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Abstract

We discuss how distribution matching losses, such as those used in CycleGAN,
when used to translate images from one domain to another can lead to mis-diagnosis
of medical conditions. It seems appealing to use these methods for image trans-
lation from the source domain to the target domain without requiring paired data.
However, the way these models function is through matching the distribution of
the translated images to the target domain. This can cause issues especially when
the percentage of known and unknown labels (e.g. sick and healthy labels) differ
between the source and target domains. When the output of the model is an im-
age, current methods do not guarantee that the known and unknown labels have
been preserved. Therefore until alternative solutions are proposed to maintain the
accuracy of the translated features, such translated images should not be used for
medical interpretation (e.g. by doctors). However, recent papers are using these
models as if this is the goal.

1 Introduction
Generative Adversarial Networks (GANs) [1] have been used as an efficient and cheap method for
data generation through implicit distribution matching. Recently, adversarial approaches for un-paired
image translation between two domains have been proposed such as CycleGAN [2], and Adversarially
Learned Inference (ALI) [3]. In medical imaging, un-paired domain translation models such as
CycleGAN, have been used recently in translation tasks such as from MRI to CT. When translating
images from a source to a target domain these models are trained to match a target distribution by
any means necessary which includes hallucinating images by adding or removing image features.
This is particularly problematic when the source and target domains have un-proportional distribution
of known and unknown labels or features (e.g, being sick or healthy) which can change the image
label through such image translations and implicitly change the nature of the data. Due to such a bias,
we recommend until better solutions are proposed that maintain the vital information, such translated
images should not be used for medical diagnosis, since they can lead to mis-diagnosis of medical
conditions. This issue should be discussed because recently several papers have been published
performing image translation using distribution matching. The main motivation for many of these
approaches was to translate images from a source domain to a target domain such that they could be
later used for interpretation (e.g. by doctors). Applications include MR to CT [4; 5], CS-MRI [6; 7],
CT to PET [8], and automatic H&E staining [9].

We demonstrate the problem with a caricature example in Figure 1 where we cure cancer (in images)
and cause cancer (in images) using a CycleGAN that translates between Flair and T1 MRI samples.
In Figure 1(a) the model has been trained only on healthy T1 samples which learns to remove tumor
from the image. This model has learned to match the target distribution regardless of maintaining
features that are present in the image. We demonstrate below how these methods introduce a bias in
image translation due to matching the target distribution.
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(a) A translation removing tumors (b) A translation adding tumors

Figure 1: Examples of two CycleGANs trained to transform MRI images from Flair to T1 types. We show
healthy images in green and tumor images in red. In (a) the model was trained with a bias to remove tumors.
Here the target distribution did not have any tumor examples so the transformation model was forced to remove
tumors in order to match the target distribution. In (b) the tumors were added to the test image to match the
distribution which is composed of only tumor examples during training.

2 Bias Impact
Let’s consider Da and Db as source and target domains. A CycleGAN learns a function t(a) that
maps a sample a from domain Da to domain Db. In this section, we construct training scenarios by
setting the source domain fixed (with 50% healthy and 50% tumor samples) and change the ratio
of healthy to tumor samples in the target domain Db to observe the impact of the bias in the target
domain composition on how the translation function t(a) learns to match the target distribution.

We use the BRATS2013 [10] synthetic MRI dataset since we can visually observe the tumors, it
is public, and has paired samples to evaluate the results. We split the dataset into 1400 training
samples and 300 holdout test samples. We translate in-between Flair and T1 domains. We train 11
different CycleGAN models, as shown in Figure 2, where we keep the percentage of tumor samples
in the source domain at 50% and change the percentage in the target domain from 0% to 100%. All
these models are trained with 700 images in the target domain (the maximum number of images of
only healthy and sick patients in the training set). In place of a doctor to classify the transformed
samples we use an impartial CNN classifier which obtains 80% accuracy on the test set. The results
of using this classifier on the generated T1 samples with different target domain composition is shown
in Figure 2. If there was no bias in matching the target distribution due to the composition of the
samples in the target domain, there would have been no difference in the percentage of the images
diagnosed with tumor as we change the target domain composition in Figure 2. Moreover, at no point
the translation is perfect even at the extreme of the plots. In Figure 3 we show how the translated
images in the test set look as we change the composition of the target domain. The cancer tumor
gradually appears and gets bigger from left to right. This is due to having the model match the target
domain distribution statistics regardless of maintaining the source domain information that is vital.

Figure 2: We plot the classifier prediction on 300 (53% tumor) unseen samples (holdout test set) as we vary the
distribution of tumor samples in the target domain from 0% to 100% of cycleGAN models. This correspond to
training 11 different models. We split the source domain of the holdout test set into healthy (left) and tumor
(right) and apply a classifier on the translated images. Green represents samples predicted as healthy and red
represents samples predicted with tumors. We observe that the percentage of the images diagnosed with tumors
increases as the percentage of tumor images in the target distribution increases.

3 Conclusion
In this work we discussed concerns about how distribution matching losses, such as those used in
CycleGAN, can lead to mis-diagnosis of medical conditions. We have presented evidence that when
an algorithm uses distribution matching for unpaired data translation, all known and unknown class
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Figure 3: Illustration of healthy (a) and tumor (b) class change through domain translation while changing the
ratio of the tumor samples in the target domain Db from 0% to 100%. We show images of the source domain
(Flair) on the left and the corresponding ground truth image in the target domain (T1) on the right.

labels may not be preserved. Therefore, these translated images should not be used for interpretation
(e.g. by doctors) without proper tools to verify the translation process. We illustrate this problem
using dramatic examples of tumors being added and removed from MRI images. We hope that future
methods will take steps to ensure that this bias does not influence the outcome of a medical diagnosis.
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