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ABSTRACT

In this paper we present a new ensemble method, called Boosted Residual Net-
works, which builds an ensemble of Residual Networks by growing the member
network at each round of boosting. The proposed approach combines recent de-
velopements in Residual Networks - a method for creating very deep networks by
including a shortcut layer between different groups of layers - with the Deep Incre-
mental Boosting, which has been proposed as a methodology to train fast ensem-
bles of networks of increasing depth through the use of boosting. We demonstrate
that the synergy of Residual Networks and Deep Incremental Boosting has better
potential than simply boosting a Residual Network of fixed structure or using the
equivalent Deep Incremental Boosting without the shortcut layers.

1 INTRODUCTION

Residual Networks, a type of deep network recently introduced in He et al. (2015a), are character-
ized by the use of shortcut connections (sometimes also called skip connections), which connect
the input of a layer of a deep network to the output of another layer positioned a number of levels
“above” it. The result is that each one of these shortcuts shows that networks can be build in blocks,
which rely on both the output of the previous layer and the previous block.

Residual Networks have been developed with many more layers than traditional Deep Networks,
in some cases with over 1000 blocks, such as the networks in He et al. (2016). A recent study in
Veit et al. (2016) compares Residual Networks to an ensemble of smaller networks. This is done
by unfolding the shortcut connections into the equivalent tree structure, which closely resembles an
ensemble. An example of this can be shown in Figure 1.

Figure 1: A Residual Network of N blocks can be unfolded into an ensemble of 2N − 1 smaller
networks.

Dense Convolutional Neural Networks Huang et al. (2016) are another type of network that makes
use of shortcuts, with the difference that each layer is connected to all its ancestor layers directly by
a shortcut. Similarly, these could be also unfolded into an equivalent ensemble.

True ensemble methods are often left as an afterthought in Deep Learning models: it is generally
considered sufficient to treat the Deep Learning method as a “black-box” and use a well-known
generic Ensemble method to obtain marginal improvements on the original results. Whilst this is
an effective way of improving on existing results without much additional effort, we find that it can
amount to a waste of computations. Instead, it would be much better to apply an Ensemble method
that is aware, and makes us of, the underlying Deep Learning algorithm’s architecture.

We define such methods as “white-box” Ensembles, which allow us to improve on the generalisation
and training speed compared to traditional Ensembles, by making use of particular properties of the
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base classifier’s learning algorithm and architecture. We propose a new such method, which we
call Boosted Residual Networks, which makes use of developments in Deep Learning, previous
other white-box Ensembles and combines several ideas to achieve improved results on benchmark
datasets.

Using a white-box ensemble allows us to improve on the generalisation and training speed by making
use of the knowledge of the base classifier’s structure and architecture. Experimental results show
that Boosted Residual Networks achieves improved results on benchmark datasets.

The next section presents the background on Deep Incremental Boosting. Then the proposed
Boosted Residual Networks method is described. Experiments and results are discussed next, and
the paper ends with conlusions.

2 BACKGROUND

Deep Incremental Boosting, introduced in Mosca & Magoulas (2016a), is an example of such white-
box ensemble method developed for building ensembles Convolutional Networks. The method
makes use of principles from transfer of learning, like for example those used in Yosinski et al.
(2014), applying them to conventional AdaBoost (Schapire (1990)). Deep Incremental Boosting
increases the size of the network at each round by adding new layers at the end of the network,
allowing subsequent rounds of boosting to run much faster. In the original paper on Deep Incremen-
tal Boosting Mosca & Magoulas (2016a), this has been shown to be an effective way to learn the
corrections introduced by the emphatisation of learning mistakes of the boosting process. The argu-
ment as to why this works effectively is based on the fact that the datasets at rounds s and t+ 1 will
be mostly similar, and therefore a classifier ht that performs better than randomly on the resampled
dataset Xt will also perform better than randomly on the resampled dataset Xt+1. This is under
the assumption that both datasets are sampled from a common ancestor set Xa. It is subsequently
shown that such a classifier can be re-trained on the differences between Xt and Xt+1.

This practically enables the ensemble algorithm to train the subsequent rounds for a considerably
smaller number of epochs, consequently reducing the overall training time by a large factor. The
original paper also provides a conjecture-based justification for why it makes sense to extend the
previously trained network to learn the “corrections” taught by the boosting algorithm. A high level
description of the method is shown in Algorithm 1, and the structure of the network at each round is
illustrated in Figure 3.

Algorithm 1 Deep Incremental Boosting

D0(i) = 1/M for all i
t = 0
W0 ← randomly initialised weights for first classifier
while t < T do

Xt ← pick from original training set with distribution Dt

ut ← create untrained classifier with additional layer of shape Lnew

copy weights from Wt into the bottom layers of ut

ht ← train ut classifier on current subset
Wt+1 ← all weights from ht

ǫt =
1
2

∑
(i,y)∈B Dt(i)(1− ht(xi, yi) + ht(xi, y))

βt = ǫt/(1− ǫt)

Dt+1(i) =
Dt(i)
Zt
· β(1/2)(1+ht(xi,yi)−ht(xi,y))

where Zt is a normalisation factor such that Dt+1 is a distribution
αt =

1
βt

t = t+ 1
end while
H(x) = argmaxy∈Y

∑T
t=1 logαtht(x, y)
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Figure 2: Illusration of subsequent rounds of DIB

3 CREATING THE BOOSTED RESIDUAL NETWORK

In this section we propose a method for generating Boosted Residual Networks. This works by
increasing the size of an original residual network by one residual block at each round of boosting.
The method achieves this by selecting an injection point index pi at which the new block is to be
added, which is not necessarily the last block in the network, and by transferring the weights from
the layers below pi in the network trained at the previous round of boosting.

Because the boosting method performs iterative re-weighting of the training set to skew the resample
at each round to emphasize the training examples that are harder to train, it becomes necessary to
utilise the entire ensemble at test time, rather than just use the network trained in the last round.
This has the effect that the Boosted Residual Networks cannot be used as a way to train a single
Residual Network incrementally. However, as we will discuss later, it is possible to alleviate this
situation by deriving an approach that uses bagging instead of boosting; therefore removing the
necessity to use the entire ensemble at test time. It is also possible to delete individual blocks from
a Residual Network at training and/or testing time, as presented in He et al. (2015a), however this
issue is considered out of the scope of this paper.

The iterative algorithm used in the paper is shown in Algorithm 2. At the first round, the entire
training set is used to train a network of the original base architecture, for a number of epochs n0.
After the first round, the following steps are taken at each subsequent round t:

• The ensemble constructed so far is evaluated on the training set to obtain the set errors ǫ, so
that a new training set can be sampled from the original training set. This is a step common
to all boosting algorithms.

• A new network is created, with the addition of a new block of layers Bnew immediately
after position pt, which is determined as an initial pre-determined position p0 plus an offset
i ∗ δp for all the blocks added at previous layers. This puts the new block of layers im-
mediately after the block of layers added at the previous round, so that all new blocks are
effectively added sequentially.

• The weights from the layers below pt are copied from the network trained at round t − 1
to the new network. This step allows to considerably shorten the training thanks to the
transfer of learning shown in Yosinski et al. (2014).

• The newly created network is subsequently trained for a reduced number of epochs nt>0.

• The new network is added to the ensemble following the traditional rules and weight αt

used in AdaBoost.

Figure 3 shows a diagram of how the Ensemble is constructed by deriving the next network at each
round of boosting from the network used in the previous round.
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Algorithm 2 Boosted Residual Networks

D0(i) = 1/M for all i
t = 0
W0 ← randomly initialised weights for first classifier
set initial injection position p0
while t < T do

Xt ← pick from original training set with distribution Dt

ut ← create untrained classifier with an additional block Bnew of pre-determined shape Nnew

determine block injection position pt = pt−1 + |Bnew|
connect the input of Bnew to the output of layer pt − 1
connect the output of Bnew and of layer pt − 1 to a merge layer mi

connect the merge layer to the remainder of the network
copy weights from Wt into the bottom layers l < pt of ut

ht ← train ut classifier on current subset
Wt+1 ← all weights from ht

ǫt =
1
2

∑
(i,y)∈B Dt(i)(1− ht(xi, yi) + ht(xi, y))

βt = ǫt/(1− ǫt)

Dt+1(i) =
Dt(i)
Zt
· β(1/2)(1+ht(xi,yi)−ht(xi,y))

where Zt is a normalisation factor such that Dt+1 is a distribution
αt =

1
βt

t = t+ 1
end while
H(x) = argmaxy∈Y

∑T
t=1 logαtht(x, y)

Figure 3: Illusration of subsequent rounds of BRN

We identified a number of optional variations to the algorithm that may be implemented in practice,
which we have empirically established as not having an impact on the overall performance of the
network. We report them here for completeness.

• Freezing the layers that have been copied from the previous round.

• Only utilising the weights distribution for the examples in the training set instead of resam-
pling, as an input to the training algorithm.

• Inserting the new block always at the same position, rather than after the previously-
inserted block (we found this to affect performance negatively).
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3.1 COMPARISON TO APPROXIMATE ENSEMBLES

While both Residual Networks and Densely Connected Convolutional Networks may be unfolded
into an equivalent ensemble, we note that there is a differentiation between an actual ensemble
method and an ensemble “approximation”. During the creation of an ensemble, one of the principal
factors is the creation of diversity: each base learner is trained independently, on variations (resam-
ples in the case of boosting algorithms) of the training set, so that each classifier is guaranteed to
learn a different function that represents an approximation of the training data. This is the enabling
factor for the ensemble to perform better in aggregate.

In the case of Densely Connected Convolutional Networks (DCCN) specifically, one may argue
that a partial unfolding of the network could be, from a schematic point of view, very similar to an
ensemble of incrementally constructed Residual Networks. We make the observation that, although
this would be correct, on top of the benefit of diversity, our method also provides a much faster
training methodology: the only network that is trained for a full schedule is the network created
at the first round, which is also the smallest one. All subsequent networks are trained for a much
shorter schedule, saving a considerable amount of time. Additionally, while the schematic may
seem identical, there is a subtle difference: each member network outputs a classification of its own,
which is then aggregated by weighted averaging, whilst in a DCCN the input of the final aggregation
layer is the output of each underlying set of layers. We conjecture that this aggressive dimensionality
reduction before the aggregation will have a regularising effect on the ensemble.

4 EXPERIMENTS AND DISCUSSION

Single Net AdaBoost DIB BRN

MNIST 99.41 % 99.41 % 99.47 % 99.53 %
CIFAR-10 89.12 % 89.74 % 90.83 % 90.85 %
CIFAR-100 67.25 % 68.18 % 68.56 % 69.04 %

Table 1: Test accuracy in the three bencharks for the methods compared.

In the experiments we used the MNIST, CIFAR-10 and CIFAR-100 datasets, and compared Boosted
Residual Networks (BRN) with an equivalent Deep Incremental Boosting (DIB) without the skip-
connections, AdaBoost with the equivalent Residual Network as its base classifier (AdaBoost), and
the single Residual Network (Single Net) In order to reduce noise, we aligned the random initialisa-
tion of all networks across experiments, by fixing the seeds for the random number generators, and
no dataset augmentation was used, both online and offline. Results are reported in Table 1, while
Figure 4 shows a side-by-side comparison of accuracy levels at each round of boosting for both DIB
and BRN on the MNIST and CIFAR-100 test sets. This figure illustrates how BRNs are able to
consistently outperform DIB, regardless of ensemble size, and although such differences still fall
within a Bernoulli confidence interval of 95%, we make the note that this does not take account of
the fact that all the random initialisations were aligned, so both methods started with the exact same
network.

Table 2 shows that this is achieved without significant changes in the training time1. The main speed
increase is due to the fact that the only network being trained with a full schedule is the first network,
which is also the smallest, whilst all other derived networks are trained for a much shorter schedule
(in this case only 10% of the original training schedule).

The initial network architectures for the first round of boosting are shown in Table 3a for MNIST,
and Table 3b for CIFAR-10 and CIFAR-100. It is worth mentioning that we used relatively sim-
ple network architectures that were fast to train, which still perform well on the datasets at hand,
with accuracy close to, but not comparable to, the state-of-the-art. This enabled us to test larger
Ensembles within an acceptable training time.

Training used the WAME method (Mosca & Magoulas (2016b)), which has been shown to be faster
than Adam and RMSprop, whilst still achieving comparable generalisation. This is thanks to a

1In some cases BRN is actually faster than DIB, but we believe this to be just noise due to external factors
such as system load.

5



Under review as a conference paper at ICLR 2017

ResNet AdaBoost DIB BRN

MNIST 115 min 442 min 202 min 199 min
CIFAR-10 289 min 1212 min 461 min 449 min
CIFAR-100 303 min 1473 min 407 min 448 min

Table 2: Training times comparison

64 conv, 5× 5
2× 2 max-pooling

128 conv, 5× 5
2× 2 max-pooling *

Dense, 1024 nodes
50% dropout

(a) MNIST

2× 96 conv, 3× 3
96 conv, 3× 3, 2× 2 strides
96 conv, 3× 3, 2× 2 strides
96 conv, 3× 3, 2× 2 strides

2× 2 max-pooling

2× 192 conv, 3× 3
192 conv, 3× 3, 2× 2 strides
192 conv, 3× 3, 2× 2 strides
192 conv, 3× 3, 2× 2 strides

2× 2 max-pooling *

192 conv, 3× 3
192 conv, 1× 1
10 conv, 1× 1

global average pooling
10-way softmax

(b) CIFAR-10 and CIFAR-100

Table 3: Network structures used in experiments. The layers marked with “*” indicate the location
after which we added the residual blocks.

specific weight-wise learning rate acceleration factor that is determined based only on the sign of

the current and previous partial derivative
∂E(x)
∂wij

. For the single Residual Network, and for the

networks in AdaBoost, we trained each member for 100 epochs. For Deep Incremental Boosting
and Boosted Residual Networks, we trained the first round for 50 epochs, and every subsequent
round for 10 epochs, and ran all the algorithms for 10 rounds of boosting, except for the single
network. The structure of each incremental block added to Deep Incremental Boosting and Boosted
Residual Networks at each round is shown in Table 4a for MNIST, and in Table 4b for CIFAR-10
and CIFAR-100. All layers were initialised following the reccommendations in He et al. (2015b).

Distilled Boosted Residual Network: DBRN In another set of experiments we tested the per-
formance of a Distilled Boosted Residual Network (DBRN). Distillation has been shown to be an
effective process for regularising large Ensembles of Convolutional Networks in Mosca & Magoulas
(2016c), and we have applied the same methodology to the proposed Boosted Residual Network.
For the distilled network structure we used the same architecture as that of the Residual Network
from the final round of boosting. Accuracy results in testing are presented in Table 5, and for com-
pleteness of comparison we also report the results for the distillation of DIB, following the same
procedure, as DDIB.

64 conv, 3× 3
Batch Normalization

ReLu activation

(a) MNIST

192 conv, 3× 3
Batch Normalization

ReLu activation
192 conv, 3× 3

Batch Normalization
ReLu activation

(b) CIFAR-10 and CIFAR-
100

Table 4: Structure of blocks added at each round of DIB and BRN.
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Figure 4: Round-by-round comparison of DIB vs BRN on the test set

DBRN DDIB

MNIST 99.49 % 99.44 %
CIFAR-10 91.11 % 90.66 %
CIFAR-100 66.63 % 65.91 %

Table 5: Comparative results in terms of testing accuracy.

Bagged Residual Networks: BARN We experimented with substituting the boosting algorithm
with a simpler bagging algorithm (Breiman (1996)) to evaluate whether it would be possible to only
use the network from the final round of bagging as an approximation of the Ensemble. We called this
the Bagged Approximate Residual Networks (BARN) method. We then also tested the performance
of the Distilled version of the whole Bagging Ensemble for comparison. The results are reported as
“DBARN”. The results are reported in Table 6. It is clear that trying to use the last round of bagging
is not comparable to using the entire Bagging ensemble at test time, or deriving a new distilled
network from it.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have derived a new ensemble algorithm specifically tailored to Convolutional Net-
works to generate Boosted Residual Networks. We have shown that this surpasses the performance
of a single Residual Network equivalent to the one trained at the last round of boosting, of an en-
semble of such networks trained with AdaBoost, and Deep Incremental Boosting on the MNIST and
CIFAR datasets, without using augmentation techniques.

We then derived and looked at a distilled version of the method, and how this can serve as an
effective way to reduce the test-time cost of running the Ensemble. We used Bagging as a proxy
to test generating the approximate Residual Network, which, with the parameters tested, does not
perform as well as the original Residual Network, BRN or DBRN.

Further experimentation of the Distilled methods presented in the paper, namely DBRN and
DBARN, is necessary to fully investigate their behaviour. This is indeed part of our work in the near
future. Additionally, the Residual Networks built in our experiments were comparatively smaller
than those that achieve state-of-the-art performance. Reaching state-of-the-art on specific bench-
mark datasets was not our goal, instead we intended to show that we developed a methodology that
makes it feasible to created ensembles of Residual Networks following a “white-box” approach to

BRN Bagging BARN DBARN

MNIST 99.50 % 99.55 % 99.29 % 99.36 %
CIFAR-10 90.56 % 91.43 % 88.47 % 90.63 %
CIFAR-100 69.04 % 68.15 % 69.42 % 66.16 %

Table 6: Test accuracy for BARN.
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significantly improve the training times and accuracy levels. Nevertheless, it might be appealing in
the future to evaluate the performance improvements obtained when creating ensembles of larger,
state-of-the-art, networks. Additional further investigation could also be conducted on the creation
of Boosted Densely Connected Convolutional Networks, by applying the same principle to DCCN
instead of Residual Networks.
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