM units (at least 5 in number), the output of the LSTM units are
then fed into two fully connected layers which produce the prediction (or the next time-step). The
weights are then learnt through gradient descent.

We compare our method against a Kalman filter whose transition matrices are not learnt but manually
set with knowledge of the physics [Frhwirth| (1987). That is, we encode the transition matrices that
describe the dynamics in the latent space and their projections back onto the observation space based
on the approximated analytical forms that the particles are expected to take as they make their way
out of the detectors. Of further importance, these Kalman filters have unique transition matrices for
each detector layer to better capture the expressive nature of dynamics.
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Figure 2: For a given track (red), we compare the Kalman Filter solutions (blue) and the LSTM
solution (red). The three subplots show the comparision of R¢ vs z, z vs R and R vs R¢ (left)
Shows a case where the KF and LSTM solution very closely match the data. (middle) Compares
the LSTM and KF solution on a track where they differ the most.

Measurement \ Euclidean Distance

Meas - KF 0.208
Meas - LSTM 1.834

Table 1: Comparing average Euclidean distance between measurements and predictions from both
the Kalman Filter and LSTM

The limitations with these methods are that they inherently cannot capture non-linear dynamics and
the physics is known only up to an approximation that is further exacerbated by noisy measurements.
We wish to explore the role RNNs like LSTMs could play in modeling these dynamics.

4 DISCUSSION

Here we present a summary of our preliminary findings. Using the ACTS simulation software
we simulated around 50,000 charged particle tracks. From this, for convenience of analysis , we
sampled trajectories of step length 22 resulting in 16,275 samples. We sampled 200 examples to
form a test set. Each sample consists of three dimensions - R¢, z and R. R is the distance of the
detector from the origin determined by the geometry of the detector, ¢ is the angle swept across the
detector by the particle and finally z is a shift along the slice swept out by ¢.

We then fit an LSTM with 10 hidden units and two fully connected units of sizes 20 and 2 (since
R is known apriori for all tracks) to produce the prediction for the next time step. We used Adam
Optimizer |Kingma & Bal (2014) to train the weights with an initial learning rate set to 0.001. We
also experimented with changing the number of fully connected layers and the types of recurrent
network units (for e.g. GRUs with varying number of hidden units), although we make no claim for
an exhaustive search of these architectures.

We find that an LSTM based approach can filter states comparably in some cases to an ideal model
based on the Kalman Filter as seen in Figure 2| and Table|l} Yet, there still remains a large gap in
performance.

Our ideas moving forward is to look towards combining prior knowledge about the problem with
a learning based approach. For example, we hope to train models that have access to information
such as the magnetic field (say). Further we hope to explore models which can encode the geometry
of the detector to better be able to make predictions between layers?

Track fitting is just one step of the puzzle in high energy physics. The goal of our HEP.TrkX projec
is to prototype an end-to-end solution for the HL-LHC track pattern recognition challenge. Current
solutions for this have a combinatorial approach that would make the latency larger when the data
throughput is higher. The motivation for this submission is to seek advice and inputs from the larger
representation learning community on models and methods.

"https://heptrkx.github.io/
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