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ABSTRACT

Motion is an important signal for agents in dynamic environments, but learning to
represent motion from unlabeled video is a difficult and underconstrained problem.
We propose a model of motion based on elementary group properties of transfor-
mations and use it to train a representation of image motion. While most methods
of estimating motion are based on pixel-level constraints, we use these group prop-
erties to constrain the abstract representation of motion itself. We demonstrate that
a deep neural network trained using this method captures motion in both synthetic
2D sequences and real-world sequences of vehicle motion, without requiring any
labels. Networks trained to respect these constraints implicitly identify the image
characteristic of motion in different sequence types. In the context of vehicle
motion, this method extracts information useful for localization, tracking, and
odometry. Our results demonstrate that this representation is useful for learning
motion in the general setting where explicit labels are difficult to obtain.

1 INTRODUCTION

Motion perception is a key component of biological and computer vision. By understanding how
a stream of images reflects the motion of the world around it, an agent can better judge how to act.
For example, a fly can use visual motion cues to dodge an approaching hand and to distinguish this
threat from a looming landing surface (Reiser & Dickinson|(2013))). Motion is an important cue for
understanding actions and predicting 3D scene structure, and it has been extensively studied from
computational, ethological, and biological perspectives (Hildreth & Koch| (1987)).

In computer vision, the problem of motion representation has typically been approached from either
a local or global perspective. Local representations of motion are exemplified by optical flow. Flow
represents image motion as the 2D displacement of individual pixels of an image, giving rich low-level
detail while foregoing a compact representation of the underlying scene motion. In contrast, global
representations such as those used in visual odometry attempt to compactly explain the movement of
the whole scene. Such representations typically rely on a rigid world assumption, thus limiting their
applicability to more general settings.

Image transformations due to motion form a subspace of all continuous image transformations.
Smooth changes in the motion subspace correspond to sequences of images with realistic motion. We
wish to characterize this subspace. The motion subspace differs from other image transformation
subspaces, such as changes in the space of images of human faces. Smooth changes in this space
also form a subspace of image transformations, but one containing transformations that do not occur
in natural image sequences, such as the face of one person transforming into the face of another.
A representation that characterizes motion should be sensitive to the distinction between image
transformations that are realistic (produced by image motion) vs. those that are unrealistic (not
produced by image motion).

To be useful for understanding and acting on scene motion, a representation should capture the
motion of the observer and all relevant scene content. Supervised training of such a representation
is challenging: explicit motion labels are difficult to obtain, especially for nonrigid scenes where
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it can be unclear how the structure and motion of the scene should be decomposed. We propose a
framework for learning global, nonrigid motion representations without labels. While most methods
of representing motion rely on pixel-level reconstruction or correspondence to guide learning, our
method constrains the representation itself by directly addressing the properties of the latent motion
space.

Motion has several properties that we use to operationalize to what extent a model characterizes it.
(1) A model of motion can be read out to estimate metric properties of the motion in the scene, such
as the camera translation and rotation. (2) A model of motion should represent the same motion
identically regardless of the image content. For example, the motion of an object moving to the
right should be represented the same whether the object is a cat or a dog. (3) A model of motion
should distinguish sequences produced by natural motion from sequences with image transitions not
produced by natural motion, such as cuts.

Here, we present a general model of visual motion and describe how the group properties of visual
motion can be used to constrain learning in this model (Figure[I). We enforce the group properties of
associativity and invertibility during training using a metric learning approach (Chopra et al.|(2005))
on recomposed sequences. We describe how this technique can be used to train a deep neural network
to represent the motion in image sequences of arbitrary length in a low-dimensional, global fashion.
We present evidence that the learned representation captures the global structure of motion in both 2D
and 3D settings without labels, hard-coded assumptions about the scene, or explicit feature matching.
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Figure 1: (a) A graphical model describing the relationship between the latent scene structure
{S8:}, motion {M,}, and the observed images of a sequence. We describe a method for learning a
representation M of the motion space M from observed image sequences {I;}. (b) By recomposing
sequences of images to satisfy the group properties of associativity and invertibility, we construct
pairs of image sequences with equivalent motion. We use these properties to learn an approximate
group homomorphism ® € M between motion in the world and in an embedding.

2 RELATED WORK

2.1 MOTION REPRESENTATIONS

The most common global representations of motion are structure from motion (SfM) and simultaneous
localization and mapping (SLAM), which represent motion as a sequence of poses in SE(3) perhaps
along with a static point cloud (Scaramuzza & Fraundorfer|(201 1), [Fraundorfer & Scaramuzzal(2012)).
These approaches have achieved great success in many applications in recent years, but they are
unable to represent non-rigid or independent motions. The most commonly used local representation
is optical flow, which estimates pixel-wise motion over the image, typically constraining it with a
smoothness prior (Sun et al.[|(2010)). Scene flow (Wedel et al.|(2008))) and non-rigid structure from
motion (Xiao et al.|(2004)) represent a larger class of 3D motions by generalizing optical flow to the
estimation of 3D point trajectories. These methods represent motion only at local regions (typically
single points) and do not attempt to compactly capture the overall motion.

More similar to our approach is work designing or learning spatio-temporal features (STFs) (Laptev
(2005)). STFs are localized and flexible enough to represent non-rigid motions. They typically
include a dimensionality reduction step and hence are somewhat global in purview. Recent work has
used convolutional neural nets (CNNs) to learn task-related STFs directly from images, including
Tran et al.|(2015) and |Le| (2013)). Unlike our work, both of these approaches are restricted to fixed
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temporal windows of representation. Taylor et al.| (2010) uses a standard unsupervised learning
technique to learn spatiotemporal features useful for action recognition but not for motion itself.

2.2 LEARNING REPRESENTATIONS USING VISUAL STRUCTURE

Several recent works have used knowledge of the geometric or spatial structure of images or scenes
to train representations. |Doersch et al.|(2015) trains a CNN to classify the correct configuration of
image patches to learn the relationship between an image’s patches and its semantic content. The
resulting representation can be fine-tuned for image classification. |Yu et al.|(2016) and |Patraucean
et al.[(2016) train networks to estimate optical flow using the brightness constancy assumption and
a smoothness prior as a learning signal. [Zhu et al.|(2017) and Ren et al.[|(2017) learn flow using a
similar technique. As with other flow based methods, these works use photometric, local constraints.
Garg et al.| (2016) uses the relationship between depth and disparity to learn to estimate depth from
a rectified stereo camera pair with a known baseline. Similarly, Konda & Memisevic|(2014) treats
motion as a latent variable and exploits the relationship between motion and depth to estimate depth.

Other works that learn from sequences typically focus on static image content rather than motion.
Of these, the most similar to ours is Misra et al.| (2016)), which shuffles the order of images in a
sequence to learn representations of image content. Their approach is designed to capture single
image properties that are correlated with temporal order rather than motion itself and their shuffling
procedure does not preserve the group properties forming the basis of our learning technique. A
related approach is slow feature analysis (Wiskott & Sejnowski| (2002))), which is motivated by the
notion that slowly varying latents are often behaviorally relevant. Other works exploring learning
from sequences include Jayaraman & Grauman| (2015)), which learns a representation equivariant
to the egomotion of the camera, and |Agrawal et al.| (2015), which learns to represent images by
explicitly regressing the egomotion between two frames. Instead of learning to represent motion,
these works use labeled motion as a learning cue.

(a) [ RNNICNN Module (b) Original sequence
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Forward Backward Loop

Figure 2: (a) Network structure. The RNN output at the final step of the sequence is treated as the
sequence embedding. During training, the distance between sequence embeddings is adjusted using
an embedding loss. (b) We recompose sequences to enforce associativity and invertibility. Sequences
with equivalent motion (e.g. 1-2-4 and 1-3-4) serve as positive examples, while sequences with
inequivalent motions (e.g. 1-2-4 and 4-3-1) serve as negative examples.

3 APPROACH

3.1 GROUP PROPERTIES OF MOTION

We base our method on the observation that the set of 3D scene motions, equipped with the com-
position operation, forms a group. This group describes the latent structure of transformations in
continuous, real-world image sequences. By learning an embedding that captures the transformations
in scenes that occur during motion, we approximate a group homomorphism between the latent
motion of the scene and a representation of this motion. We design our method to capture associativity
and invertibility, which allows us to reason about how motions relate and can be composed.

To see that a latent motion space respects these properties, first consider a latent structure space
S. In this model, an element of the structure space generates images Z via a projection operator
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7 : S — Z. We also define a latent motion space M, which is some closed subgroup of the set of
homeomorphisms on S. For any element S of the structure space S, a continuous motion sequence
{M; € M |t > 0} generates a continuous image sequence {I; € Z | t > 0} where I, = w(M;(S)).
For a discrete set of images, we can rewrite this as Iy = w((Ma, o M;_1)(95)) = 7(Ma,(S¢-1)),
which defines a hidden Markov model, as illustrated in Figure[I](a). As M is a closed subgroup
of the homeomorphisms on &, it is associative, it contains the identity, and all of its elements have
unique inverses in the group.

A simple, specific case of this model is rigid image motion, such as the motion produced by a
camera translating and rotating through a rigid scene in 3D. Here, the latent structure of the scene S
can be modeled by a point cloud with a motion space given by M = S&(3). For a scene with N
rigid bodies, we can describe the motion with a tuple of SE(3) values, M = (S&(3))", where the
Nth motion acts on the set of points belonging to the Nth rigid body. Generalizing M to general
homeomorphisms gives the most general case of motion. As different scenes contain different degrees
of freedom and affordances, it is typically unclear which group effectively characterizes motion in a
given real-world setting. We propose to learn this in a data-driven manner.

3.2 LEARNING MOTION BY GROUP PROPERTIES

Our goal is to learn a function ® : Z x Z — M that maps pairs of images to a representation M
of the motion space M. We also learn a corresponding composition operator ¢ : M — M that
emulates the composition of elements in M. This representation and operator should respect the
properties of the motion group in question.

We exploit the structure of the domain to learn to represent and compose motions without labels. If an
image sequence {I; } is sampled from a continuous motion sequence, then the sequence representation
should have the following properties for all times %, t1, to, t3, Where tg < t1 < to < t3, reflecting
the group properties of the latent motion:

(1) Associativity: CD(ItO,ItQ) & (I)(Itgaltg) = (CI)(It(J;Itl) & (I)(Itlaltg)) & (I)(Itgajtg) =
O(Iyy, It, ) o (P (Iyy, Ity ) 0 (Iyy, Ity)) = (1, It ) P (14, Ity ). The motion of differently
composed subsequences of a sequence are equivalent.

(ii) Existence of the identity element: ® (I, I;,) o e = ®(Iy,, It,) = e o ®(Iy,, I,), and
e = ®(Iy, I) for any t. Null image motion corresponds to the (unique) identity in the latent
space.

(iil) Invertibility: ®(Iy,, I;,) © ®(Iy,, I,) = e. The motion of a reversed image sequence is the
inverse of the motion of the original image sequence.

We use an embedding loss to approximately enforce associativity and invertibility among subse-
quences sampled from an image sequence. Associativity is encouraged by pushing differently
composed sequences with equivalent motion to the same representation. Invertibility of the represen-
tation is encouraged by pushing each forward sequence away from its backward counterpart and by
pushing all loops to the same representation (i.e. to a learned representation of the identity in the
embedding space). We encourage the uniqueness of the identity representation by pushing loops
away from non-identity sequences in the representation. Because loops have equivalent (identity)
motion regardless of scene content, we also push together loops drawn from different sequences. This
procedure is illustrated schematically in Figure[2]

Learning in this framework can be viewed as inference on the graphical model in Figure [I] (a).
Learning a representation of motion is an underconstrained problem, and the group learning rules we
introduce here constrain the problem with minimal restriction on the types of scene changes that can
be embedded.

In contrast, in optical flow, inference is constrained using the brightness constancy assumption, which
assumes that the illumination of a projected scene point does not change between frames (Horn &
Schunck! (1981)). Our framework encompasses flow inference if brightness constancy is viewed as a
constraint on the projection operator m. However, the brightness constancy assumption is invalid in
many settings. Our model’s assumptions about geometric properties of motion in the world are valid
even over large motions and changing illumination.
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The latent structure and motion of a scene are in general non-identifiable, which implies that for
any given scene, there are several M that can adequately represent M. We do not claim to learn
a unique representation of motion, but rather we attempt to capture one such representation. Our
method assumes the scene has a relatively stable structure, and we do not expect it to handle rapidly
changing content or sequence cuts. We also expect our method to have difficulty representing motion
in cases of temporally extended occlusion due to the unobservability of motion in such settings.

3.3 SEQUENCE LEARNING WITH NEURAL NETWORKS

The functions ¢ and ¢ are implemented as a convolutional neural network (CNN) and a recurrent
neural network (RNN), respectively. We use a long short-term memory (LSTM) RNN (Hochreiter
& Schmidhuber| (1997)) due to its ability to reliably learn over long time sequences. The input to
the network is in an image sequence [I1, ..., It]. The CNN @ processes these images and outputs an
intermediate representation [0172’ ..., Ct_1¢]. The LSTM operates over the sequence of CNN outputs
to produce an embedding sequence [Rj 2, ..., Ri—1,]. We treat R({I;}) = R;_1 . as the embedding
of sequence {1, }. This configuration is illustrated schematically in Figure[2| (a).

Table 1: Average embedding error (equation|l) on held-out data. Results are averaged over forward,
backward, and loop sequences. Errors are relative to a chance error of 1: values lower than 1 indicate
that equivalent (inequivalent) motions are close together (far apart) in the embedding space.

[ CNN input method [ Motion condition | MNIST [ KITTI |

Image pairs Equivalent 8.le—4 | 7.2e—3
Image pairs Inequivalent 1.7e—2 | 8.0e—2
Single image Equivalent 0.74 3.5e—2
Single image Inequivalent 0.79 3.5

The network is trained to minimize a hinge loss with respect to the embedding of pairs of sequences:

d(R', R?) if positive pair
L Rl R2 — ’ ) 1
(R, B) {max((), m —d(R', R?)), if negative pair b

where d(R!, R?) measures the distance between the embeddings of two example sequences { I} } and
{I%}, and m is a fixed scalar margin. Positive examples are image sequences that are compositionally
equivalent, while negative examples are those that are not. We use the cosine distance for all
experiments (with m = 0.5), as it is smooth and discourages learning the trivial embedding. In early
experiments, results with an L2 distance were similar.

We include six recomposed subsequences for each training sequence: two forward, two backward,
and two identity subsequences, as shown in Figure [2](b). Subsequences are sampled such that all
three sequence types share some of their frames. To discourage the network from paying attention
to only the beginning or end of a sequence, we use several image recomposing schemes. Forward
and backward sequences are sampled to either have the same or different starting frames, and they
are drawn from either the same subsequence or from temporally adjacent subsequences. Because
the network is exposed to sequences with the same start and end frames but different motion, this
sampling procedure encourages the network to rely on features in the motion domain, rather than on
static differences. During training, we use sequences of varying length to encourage generalization to
motions of different temporal scale.

We also explored learning a representation ¢ taking single images (and not image pairs) as CNN
input. Because the CNN in this configuration only has access to single images, it cannot extract image
motion directly. In all domains we tested, the representation learned from image pairs outperformed
the one learned from single images (Table [I).

4 EXPERIMENTS

We first demonstrate that our learning procedure can discover the structure of motion in the context of
rigid scenes undergoing 2D translations and rotations. We then show that our method learns features
useful for representing motion on KITTI (Geiger et al.|(2012)), a dataset of vehicle sequences with
motion due to the camera and independent objects. In all experiments, networks were trained using
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Adam (Kingma & Ba(2014))). For MNIST training, we used a fixed decay schedule of 30 epochs and
with a starting learning rate chosen by random search (le-2 was a typical value). For MNIST, typical
batch sizes were 50-60 sequences, and for KITTI (Geiger et al.|(2012)) the batch sizes were typically
25-30 sequences. All networks were implemented in Torch (Collobert et al.|(2011)).
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Figure 3: (a) An example test sequence from MNIST and the corresponding saliency maps. Saliencies
show the gradient backpropagated from the final RNN timestep. Each column represents an image
pair passed to one of the CNNs. (b)-(d) tSNE of the network embedding on the test set, with points
labeled by (b) the magnitude of translation in pixels, (c) the translation direction in degrees, and
(d) the digit label (0-9). The representation clusters sequences by both translation magnitude and
direction but not identity.

We use dilated convolutions to obtain large receptive fields suitable for capturing large-scale motion
patterns. We used ReLU nonlinearities and batch normalization (loffe & Szegedy|(2015))) after each
convolutional layer. CNN output was passed to an LSTM with 256 hidden units, followed by a linear
layer with 256 hidden units. In all experiments, CNN-LSTMs were trained on sequences 3-5 images
in length. We tested MNIST networks with sequences of up to 12 images with similar results.

4.1 RIGID MOTION IN 2D

To test the ability of our learning procedure to represent motion, we trained a network on a dataset
consisting of image sequences created from the MNIST dataset. Each sequence consists of images
undergoing a smooth motion drawn from the group of 2D translations and rotations (S&€(2)) for 20
frames. We sampled transformation parameters uniformly from [—10, 10] pixels for both horizontal
and vertical translation and from [0, 360) degrees for rotation. Validation errors are given in Table

We visualize the representation learned on this data using tSNE (van der Maaten & Hinton| (2008)))
on the sequence embedding for test images undergoing a random translation (Figure[3). The network
representation clearly clusters sequences by both the direction and magnitude of translation. No
obvious clusters appear in terms of the image content. Similar results were obtained when test data
included both translation and rotation. This suggests that the network has learned a representation
that captures the properties of motion in the dataset. This content-invariant clustering occurs even
though the network was never trained to compare images with different spatial content and the same
motion.

To further probe the network, we visualize image-conditioned saliency maps in Figure 3] These
saliency maps show the positive (red) and negative (blue) gradients of the network activation with
respect to the input image. As discussed in |Simonyan et al.| (2013), such a saliency map can be
interpreted as a first-order Taylor expansion of the function ®, evaluated at image /. The saliency
map thus gives an indication of how pixel values affect the representation. These saliency maps show
gradients with respect to the output of the LSTM over the sequence.
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Table 2: Linear regression from the learned embedding to the translation and rotation of the KITTI
odometry dataset consistently performs better than chance (guessing the mean value). Table entries

show mean squared error + standard error (percent improvement).

Translation X (cm)

Translation Y (cm)

Translation Z (cm)

Mean 5.92 + 1.5e-01 3.01 + 1.2e-01 1904.75 4+ 3.1e+01
Ours 5.05 + 1.2e-01 (14.71%) | 2.83 £+ 1.2e-01 (6.10%) | 1539.04 4+ 2.3e+01 (19.20%)
Flow+PCA (4 PCs) 3.18 £9.5¢-02 (46.27%) | 2.92 4+ 1.2e-01 (3.47%) 1754.36 & 2.8e+01 (7.91%)
Flow+PCA (256 PCs) | 1.89 + 8.5e-02 (68.07%) | 2.32 4 1.2e-01 (23.42%) | 239.46 + 5.6e+00 (87.43%)
Rotation X (deg) Rotation Y (deg) Rotation Z (deg)
Mean 0.02 + 3.3e-04 0.98 + 1.6e-02 0.03 + 4.8e-04
Ours 0.02 + 3.1e-04 (4.03%) | 0.79 + 1.5e-02 (19.12%) 0.02 4= 4.0e-04 (21.28%)
Flow+PCA (4 PCs) 0.02 4+ 3.3e-04 (1.16%) | 0.29 £ 3.3e-03 (70.11%) 0.03 + 4.8e-04 (0.17%)

Flow+PCA (256 PCs)

0.00 % 9.8e-05 (79.33%)

0.05 + 1.7e-03 (94.50%)

0.01 = 1.3e-04 (82.53%)

Intriguingly, these saliency maps bear a strong resemblance to the spatiotemporal energy filters of
classical motion processing (Adelson & Bergen|(1985)), which are known to be optimal for 2D speed
estimation in natural scenes under certain assumptions Burge & Geisler| (2015). We note that these
saliency maps do not simply depict the shape of the filters of the first layers, but rather represent the
implicit filter instantiated by the full network on this image. When compared across different frames,
it becomes clear that the functional mapping learned by the network can flexibly adapt in orientation
and arrangement to the image content, unlike standard energy model filters.

Table 3: Interpolation distances on KITTI (as in Figure E]) averaged across test data. Distances are
consistently lower for the true frame than for visually similar frames (inside sequence) and dissimilar
frames (outside sequence) when using the embedding, but not the Euclidean distance.

| Method | Skipped frames [ True middle frame | Inside (min value) | Outside (min value) |
Embedding | 1 3.91e-03 7.67e-02 2.94¢-01
Euclidean 1 7.92e-04 7.97e-04 1.09e-03
Embedding | 2 1.18e-02 2.02e-02 1.34e-01
Euclidean 2 9.59¢-04 8.13e-04 1.08e-03

4.2 REAL-WORLD MOTION IN 3D

We use the KITTI dataset (Geiger et al.|(2012)) to test the model’s representation of motion in 3D
scenes with camera and independent motion. We use the representation trained on KITTT tracking
in all experiments. First, we evaluate how well it can decode camera motion. We compute the
representation on all two-frame sequences of KITTI visual odometry, which are labeled with ground
truth camera poses. We then linearly regress from these representations to the change in camera pose
between the frames using least squares.

For comparison, we show results using a recent self-supervised flow algorithm |Yu et al.| (2016). The
output of this method is a dense optical flow field. In order to regress from this flow field to camera
poses, we downsample the flow fields and run principal component analysis (PCA) over the full
training set. We then linearly regress from the flow field PCA components to the camera motion
parameters using least squares. Flow fields are computed at a resolution of 320x96 pixels, and PCA is
computed on downsampled flow fields of size 160x48 pixels. We include up to 256 PCA components
in the regression. We refer to this method as Flow+PCA.

Results on held-out test data are displayed in Table 2] Despite not being trained on any ground truth
pose and not seeing any data from the odometry dataset, the learned representation decodes pose
consistently better than chance (guessing the mean value). The largest improvements are in X and Z
translation, which also exhibit the most variance in the KITTI odometry dataset. These results are
not competitive with the Flow+PCA results or state-of-the-art odometry methods, but they suggest
our method recovers a meaningful representation of motion. On KITTI visual odometry, our method
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Figure 4: (a) Natural image motion is a subspace of the space of all image transformations, and a
particular motion can be viewed as a path in the latent space of natural images. Although [/, Ik, I7]
has a total transformation equivalent to [I7, I] for any value of K, only [I1, I,,, IT] can be produced
by natural image motion. (b) In interpolation experiments, we compare the distance between the
embedding of [I;, I7] with the embedding of this sequence after inserting either a true middle frame
(I,,,) or another frame (I1y or Ioyr). (€) Images with lowest relative error taken from the sequence or
from the whole dataset, for each distance measure. Errors are relative to that of the true middle frame
in the corresponding measure: high relative errors (> 1) indicate the distance distinguishes realistic
motion from unrealistic motion. Images other than true middle frame produce dramatically higher
errors when using the embedding but not when using a Euclidean distance.

performs similarly to regression to the Flow+PCA method using four to five principal components
which suggests that it is able to capture the dominant global components of motion.

Next, we test the ability of our network to capture the typical motion of the scene by quantifying its
performance on an interpolation task. Given an image sequence [[1, ..., IT], we compute the distance
between the embedding of the first and last frames, R([I1, I7]), vs. the sequence composed of the
first frame, a middle frame, and the last frame R([I1, I,,, I7]) (Figure EI) By comparing the distance
when using the true middle frame with the distance when using a different middle frame, we can
estimate how sensitive the network is to deviations from the typical dynamics of natural scenes, and
hence how well it has learned the relevant motion subgroup. Results for the full KITTT tracking
dataset are shown in TableEl We compare our method to a Euclidean distance, computed as the mean
pixelwise distance between the probe image and either I; or I (whichever is smaller). Note that
the embedding distance of the true frame is dramatically lower than that of all other frames. This
does not hold for the Euclidean distance, which is often lower for non-interpolating images in the
sequence, and is not dramatically different for frames from other sequences.

Finally, we visualize saliency maps on an example sequence in the KITTI dataset in Figure[5} The
saliency map highlights objects moving in the background and the independent motions of the car



Published as a conference paper at ICLR 2018

Sequence

Saliency

Image
Difference

Figure 5: Saliency results on a test sequence from KITTI tracking with both camera and independent
motion. The network focuses on areas that are relevant to determining motion in 3D, not simply
regions with large temporal image gradients.

in the foreground. The network highlights areas of the car that can move, such as the bumper, even
when these areas don’t contain prominent image differences. These results suggest our method may
be useful for learning features for independent motion detection and tracking.

There are few standard tasks for directly evaluating motion methods beyond odometry. We attempted
to regress from our learned representation to action classes but were unable to obtain competitive
performance. This is not surprising: previous work has shown spatial features are more discriminative
for this task, and motion features require extensive processing to be useful (e.g.
Zissermann| (2014)). In future work, we will explore using group properties to encourage intermediate
latents to represent motion along with other tasks. We expect that an embedding that maintains
representations of spatial content alongside representations of motion will be more successful in
settings like action recognition that depend on both sets of features.

5 CONCLUSION

We have presented a new model of motion and a method for learning motion representations. We
have shown that enforcing group properties of motion is sufficient to learn a representation of image
motion. These results suggest that this representation is able to generalize between scenes with
disparate content and motion to learn a motion state representation useful for navigation, prediction,
and other behavioral tasks relying on motion. Because of the wide availability of unlabeled video
sequences in many settings, we expect our framework to be useful for generating better global motion
representations in a variety of real-world tasks.
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SUPPLEMENTAL: ADDITIONAL EXPERIMENTS

Here, we expand on the comparison to the self-supervised optical flow baseline given in table
Our method performs equivalently to the Flow+PCA method using the top four to five principal
components (which account for most of the motion variance on KITTI, as shown in Figure[7). The
marginal improvement in Flow+PCA appears to sharply drop off beginning around four to five
principal components as well. As we saw before, the most dramatic increases in performance come
from the Z component of translation and the Y component of rotation, which are the axes of the
dominant motion and where chance error is highest.

We note that egomotion estimation benefits greatly from maintaining information about spatial
position. Methods using flow fields maintain the information by explicitly representing local motion
at each position of the image, but our method is global and does not. KITTI visual odometry is
characterized by stereotyped depth and is reasonably modeled as rigid. Under these circumstances,
camera translation and rotation can be estimated from a full flow field nearly linearly (Heeger &
Jepson|(1992)). Consistent with this explanation, flow principal components appear to capture both
the dominant motions exhibited by the vehicle on this dataset and the stereotyped depth configuration
of KITTI (Figure [§). The good performance of Flow+PCA here highlights the clear advantage
of domain-restricted models and learning rules in a setting where those domain restrictions are
appropriate. Our learning rule and model do not make these more restrictive assumptions but still
performs reasonably in this setting.
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Figure 6: Error on egomotion regression from self-supervised flow PCA as a function of the number
of principal components included. Horizontal lines reflect our method (latent, shown in red) and a
chance baseline (show in green).
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Figure 7: Cumulative percent variance explained of the optical flow in KITTI odometry as a function
of the number of principal components included. 67% of the variance is explained by the first 5
components; 90% of the variance is explained by the first 40 principal components.
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Figure 8: Representative principal components of optical flow on the KITTI odometry dataset. The
first few components capture the dominant motions (forward and left/right turning) and reflect the
stereotypical depth structure of KITTL.
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