
Interpreting Reinforcement Learning with Shapley
Values

Daniel Beechey, Thomas M. S. Smith, Özgür Şimşek
Department of Computer Science

University of Bath, United Kingdom
djeb20@bath.ac.uk

Abstract

For reinforcement learning systems to be widely adopted, their users must under-
stand and trust them. We present a theoretical analysis of explaining reinforcement
learning using Shapley values, following a principled approach from game theory
for identifying the contribution of individual players to the outcome of a cooperative
game. We call this general framework Shapley Values for Explaining Reinforce-
ment Learning (SVERL). Our analysis exposes the limitations of earlier uses of
Shapley values in reinforcement learning. We then develop an approach that uses
Shapley values to explain agent performance. In a variety of domains, SVERL
produces meaningful explanations that match and supplement human intuition.

1 Introduction

Reinforcement learning systems have potential for significant impact in real-world applications. To
be widely adopted, it is useful for these systems to not only perform well but also be explainable.

Methods for explaining reinforcement learning can be categorised as intrinsically interpretable or
post-hoc. Intrinsically interpretable approaches improve the transparency of models by substituting
an opaque model with a more understandable one, such as a decision tree. This approach often leads
to a reduction in representational power. In contrast, post-hoc methods hold no constraints on the
complexity of the model, treating it as a black box. Reinforcement learning systems with the largest
potential to positively benefit society depend on function approximators with large representational
power, such as deep neural networks. We therefore focus on post-hoc explanation methods.

An established, post-hoc explanation method for supervised learning uses Shapley values [1], a
principled approach from game theory for identifying the contribution of individual players to the
outcome of a cooperative game. Shapley values are the result of a rigorous mathematical formulation
that satisfies four axioms of fairness. In supervised learning, Shapley values explain a model by
expressing the contribution of individual features to the predictions of the model.

We analyse, from first principles, how Shapley values can be used to explain reinforcement learning.
We make three main contributions. First, we develop a theoretical framework for using Shapley values
in the context of reinforcement learning, showing that earlier uses of Shapley values in reinforcement
learning are incorrect or incomplete. Secondly, we consider which aspects of reinforcement learning
are important to explain, arguing that explaining agent performance is an important and overlooked
element. Thirdly, we develop a principled approach that identifies the contributions of state features
to the performance of an agent.

We call this general framework Shapley Values for Explaining Reinforcement Learning (SVERL). In
a variety of domains, SVERL produces meaningful explanations that match and supplement human
intuition.1

1This paper contains substantially the same content as an earlier work by the authors, titled Explaining
Reinforcement Learning with Shapley Values, presented at ICML 2023.

17th European Workshop on Reinforcement Learning (EWRL 2024).

2 Background

We model the interaction of an agent with its environment as a Markov Decision Process (MDP),
defined by the tuple (S,A, p, r, γ, p0), where S denotes the set of states, A the set of actions, p :
S × A × S → [0, 1] the transition dynamics, r : S × A → R the reward function, γ ∈ [0, 1]
the discount factor, and p0 : S → [0, 1] the initial state distribution. At decision stage t, t ≥ 0,
the agent observes the current state of the environment, st ∈ S, and executes action at ∈ A(st).
Consequently, the environment transitions to a new state, st+1 ∼ p(·|st, at), and returns reward rt+1

whose expected value is r(st, at). The objective is to learn a policy π that maximises the expected
return Eπ[Gt], where Gt =

∑∞
k=t γ

krk+1. The policy can be stochastic, π : S × A → [0, 1], or
deterministic, π : S → A. A state-value function, V π(s), gives the expected return from state s
when following policy π, V π(s) = Eπ[Gt|st = s]. A state-action value function, Qπ(s, a), gives
the expected return from state s if the agent executes action a and follows policy π thereafter,
Qπ(s, a) = Eπ[Gt|st = s, at = a]. The optimal state value function is denoted by V ∗ and the
optimal state-action value function by Q∗.

We assume that an environment has a set of n state features, F = {0, . . . , n − 1}, where we can
decompose the state space according to the state features, S = S0 × . . .× Sn−1, and each state can
be represented as an ordered set: s = {si|si ∈ Si}n−1

i=0 . For example, in a classic gridworld domain,
a state could be the agent’s location, with x and y coordinates as state features. Let C ⊂ F be a set of
observable state features. Then a partial observation of a state is the ordered set sC = {si|i ∈ C}.

Shapley values assign the contributions of individual players to the outcome of a cooperative game [1].
They are the unique solution to a set of mathematical axioms that specify fair distribution of credit
across players. A cooperative game is defined by a set F of players and a characteristic value function
v : 2|F| → R, where v (C) returns the outcome of the game when played by some coalition of players
C ⊆ F, with v(∅) = 0. The Shapley value of player i in the game (F, v) is:

ϕi (v) =
∑

C⊆F\{i}

|C|! (|F| − |C| − 1)!

|F|! · δ (i,C) , (1)

where δ (i,C) = v (C ∪ {i})− v (C) is the marginal gain in characteristic value when player i joins
coalition C. As an example, the employees of a company can be modelled as players in a game where
profit is the characteristic value function.

Shapley values have been adopted in machine learning to determine the contribution of features to
the predictions of supervised learning models [2]. Let fF : X → Y be a supervised learning model
defined over a set of n features, F = {0, . . . , n − 1}, such that X = X0 × . . . × Xn−1 and each
x ∈ X can be represented as an ordered set, x = {xi|xi ∈ Xi}n−1

i=0 . Then Shapley values show the
contribution of feature xi ∈ x to the target y = fF(x) for the single point x. As an example, when
predicting the quality of wine using features such as acidity, pH, and alcohol [3], the Shapley values
show how much each feature contributes to the predicted quality of a specific wine. This is done by
modelling the prediction at x as a game, where the features {x0, . . . , xn−1} are the players and the
target prediction y = fF(x) is the outcome of the game. Then the Shapley values ϕi(f,x), specifying
the contribution of feature xi to the prediction y = f(x), are computed using the characteristic value
function:

vf (C) := fC(x),
where C ⊆ F and fC(x) is the model’s prediction for the ordered set xC = {xi|i ∈ C}. The resulting
Shapley values satisfy fF(x) = vf (∅) +∑

i∈F ϕi(f,x).

Shapley values show each feature’s contribution to the change in prediction when all features are
known, fF(x), compared to when no features are known, f∅(x) = vf (∅). In game theory, the
value of a game with no players is zero. Hence v(∅) = 0. In supervised learning, the prediction
when no features are known is the expected model prediction over the data distribution. Hence
vf (∅) = Ep(x)[f(x)], where p(x) is the data distribution, the probability that a randomly sampled
point from X equals x.

Computing Shapley values requires predictions, fC(x), to be made for all subsets of features, C ⊆ F.
The original approach to approximating such predictions was to retrain the model for all C ⊆ F [4].
With a large number of features, this is infeasible. An alternative method defines the prediction at x
with subset of features C as:

fC(x) = Ep(x′)

[
fF(xC ∪ x′

C̄)
]
, (2)

2

where p(x′) is the data distribution [5, 6]. Equation (2) can be approximated by marginalising over
possible values for the unobserved features C̄ = F \C. Assuming independent features and sampling
n data points,

fC(x) = lim
n→∞

1

n

∑
x′∼p(x′)

fF(xC ∪ x′
C̄). (3)

Using Equation (3), an unbiased approximation algorithm for calculating Shapley values samples a
marginal gain:

δ̂(i,C) = fF(xC∪{i} ∪ x′
C∪{i})− fF(xC ∪ x′

C̄), (4)

where the coalition C ⊆ F \ {i} is sampled proportional to the multinomial term in Equation (1) and
x′ ∼ p(x′). The mean of these samples is the Shapley value in the limit [5]. This algorithm does not
require retraining the models. It is one of the approximations used in the popular python package
SHAP [7], which calculates Shapley values for an arbitrary machine learning model. There are other
approximations included in SHAP; they all approximate Equation (2) in some way.

Equation (2) is referred to as off-manifold. It makes the simplifying assumption that the features are
independent. When features are correlated, this assumption samples points xC ∪ x′

C̄
that may not lie

on the data manifold. Without this simplifying assumption, the prediction at x with subset of features
C becomes:

fC(x) = Ep(x′|xC) [fF(x
′)] , (5)

where the conditional data distribution p(x′|xC) takes into account the feature correlations [8]. An
on-manifold sampling method that uses Equation (4) but now samples x′ ∼ p(x′|xC) can then be
used to approximate Shapley values for models with correlated features.

Shapley values ϕi(f,x) provide the local contribution of features to a prediction. The local con-
tributions can be combined to identify the global Shapley value for a feature, producing the mean
contribution of a feature to a model’s predictions: Φi(f) = Ep(x) [ϕi(f,x)]. If we consider a new
characteristic value function, defined using a model’s loss ℓ, vℓ(C) := ℓ (f∅(x), y) − ℓ (fC(x), y),
then global Shapley values can be interpreted as the contribution of feature i to the model’s prediction
accuracy [9]:

Φi(f) = Ep(x)

[
ϕi(v

ℓ,x)
]
.

In reinforcement learning, earlier work has directly applied the SHAP package to an agent’s policy
[10–15] or state-value function [16, 17] in an effort to explain reinforcement learning in specific
applications. This earlier work implicitly assumes that the state features are independent because
SHAP implements only off-manifold approximations. More importantly, this earlier work has
not explored the theoretical basis for what the resulting Shapley values mean in the context of
reinforcement learning.

In the following sections, we present a theoretical and empirical analysis of how Shapley values can
be used to explain reinforcement learning, starting from first principles. We refer to this general
framework as Shapley Values for Explaining Reinforcement Learning (SVERL).

3 Using Shapley Values to Explain Reinforcement Learning

We start by exploring the use of Shapley values to explain the value function and the policy of an
agent. Our analysis shows that (1) applying Shapley values to a value function produces explanations
that have no relation to the performance or behaviour of an agent, and (2) applying Shapley values to
policies explains the contribution of state features to an agent’s decisions but not to its performance.

Shapley values applied to value functions. In order to use Shapley values to explain an agent’s
value function, we follow the theory of on-manifold Shapley values in supervised learning to propose
the following characteristic value functions for V and Q:

vV̂ (C) := V̂ π
C (s) =

∑
s′∈S

pπ(s′|sC)V̂ π(s′) (6)

vQ̂ (C) := Q̂π
C(s, a) =

∑
s′∈S

pπ(s′|sC)Q̂π(s′, a) (7)

3

1 2

4

G G

x

3

y

(a) Gridworld-A

1 2

3

5 4

G G

x

y

(b) Gridworld-B

1 2

3

5 4

G

x

y

(c) Gridworld-C

Figure 1: Deterministic gridworlds, with actions North, South, East, and West. The numbers in each
grid square show the state identifier. The initial state is either state 1 or state 2, with equal probability.
The reward is −1 for each action and an additional +10 for transitions into a terminal state (G). The
discount factor γ is 1. State features are the x and y coordinates. The red arrows show the optimal
action in each state.

Equations (6) and (7) account for feature correlations by using the conditional limiting state occupancy
distribution pπ(s′|sC), the probability of being in state s′ given that sC is observed and the agent is
following policy π.

Shapley values resulting from Equation (6) satisfy vV̂ (F) = vV̂ (∅) +∑
i∈F ϕi(v

V̂ , s). They show
each feature’s contribution to the change in characteristic value when all state features are observed,
V̂ π(s), compared to when no state features are observed, V̂ π

∅ (s). This observation also holds for
Equation (7) and all other characteristic value functions for reinforcement learning presented in this
paper.

One might expect the Shapley values resulting from Equations (6) and (7) to relate to performance in
some way, given that a value function represents an agent’s prediction of how well its policy performs.
However, these characteristic value functions refer to the expected return of the agent’s original
policy π. Not observing a state feature is likely to change an agent’s policy, which in turn changes
the expected return. By never evaluating any change in policy, the full consequences of removing
state features are not being considered. Consequently, the resulting explanations do not meaningfully
relate to performance or behaviour.

Instead, Shapley values applied to the value function explain the contribution of each feature to the
predictions of the value function—but only under the assumption that all features will be observed
by the agent when acting in the environment. This is a subtle but important point. Shapley values
applied to the value function do not explain the agent’s performance; they explain the value function
as a predictor—but without considering the impact of features on behaviour.

We use two examples to illustrate the difference between explaining the value function as a predictor
and explaining agent performance. We use Equation (7) to apply Shapley values to Q∗ in Gridworld-A,
shown in Figure 1a, and Equation (6) to apply Shapley values to V ∗ in Tic-Tac-Toe.

In Gridworld-A, the optimal action is North (N) in each state. Intuitively, if the optimal action is the
same in all states, then the contribution of each state feature to performance should be zero. However,
Shapley values applied to Q∗(s,N), shown in Figure 2a (left), produce non-zero contributions for
the y state feature.

To explore why, consider the contribution of y in state 1. If neither x nor y is known, the agent is
equally likely to be in states 1, 2, 3, or 4 (we are ignoring terminal states), with Q∗(s,N) values of
8, 8, 9, and 9, respectively. Consequently, the predicted return is 8.5. Now consider the marginal
gain from observing y. If y is known to be 1 and x remains unknown, the agent is equally likely
to be in states 1 and 2, with Q∗(s,N) = 8 for both states, yielding a predicted return of 8. Hence,
the marginal gain in prediction from observing y is 8− 8.5 = −0.5. Similarly, if x is known to be
1 and y is unknown, the agent is equally likely to be in states 1 and 3, with Q∗(s,N) values of 8
and 9, respectively, yielding a predicted return of 8.5. If y is also known, then predicted return is
Q∗(1, N) = 8. Hence, the marginal gain in prediction when observing y is again 8− 8.5 = −0.5.
Both marginal gains are −0.5, resulting in a Shapley value of −0.5 for y in state 1.

4

1 2 3 4

State

−0.5

0.0

0.5

0.00 0.00 0.00 0.00

-0.50 -0.50

0.50 0.50

Shapley Values Applied to Q∗(s,North)

x y

1 2 3 4

State

0.00 0.00 0.00 0.000.00 0.00 0.00 0.00

SVERL-P

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

S
h

a
p

le
y

V
a
lu

e

(a) Gridworld-A

X

O O

Shapley Values
Applied to V ∗

X

O O

SVERL-P

0.0 0.1 0.2 0.3

(b) Tic-Tac-Toe

Figure 2: (a) Shapley values applied to a state-action value function and SVERL-P, presented in
Section 4, in Gridworld-A (Figure 1a). (b) Shapley values applied to a state-value function and
SVERL-P in a Tic-Tac-Toe state. Shapley values are represented using a colour scale projected onto
each cell.

In contrast, the actual return from state 1 is 8, whatever combination of features is observed, because
the optimal policy selects North in every state. Human intuition therefore assigns a contribution of
0 because observing y does not change the agent’s behaviour or expected return. Shapley values
applied to the value function is not capable of capturing this relationship.

In Tic-Tac-Toe, there are 9 features, corresponding to each board position, with possible values X, O
or empty. Consider an agent (X) that uses V ∗ to play optimally against an opponent (O) that follows
a Minimax policy [18]. The reward is −1 for losing and 0 for drawing, the only possible outcomes
when playing against Minimax. In the state shown in Figure 2b, the two squares marked by the
opponent inform the agent that it needs to make a blocking move. Intuitively, we would expect
the corresponding two state features to impact the performance of the agent. However, the feature
contributions identified by applying Shapley values to V ∗ are zero for every state feature. The reason
is that an optimal agent always draws, hence the optimal value function always predicts a return of
zero, independently of which state features are observed. These Shapley values explain the value
function as a static predictor. They do not consider that the value function depends on the policy,
which would change in the absence of some state features.

Shapley values applied to policies. We follow the theory of on-manifold Shapley values in supervised
learning to propose the following characteristic value function for a policy π̃ : S → A that outputs
actions:

vπ̃ (C) := π̃C(s) =
∑
s′∈S

pπ̃(s′|sC)π̃(s′), (8)

and the following characteristic value function for a policy π : S × A → [0, 1] that outputs action
probabilities:

vπ (C) := πC(a|s) =
∑
s′∈S

pπ(s′|sC)π(a|s′). (9)

Equations (8) and (9) account for feature correlations by using the conditional limiting state occupancy
distribution pπ(s′|sC), as in Equations (6) and (7). We note that Equation (8) is not valid in discrete
action spaces because it is not meaningful to sum discrete actions.

The characteristic value functions in Equations (8) and (9) produce Shapley values that show the
contribution of state features, respectively, to the action selected by an agent and to the probability
of selecting action a. Both values provide information on the contributions of state features to
the decision made by the agent. This insight is valuable but we argue that there is more to be
understood and explained about the decision. Specifically, these Shapley values reveal no insight into
the importance of state features for an agent’s performance.

As an illustrative example, imagine an agent planning the shortest route through a city. The agent
arrives at a junction where turning left and turning right both result in an optimal route. Assume
that the agent’s policy is to turn left if it observes a road sign (a state feature), and to turn right
otherwise. Shapley values applied to the agent’s policy would assign a large contribution to the road
sign, which is justified and improves our understanding of the agent’s behaviour. The sign was indeed
instrumental in the agent’s decision to turn left. However, one would be incorrect to then conclude
that the sign is important for the agent to perform well. On the contrary, because turning left and
turning right are both optimal, the sign contributes nothing to the agent’s performance. This insight
can be gained only by considering the effect of removing state features on the agent’s performance.

5

Therefore, we make a distinction between explaining why the agent acted in a specific way and
explaining how features impact agent performance.

The contributions of state features to the value function or to the policy do not reveal insight into
contributions to agent performance. These two approaches consider either the contributions to
predicting expected return independent of behaviour or the contributions to behaviour independent
of expected return. We have highlighted the limitations of both approaches. Next we propose an
approach to explaining reinforcement learning by identifying contributions of state features to agent
performance.

4 Explaining Agent Performance

Here we provide a formulation of Shapley values to explain the performance of a reinforcement
learning agent. We present two methods that explain either the local or the global contributions of
state features to performance. Each approach reveals unique insight that improves understanding.
In both approaches, state features are removed from an agent’s observation for certain states, then
the performance of the resulting policy is evaluated using expected return. We call this approach
SVERL-Performance (SVERL-P).

Local explanations. Local SVERL-P explains the contributions of state features to performance
from state s by considering removing state features from an agent’s observation of state s. For some
policy π : S×A → [0, 1] to be explained, the local SVERL-P characteristic value function is given
by:

vlocal(C) := Eπ̂

[∞∑
t=0

γtrt+1|s0 = s

]
, where π̂(at|st) =

{
πC (at|st) if st = s,

π(at|st) otherwise.
(10)

Shapley values resulting from Equation (10) show the contribution of each feature to the change in
performance when all state features are observed in state s, vlocal(F), compared to when no state
features are observed in state s, vlocal(∅).
In most problems, state features are not independent, so we use the theory for on-manifold Shapley
values to propose sampling a from the agent’s policy given that it observes sC:

πC(a|s) = Epπ(s′|sC) [π(a|s′)] , (11)

where we suggest the conditional data distribution in Equation (5) becomes the conditional limiting
state occupancy distribution pπ(s′|sC).
The resulting explanations are specific to the policy used, which can be any possible policy, including
a suboptimal policy. One can interpret πC as the policy that best tries to match the behaviour of
the original policy π given that features are missing. Policy πC will not usually be able to perfectly
mimic the behaviour of policy π. It is exactly this difference in behaviour that causes the change in
performance.

Global explanations. Local SVERL-P considers the contributions of state features to performance
from a single state. In addition to such local contributions, one may wish to understand the con-
tributions of state features to performance globally. For example, in autonomous driving, a user
may wish to understand which parts of an autonomous vehicle’s observations are most important
for driving performance, to focus resources on improving those parts of the road system. Some
state features might contribute substantially to performance in certain states, such as breaking when
observing a human or pulling over when an ambulance approaches, while road markings may be
globally important by contributing to agent performance in many states.

To quantify the global impact of state features on agent performance, we consider the effect of
removing state features from every state in an environment. The corresponding (global) SVERL-P
characteristic value function is as follows:

vglobal(C) := EπC

[∞∑
t=0

γtrt+1|s0 = s

]
. (12)

Equation (12) produces Shapley values that show the contribution of state features to performance
in state s and all future states that follow. These Shapley values are still conditioned on state and

6

1 2 3 4

State

0

5

S
h

a
p

le
y

V
a
lu

e 4.00

0.33 0.08 0.08

2.00

-0.17

0.08 0.08

SVERL-P

x y

1 2 3 4

State

-1.19

0.31 0.14 0.14

-0.52
-1.02

0.14
1.14

Shapley Values Applied to V ∗

Figure 3: SVERL-P and Shapley values applied to a value function for x and y features in Gridworld-
B (Figure 1b).

therefore not a truly global explanation method. To produce a fully global explanation, one can
marginalise over the state space using the limiting state occupancy distribution, producing global
SVERL-P:

Φi(v
global) = Epπ(s)

[
ϕi

(
vglobal, s

)]
. (13)

Equation (13) gives the contribution of a state feature to the performance of the agent in its environ-
ment. An alternative is to marginalise over the initial state distribution p0, which would place undue
attention on the initial states and is therefore less useful in infinite-horizon problems.

5 Experiments

We present experimental results in a variety of domains. We contrast SVERL-P with applying Shapley
values to policies and to value functions in Appendix A.2, demonstrating the limitations of the latter
approaches. All Shapley values are calculated exactly, as described in Appendix A.4. The domains
are fully described in Appendix A.1.

Gridworld-B. We first consider Gridworld-B, shown in Figure 1b. Imagine an agent acting optimally:
choosing East (E) in state 1 and North (N) in every other state.

Consider local explanations for specific states. Whatever the state, if neither x nor y is known, the
agent cannot know the optimal action with certainty but it knows that the optimal action is either N or
E and that N is more likely than E.

In states 3 and 4, either the x or the y feature is sufficient for the agent to take the optimal action N;
in other words, x and y features make an equal contribution to agent performance. Furthermore, this
contribution is rather small because, if neither feature is known, N is still the likely optimal action.

In state 1, the x feature is sufficient for the agent to take the optimal action E (because an optimal
agent is never in state 5). The y feature also improves the agent’s performance, but by a smaller
amount, because it increases the probability of the agent selecting the optimal action E. In sum, the x
and y features contribute positively to agent performance, with the x feature contributing more.

In state 2, the x feature is sufficient for the agent to take the optimal action N while the y feature
actually decreases the probability of selecting the optimal action N (it increases the probability of
selecting the suboptimal action E). The x feature therefore makes a positive contribution to agent
performance while the y feature makes a negative contribution.

Local SVERL-P contributions are shown on the left of Figure 3. SVERL-P values align with our
intuitive analysis of the domain. As expected, in states 3 and 4, both x and y contribute a small, equal
amount to agent performance. Also as expected, in state 1, x contributes more to performance than y.
And we can now quantify the difference precisely: x contributes exactly twice as much as y. In state
2, Shapley values once again mirror our expectations, with x contributing positively to performance
and y contributing negatively—a reminder that a little bit of knowledge can be a dangerous thing.

Next, consider the global contribution of the two features. Based on the discussion above, the x
feature positively contributes larger amounts, more often, to the agent’s performance than the y
feature. Therefore, we expect the global contribution of the x feature to be larger than that of the y
feature. These expectations align with global SVERL-P contributions: 1.43 for x and 0.64 for y.

SVERL-P has correctly and precisely expressed the local and global contribution of the features x
and y to performance. It has done so in more detail and precision than our intuitive expectations,
demonstrating the value of SVERL-P even in such a simple domain.

7

0 0 1

0 1 2

0 1

0 1 1 1

M1

M2?

M2?

1

2

3

4

y

SVERL-P

0 0 1

0 1 2

0 1

0 1 1 1

M1

M2?

M2?

Shapley Values
Applied to V π

0 0 1

0 1 2

0 1 2

0 1 1 1

M1

M2

1

1

2

2

3

3

4

4

x

y

0 0 1

0 1 2

0 1 2

0 1 1 1

M1

M2

1 2 3 4
x

−4.39

0.00

+4.39

−8.62

0.00

+8.62

−0.1

0.00

+0.1

−0.09

0.00

+0.09

(a) Minesweeper.

-5.0

0.0

5.0

0.51

2.40
3.74

-0.85-0.98

0.84

-5.23

1.15

x y P D

State Features

-5.0

0.0

5.0

0.09

2.38
1.38 1.94

-1.41

0.97

2.82

0.14

SVERL-P

Shapley Values
Applied to V ∗

S
h
a
p
le

y
V
a
lu

e

R

Y

G

B

R

Y

G

B

P

P

(b) Taxi.

Figure 4: (a) SVERL-P and Shapley values applied to a value function for two successive states (top
to bottom) of Minesweeper, represented as the colour of each cell. The domain contains two mines,
hidden from the agent. In the top state, the state features reveal the exact location of one mine and two
potential locations for the second mine, marked for reference as “M1” and “M2?” respectively. The
exact location of the second mine is then revealed in the second state, marked as “M2” for reference.
(b) SVERL-P contributions contrasted with Shapley values applied to a value function for two states
in the Taxi domain. State features are the x and y coordinates of the taxi, passenger location (P),
and destination location (D). The taxi location is marked with a rectangle, the passenger location is
marked with a p and the destination location is circled. In the top state, the passenger is at location B
and the destination is location G. In the bottom state, the passenger is in the taxi and the destination is
location B.

Minesweeper. This is a relatively large domain, with approximately 175,000 states, where it can
be difficult to identify how individual state features contribute to performance by reasoning alone.
By using SVERL-P, we find local explanations of performance that reveal novel insight into the two
successive Minesweeper states shown in Figure 4a.

The features in this domain are the 16 grid squares, with possible values 0, 1, 2, or unopened.
Figure 4a shows that one feature in particular (x = 4, y = 2) contributes substantially to performance
in both states, with all other features contributing relatively little in comparison. On further inspection,
we see that the feature (4, 2) is the only feature that can exactly determine the location of M2. On the
other hand, many features reveal the exact location of M1. To act optimally, the agent must determine
the exact location of M2 so the feature (4, 2) is the most important one for completing the episode
successfully.

Notice the negative SVERL-P contributions for the squares with possible mines. These are discussed
in detail in Appendix A.3.

Taxi. In the taxi domain [19], the agent picks up a passenger and drops them off at their destination.
Rewards are −1 for all actions, an additional +20 for dropping a passenger at the correct destination,
and an additional −10 for attempting to pick up or drop off the passenger at an inappropriate location.
We examine the two states shown in Figure 4b.

In the state shown on the top panel, to successfully complete the episode, the agent must first
pick up the passenger. Knowledge of the passenger location is therefore vital and we expect this
feature to contribute a large amount to performance. This is captured by SVERL-P, as shown in
Figure 4b. Conversely, until the passenger has been collected, we do not expect the destination
location to contribute positively to performance. Surprisingly, SVERL-P shows that observing the
destination location actually reduces the agent performance. Upon closer review, we see that, in this
state, observing the destination location without the passenger location increases the probability of
navigating towards the destination, which is a suboptimal action.

In the state shown on the lower panel in Figure 4b, the passenger is in the taxi, to be dropped off
at location B. The optimal policy navigates to the drop-off location with the passenger in the taxi.
Intuitively, both the passenger and the destination location are important, as shown by the SVERL-P
contributions.

8

6 Discussion

We presented a theoretical and empirical analysis of using Shapley values for explaining reinforcement
learning (SVERL), starting from first principles, and demonstrated the limitations of existing work.
We then developed SVERL-P, a method that uses Shapley values to explain agent performance.
SVERL-P considers the consequences of removing features by explicitly deriving an agent’s policy
and quantifying the change in performance. Our results show that SVERL-P produces meaningful
explanations in a variety of reinforcement learning problems, matching and supplementing human
intuition.

In most real-world applications, it is computationally expensive to calculate the SVERL-P charac-
teristic value functions exactly. So the characteristic value functions, and hence the Shapley values,
must be approximated. Here we outline an approximation algorithm for local SVERL-P based on the
on-manifold sampling approach from Shapley values in supervised learning, which has been proven
to converge to the Shapley value in the limit [5, 8]. Analogous to the sample in Equation 4, each
sample in the algorithm is a marginal gain:

Eπ1

[∞∑
t=0

γtrt+1|s0 = s

]
− Eπ2

[∞∑
t=0

γtrt+1|s0 = s

]
,

where π1(at|st) =
{
π(at|s′) if st = s,

π(at|st) otherwise,
and π2(at|st) =

{
π(at|s′′) if st = s,

π(at|st) otherwise.

A new s′ is sampled from pπ(·|sC∪{i}), and a new s′′ is sampled from pπ(·|sC), whenever st = s.
Each coalition C ⊆ F \ {i} is sampled proportional to the multinomial term in the Shapley value
calculation. The expected returns can be evaluated using a standard reinforcement learning method,
such as Monte Carlo rollouts. This sampling method requires the learning of state occupancy
distributions pπ(·|sC) for all C ⊆ F, which is not trivial. We suggest taking inspiration from one of
the on-manifold sampling methods proposed by Frye et al. [8]. Importantly, it is likely that these
distributions do not need to be learnt exactly because optimal policies usually visit only a small subset
of states in large domains.

SVERL is a direct application of Shapley values using specific characteristic value functions suitable
for reinforcement learning. All the theoretical guarantees of Shapley values apply to SVERL.
Similarly, any advancements in applying Shapley values to supervised learning will apply directly to
SVERL. For example, SVERL might be difficult to interpret in domains with thousands of features,
such as robotics or vision. However, a method such as groupShapley [20], which finds the contribution
of groups of features and was developed for supervised learning, could be applied to SVERL, offering
computational advantages and simplifying interpretation.

As with any feature-based explanation method, there is further work, often psychological and
sociological, to derive useful explanations which improve a user’s understanding. It is naturally
human to interpret Shapley values subjectively, often developing beliefs and understanding that
extend beyond the quantitative information that they provide. These interpretations will likely
become more challenging and subjective as the number of features increases. When one proceeds to
develop this extended understanding, before acting on it, they must first evaluate whether it is well
founded. For example, SVERL-P values allow us to say “this feature contributed x amount to an
agent’s performance”. One can hypothesise on why that feature contributed x but such hypotheses
must be tested. These tests depend on the task, explanation and hypothesis. We suggest that future
research focuses on (1) the presentation, interpretation and explanatory use of feature attribution
techniques such as Shapley values, and (2) methods for evaluating the conclusions drawn from such
interpretations. We provide an example in Appendix A.3.

Acknowledgments and Disclosure of Funding

This work was supported by the UKRI Centre for Doctoral Training in Accountable, Responsible
and Transparent AI (ART-AI) [EP/S023437/1], the EPSRC Centre for Doctoral Training in Digital
Entertainment (CDE) [EP/L016540/1] and the University of Bath. This research made use of Hex,
the GPU Cloud in the Department of Computer Science at the University of Bath. We thank our
reviewers for a constructive process and the members of the Bath Reinforcement Learning Laboratory
for their feedback. We thank Scarllette Ellis for her Minesweeper implementation.

9

References
[1] Lloyd S Shapley. A value for n-person games. 1953.

[2] Stan Lipovetsky and Michael Conklin. Analysis of regression in game theory approach. Applied
Stochastic Models in Business and Industry, 17(4):319–330, 2001.

[3] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling
wine preferences by data mining from physicochemical properties. Decision Support Systems,
47(4):547–553, 2009.

[4] Erik Strumbelj, Igor Kononenko, and M Robnik Sikonja. Explaining instance classifications
with interactions of subsets of feature values. Data & Knowledge Engineering, 68(10):886–904,
2009.

[5] Erik Strumbelj and Igor Kononenko. An efficient explanation of individual classifications using
game theory. The Journal of Machine Learning Research, 11:1–18, 2010.

[6] Erik Strumbelj and Igor Kononenko. Explaining prediction models and individual predictions
with feature contributions. Knowledge and Information Systems, 41:647–665, 2014.

[7] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in Neural Information Processing Systems, 30, 2017.

[8] Christopher Frye, Damien de Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, and Ilya
Feige. Shapley explainability on the data manifold. In International Conference on Learning
Representations, 2020.

[9] Ian Covert, Scott M Lundberg, and Su-In Lee. Understanding global feature contributions
with additive importance measures. Advances in Neural Information Processing Systems, 33:
17212–17223, 2020.

[10] Stefano Giovanni Rizzo, Giovanna Vantini, and Sanjay Chawla. Reinforcement learning with
explainability for traffic signal control. In 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pages 3567–3572. IEEE, 2019.

[11] Yuyao Wang, Masayoshi Mase, and Masashi Egi. Attribution-based salience method towards
interpretable reinforcement learning. In AAAI Spring Symposium: Combining Machine Learning
with Knowledge Engineering (1), 2020.

[12] Lei He, Nabil Aouf, and Bifeng Song. Explainable deep reinforcement learning for UAV
autonomous path planning. Aerospace Science and Technology, 118:107052, 2021.

[13] Sindre Benjamin Remman, Inga Strümke, and Anastasios M Lekkas. Causal versus marginal
Shapley values for robotic lever manipulation controlled using deep reinforcement learning. In
2022 American Control Conference (ACC), pages 2683–2690. IEEE, 2022.

[14] Jakob Løver, Vilde B Gjærum, and Anastasios M Lekkas. Explainable AI methods on a deep
reinforcement learning agent for automatic docking. IFAC-PapersOnLine, 54(16):146–152,
2021.

[15] Roman Liessner, Jan Dohmen, and Marco A Wiering. Explainable reinforcement learning for
longitudinal control. In ICAART (2), pages 874–881, 2021.

[16] Ke Zhang, Peidong Xu, and Jun Zhang. Explainable AI in deep reinforcement learning models:
A SHAP method applied in power system emergency control. In 2020 IEEE 4th Conference on
Energy Internet and Energy System Integration (EI2), pages 711–716. IEEE, 2020.

[17] Ke Zhang, Jun Zhang, Pei-Dong Xu, Tianlu Gao, and David Wenzhong Gao. Explainable AI in
deep reinforcement learning models for power system emergency control. IEEE Transactions
on Computational Social Systems, 9(2):419–427, 2021.

[18] E. Polak. Basics of Minimax algorithms. In Nonsmooth Optimization and Related Topics, pages
343–369. Springer, 1989.

10

[19] Thomas G Dietterich. The MAXQ method for hierarchical reinforcement learning. In ICML,
volume 98, pages 118–126, 1998.

[20] Martin Jullum, Annabelle Redelmeier, and Kjersti Aas. groupShapley: Efficient prediction
explanation with Shapley values for feature groups. arXiv preprint arXiv:2106.12228, 2021.

[21] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym, 2016.

A Appendix / supplemental material

A.1 Domains

Gridworld-A, shown in Figure 1a, is a deterministic gridworld. The MDP state represents the grid
square occupied by the agent and is described by two features, (x, y), the x and y coordinates of the
agent on the grid. There are six states, S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}, two of which
are goal states, G = {(1, 3), (2, 3)}. The initial state is sampled randomly from the southernmost
squares, {(1, 1), (2, 1)}. The actions are North, East, South, and West. Reward is −1 for every action
taken and an additional +10 for transitioning into a goal state, producing a shortest path problem.
Actions that attempt to transition an agent out of the grid do not change the state. Gridworld-B,
shown in Figure 1b, and Gridworld-C, shown in Figure 1c, are identical to Gridworld-A in all
aspects other than the grid layout and the identity of the goal states.

Gridworld-D is a deterministic 10× 10 gridworld, containing 20 grid positions that are impassable
blocks, selected uniformly randomly from among all grid positions. There is a single goal state,
selected randomly, and fixed across episodes. The initial state is selected randomly from among grid
squares that are not impassable blocks or the goal. The domain is identical to Gridworld-A in all
other aspects.

Tic-Tac-Toe is a classic game played on a 3× 3 grid, where two players take turns to place noughts
(O) and crosses (X). When a player places three noughts or three crosses such that a straight line can
be drawn through them, the game ends with a win for the corresponding player. If the grid is full with
no winner, the game is a draw. The state has nine features, with each feature representing a specific
grid position, taking on values X, O, or empty. The agent plays as X and the opponent as O. The
players have equal probability of playing first. The opponent’s policy is the Minimax algorithm [18].
Optimal play against this opponent ends in a draw.

Taxi is a classic reinforcement learning domain by Dietterich [19]. We used the implementation
by OpenAI Gym [21]. The domain has a grid with four locations, marked R(ed), G(reen), B(lue)
and Y(ellow). There are four state features: x ∈ {1, 2, 3, 4, 5}, y ∈ {1, 2, 3, 4, 5}, passenger-
location ∈ {R,G,B,Y, in-taxi}, and destination ∈ {R,G,B,Y}. State features x and y represent the
taxi’s location. Initial taxi location and destination are selected uniformly randomly. For an episode
to terminate successfully, the taxi must navigate to the passenger location, pick-up the passenger,
navigate to the destination, and drop-off the passenger. At the beginning of an episode, the passenger
location is randomly selected among R, G, B, and Y. Once the passenger has been collected, passenger
location becomes in-taxi. The actions are north, south, east, west, pick-up, and drop-off. Pick-up
action successfully picks up the passenger only when the taxi and the passenger is at the same grid
location. Similarly, drop-off action successfully drops off the passenger when the passenger is in
the taxi and the taxi is at the destination. The reward is −1 for each action, an additional +20 for
delivering the passenger at the destination, and −10 for unsuccessful execution of the pickup or the
drop-off action.

Minesweeper is an implementation of the classic game on a 4× 4 grid. Each episode resets a grid
that contains two hidden mines, each placed randomly. The state has 16 features, with each feature
respresenting a specific grid square, taking on values 0, 1, 2 or unopened. Initially, all grid squares are
unopened. At each decision stage, the agent selects an unopened square to reveal what is underneath.
If it happens to be a number, that number represents the total number of mines in the (up to eight)
squares directly surrounding the newly opened square. If the number is zero, all surrounding grid
squares are recursively revealed to reveal an area of zeros bordered by strictly positive numbers. The
game ends when the agent opens a square with a mine or all squares that do not contain a mine are

11

−1 0 1

Shapley Values Applied to V ∗

−1

0

1

S
V
E
R
L
-P

x y

Figure 5: SVERL-P for every state of Gridworld-D compared to Shapley values applied to a value
function. Shapley values were normalised to fall between −1 and 1. Each blue cross denotes the x
feature for a particular state and each orange cross the y feature.

opened. There is only one reward signal: −20 whenever the agent reveals a mine. Therefore the
highest return possible is 0. There is no incentive for the agent to complete a game in minimal time.

A.2 SVERL-P Comparisons

Here we demonstrate and discuss the key differences between SVERL-P and applying Shapley values
to policies and the value function.

SVERL-P compared with Shapley values applied to value functions. The domains Gridworld-A
and Tic-Tac-Toe were used in Section 3 to demonstrate that applying Shapley values to an agent’s
value function does not explain agent performance. In contrast, local SVERL-P contributions in these
domains, shown in Figures 2a and 2b, match our intuitive understanding of the contribution of state
features to performance.

As a result of purposely choosing simple, illustrative examples, the examples in these two domains
used either a constant policy or a constant value function. MDPs with these particular properties are
uncommon. Our arguments, however, are valid for any MDP. As an example, Figures 3, 4a and 4b
show that, in all domains tested, SVERL-P gives different results than applying Shapley values to
the value function. They include domains with varying policies and value functions. In Figure 5,
we compare SVERL-P and Shapley values applied to V ∗ in every state of a randomly-constructed
gridworld with 80 states (Gridworld-D). The results show a persistent difference between these two
approaches.

SVERL-P compared with Shapley values applied to policies. In Section 3, we introduced Shapley
values applied to an agent’s policy. We argued that they provided insight which improved under-
standing of a decision but that further insight could be drawn by also considering the effect of state
features on performance. We now illustrate our viewpoint by comparing local SVERL-P to Shapley
values applied to a policy.

Consider Gridworld-C, shown in Figure 1c. In this domain, if no state feature is known, the agent
cannot know the optimal action with certainty but it knows that (1) it is either North, East or West,
and (2) North is more likely than East or West. In states 2 and 5, neither observing x nor observing y
reveals the optimal action. We have no natural intuition on the importance of state features and must
rely on Shapley values.

Shapley values applied to the optimal policy in every state are shown in Figure 6. For each state,
the Shapley values are presented for the optimal action, a∗. In state 5, x contributes more than y
to the probability of choosing the optimal action (N). One might assume that x is therefore more
important than y for an agent to act optimally. However, this would be incorrect. The local SVERL-P
contributions, shown in the top panel of Figure 6, reveal that in fact the x and y features contribute
equally to performance. The reason for this difference is that, in state 5, x also contributes towards
the likelihood of selecting the worst action (E). Similarly, in state 2, Shapley values applied to the
policy show that both x and y contribute equally to the probability of selecting the optimal action (N).
However, local SVERL-P contributions reveal that y actually contributes more than x to performance.
In this state, observing x but not y increases the probability of selecting the worst action (W).

By applying Shapley values to policies without considering the consequence on performance, one
would draw incorrect or incomplete conclusions about the importance of state features. By considering

12

1 2 3 4 5

State

0.0

2.0

4.0
4.00

0.17 0.00

1.25

0.33

4.00

0.67 0.50

2.25

0.33

SVERL-P

x y

1 2 3 4 5

State

0.00

0.25

0.50 0.44

0.17

0.00

0.31
0.25

0.44

0.17

0.33

0.47

0.08

Shapley Values Applied to π(s, a∗)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

S
h

a
p

le
y

V
a
lu

e

Figure 6: SVERL-P compared to Shapley values applied to a policy in Gridworld-C (Figure 1c).
The plots show the Shapley values of the x and y state features for all states. SVERL-P gives the
contribution of state features towards performance while Shapley values applied to a policy give the
contributions of state features towards the likelihood of selecting the optimal action in each state.

the contribution of state features towards performance, SVERL-P provides additional insight into
agent behaviour.

A.3 Extended Analysis in Minesweeper

In the minesweeper example of Figure 4a, SVERL-P contributions are negative for two unopened
squares (M1 and M2) in the second state. The implication is that observing either state feature makes
a negative contribution to the expected return. We hypothesise that, by becoming observable, these
features increase the probability that the agent clicks on the corresponding squares. Such an action
would reveal the underlying mine and terminate the game with a large negative reward.

In Section 6, we suggested that humans are likely to naturally over-interpret SVERL-P contributions,
developing hypotheses that must be tested. This is one such example. The validity of our hypothesis
can be tested by examining Shapley values applied to a policy that outputs action probabilities,
introduced in Section 3. Figure 7 shows that the Shapley values for the probability of selecting
each unopened feature are positive, showing that, on average, observing that a square is unopened
positively contributes towards the probability of selecting it.

Note the non-negative SVERL-P contribution of M1 in state 1 even though observing that a square is
unopened increases the probability of opening it. On closer inspection, Figure 7 reveals that observing
that square (3, 2) is unopened increases the probability of opening square (4, 2) (the optimal action)
much more than it increases the probability of opening (3, 2).

SVERL-P contributions revealed insight into how features contributed to performance but further
analysis was required to investigate why features contributed to performance.

A.4 Computing Shapley Values

This work presented four applications of Shapley values in reinforcement learning, under the SVERL
framework: Shapley values applied to value functions, Shapley values applied to policies, local
SVERL-P and global SVERL-P. Each of the different Shapley values are computed using Equation (1),
with their respective characteristic value functions computed using Equations (6) to (10) and (12). All
of these characteristic value functions require the conditional limiting state occupancy distributions,
pπ(s′|sC), for every C ⊂ F. We calculate each pπ(s′|sC) using Bayes’s rule:

pπ(s′|sC) =
p(sC|s′)pπ(s′)

pπ(sC)
=

p(sC|s′)pπ(s′)∑
s′∈S p(sC|s′)pπ(s′)

, (14)

where the limiting state occupancy distribution pπ(s′) is approximated through interaction with the
environment. Additionally, if sC is a possible observation of s′, then p(sC|s′) = 1, else p(sC|s′) = 0.
For example, in Gridworld-B, sC = {x = 1} is a possible observation of s′ = {x = 1, y = 3},
whereas sC = {x = 2} is not.

After computing the conditional limiting state occupancy distributions using Equation (14), the
characteristic value functions for Shapley values applied to policies and Shapley values applied
to value functions can be calculated directly using Equations (6) to (9). For the local and global
SVERL-P characteristic values in Equations (10) and (12), first πC(a|s) must be computed using

13

0 0 1

0 1 2

0 1

0 1 1 1

M1

M2?

M2?

1

1

2

2

3

3

4

4

x

y

State 1

(4, 4) (4, 3) (3, 2) (4, 2)

−0.2

0.0

0.2

0.4

S
h
ap
le
y
V
al
u
es

A
p
p
lie
d
to

π

π(s, a44)

π(s, a43)

π(s, a32)

π(s, a42)

0 0 1

0 1 2

0 1 2

0 1 1 1

M1

M2

1

1

2

2

3

3

4

4

x

y

State 2

(4, 4) (4, 3) (3, 2)

State Feature

−0.1

0.0

0.1

S
h
ap
le
y
V
al
u
es

A
p
p
lie
d
to

π

Figure 7: Shapley values applied to a policy in two states of Minesweeper. Action axy denotes the
action that opens grid square (x, y). The plots show, for each available action, the Shapley values of
the state features that correspond to unopened squares.

Equation (11). Then the characteristic values, which are expected returns, can be computed using any
standard reinforcement learning algorithm. We used Monte Carlo roll outs.

A.5 Code

Code is available at https://github.com/bath-reinforcement-learning-lab/SVERL_
icml_2023.

14

https://github.com/bath-reinforcement-learning-lab/SVERL_icml_2023
https://github.com/bath-reinforcement-learning-lab/SVERL_icml_2023

	Introduction
	Background
	Using Shapley Values to Explain Reinforcement Learning
	Explaining Agent Performance
	Experiments
	Discussion
	Appendix / supplemental material
	Domains
	SVERL-P Comparisons
	Extended Analysis in Minesweeper
	Computing Shapley Values
	Code

