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Abstract

Trajectory optimization using a learned model of the environment is one of the
core elements of model-based reinforcement learning. This procedure often suffers
from exploiting inaccuracies of the learned model. We propose to regularize
trajectory optimization by means of a denoising autoencoder that is trained on the
same trajectories as the model of the environment. We show that the proposed
regularization leads to improved planning with both gradient-based and gradient-
free optimizers. We also demonstrate that using regularized trajectory optimization
leads to rapid initial learning in a set of popular motor control tasks, which suggests
that the proposed approach can be a useful tool for improving sample efficiency.

1 Introduction

State-of-the-art reinforcement learning (RL) often requires a large number of interactions with the
environment to learn even relatively simple tasks [11]. It is generally believed that model-based RL
can provide better sample-efficiency [9, 2, 5] but showing this in practice has been challenging. In
this paper, we propose a way to improve planning in model-based RL and show that it can lead to
improved performance and better sample efficiency.

In model-based RL, planning is done by computing the expected result of a sequence of future actions
using an explicit model of the environment. Model-based planning has been demonstrated to be
efficient in many applications where the model (a simulator) can be built using first principles. For
example, model-based control is widely used in robotics and has been used to solve challenging tasks
such as human locomotion [34, 35] and dexterous in-hand manipulation [21].

In many applications, however, we often do not have the luxury of an accurate simulator of the
environment. Firstly, building even an approximate simulator can be very costly even for processes
whose dynamics is well understood. Secondly, it can be challenging to align the state of an existing
simulator with the state of the observed process in order to plan. Thirdly, the environment is often
non-stationary due to, for example, hardware failures in robotics, change of the input feed and
deactivation of materials in industrial process control. Thus, learning the model of the environment is
the only viable option in many applications and learning needs to be done for a live system. And since
many real-world systems are very complex, we are likely to need powerful function approximators,
such as deep neural networks, to learn the dynamics of the environment.

However, planning using a learned (and therefore inaccurate) model of the environment is very
difficult in practice. The process of optimizing the sequence of future actions to maximize the

∗Equal contribution, rest in alphabetical order

Preprint. Under review.



expected return (which we call trajectory optimization) can easily exploit the inaccuracies of the
model and suggest a very unreasonable plan which produces highly over-optimistic predicted rewards.
This optimization process works similarly to adversarial attacks [1, 13, 33, 7] where the input of a
trained model is modified to achieve the desired output. In fact, a more efficient trajectory optimizer
is more likely to fall into this trap. This can arguably be the reason why gradient-based optimization
(which is very efficient at for example learning the models) has not been widely used for trajectory
optimization.

In this paper, we study this adversarial effect of model-based planning in several environments and
show that it poses a problem particularly in high-dimensional control spaces. We also propose to
remedy this problem by regularizing trajectory optimization using a denoising autoencoder (DAE)
[37]. The DAE is trained to denoise trajectories that appeared in the past experience and in this
way the DAE learns the distribution of the collected trajectories. During trajectory optimization, we
use the denoising error of the DAE as a regularization term that is subtracted from the maximized
objective function. The intuition is that the denoising error will be large for trajectories that are far
from the training distribution, signaling that the dynamics model predictions will be less reliable as it
has not been trained on such data. Thus, a good trajectory has to give a high predicted return and it
can be only moderately novel in the light of past experience.

In the experiments, we demonstrate that the proposed regularization significantly diminishes the
adversarial effect of trajectory optimization with learned models. We show that the proposed
regularization works well with both gradient-free and gradient-based optimizers (experiments are
done with cross-entropy method [3] and Adam [14]) in both open-loop and closed-loop control.
We demonstrate that improved trajectory optimization translates to excellent results in early parts
of training in standard motor-control tasks and achieve competitive performance after a handful of
interactions with the environment.

2 Model-Based Reinforcement Learning

In this section, we explain the basic setup of model-based RL and present the notation used. At
every time step t, the environment is in state st, the agent performs action at, receives reward
rt = r(st, at) and the environment transitions to new state st+1 = f(st, at). The agent acts based
on the observations ot = o(st) which is a function of the environment state. In a fully observable
Markov decision process (MDP), the agent observes full state ot = st. In a partially observable
Markov decision process (POMDP), the observation ot does not completely reveal st. The goal of the
agent is select actions {a0, a1, . . .} so as to maximize the return, which is the expected cumulative
reward E [

∑∞
t=0 r(st, at)].

In the model-based approach, the agent builds the dynamics model of the environment (forward
model). For a fully observable environment, the forward model can be a fully-connected neural
network trained to predict the state transition from time t to t+ 1:

st+1 = fθ(st, at) . (1)

In partially observable environments, the forward model can be a recurrent neural network trained to
directly predict the future observations based on past observations and actions:

ot+1 = fθ(o0, a0, . . . , ot, at) . (2)

In this paper, we assume access to the reward function and that it can be computed from the agent
observations, that is rt = r(ot, at).

At each time step t, the agent uses the learned forward model to plan the sequence of future actions
{at, . . . , at+H} so as to maximize the expected cumulative future reward.

G(at, . . . , at+H) = E

[
t+H∑
τ=t

r(oτ , aτ )

]
at, . . . , at+H = argmaxG(at, . . . , at+H) .

This process is called trajectory optimization. The agent uses the learned model of the environment
to compute the objective function G(at, . . . , at+H). The model (1) or (2) is unrolled H steps into
the future using the current plan {at, . . . , at+H}.
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Algorithm 1 End-to-end model-based reinforcement learning

Collect data D by random policy.
for each episode do

Train dynamics model fθ using D.
for time t until the episode is over do

Optimize trajectory {at, ot+1, . . . , at+H , ot+H+1}.
Implement the first action at and get new observation ot.

end for
Add data {(s1, a1, . . . , aT , oT )} from the last episode to D.

end for

The optimized sequence of actions from trajectory optimization can be directly applied to the
environment (open-loop control). It can also be provided as suggestions to a human operator with the
possibility for the human to change the plan (human-in-the-loop). Open-loop control is challenging
because the dynamics model has to be able to make accurate long-range predictions. An approach
which works better in practice is to take only the first action of the optimized trajectory and then re-
plan at each step (closed-loop control). Thus, in closed-loop control, we account for possible modeling
errors and feedback from the environment. In the control literature, this flavor of model-based RL is
called model-predictive control (MPC) [22, 30, 16, 24].

The typical sequence of steps performed in model-based RL are: 1) collect data, 2) train the forward
model fθ, 3) interact with the environment using MPC (this involves trajectory optimization in every
time step), 4) store the data collected during the last interaction and continue to step 2. The algorithm
is outlined in Algorithm 1.

3 Regularized Trajectory Optimization

3.1 Problem with using learned models for planning

In this paper, we focus on the inner loop of model-based RL which is trajectory optimization using a
learned forward model fθ. Potential inaccuracies of the trained model cause substantial difficulties
for the planning process. Rather than optimizing what really happens, planning can easily end up
exploiting the weaknesses of the predictive model. Planning is effectively an adversarial attack
against the agent’s own forward model. This results in a wide gap between expectations based on the
model and what actually happens.

We demonstrate this problem using a simple industrial process control benchmark from [28]. The
problem is to control a continuous nonlinear reactor by manipulating three valves which control
flows in two feeds and one output stream. Further details of the process and the control problem
are given in Appendix A. The task considered in [28] is to change the product rate of the process
from 100 to 130 kmol/h. Fig. 1a shows how this task can be performed using a set of PI controllers
proposed in [28]. We trained a forward model of the process using a recurrent neural network (2) and
the data collected by implementing the PI control strategy for a set of randomly generated targets.
Then we optimized the trajectory for the considered task using gradient-based optimization, which
produced results in Fig. 1b. One can see that the proposed control signals are changed abruptly and
the trajectory imagined by the model significantly deviates from reality. For example, the pressure
constraint (of max 300 kPa) is violated. This example demonstrates how planning can easily exploit
the weaknesses of the predictive model.

3.2 Regularizing Trajectory Optimization with Denoising Autoencoders

We propose to regularize the trajectory optimization with denoising autoencoders (DAE). The idea is
that we want to reward familiar trajectories and penalize unfamiliar ones because the model is likely
to make larger errors for the unfamiliar ones.

This can be achieved by adding a regularization term to the objective function:

Greg = G+ α log p(ot, at . . . , ot+H , at+H) , (3)
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Figure 1: Open-loop planning for a continuous nonlinear two-phase reactor from [28]. Three subplots
in every subfigure show three measured variables (solid lines): product rate, pressure and A in the
purge. The black curves represent the model’s imagination while the red curves represent the reality
if those controls are applied in an open-loop mode. The targets for the variables are shown with
dashed lines. The fourth (low right) subplots show the three manipulated variables: valve for feed 1
(blue), valve for feed 2 (red) and valve for stream 3 (green).
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Figure 2: Example: fragment of a computational graph used during trajectory optimization in an
MDP. Here, window size w = 1, that is the DAE penalty term is c1 = ‖g([s1, a1])− [s1, a1]‖2.

where p(ot, at, . . . , ot+H , at+H) is the probability of observing a given trajectory in the past experi-
ence and α is a tuning hyperparameter. In practice, instead of using the joint probability of the whole
trajectory, we use marginal probabilities over short windows of size w:

Greg = G+ α

t+H−w∑
τ=t

log p(xτ ) (4)

where xτ = {oτ , aτ , . . . oτ+w, aτ+w} is a short window of the optimized trajectory.

Suppose we want to find the optimal sequence of actions by maximizing (4) with a gradient-based
optimization procedure. We can compute gradients ∂Greg

∂ai
by backpropagation in a computational graph

where the trained forward model is unrolled into the future (see Fig. 2). In such backpropagation-
through-time procedure, one needs to compute the gradient with respect to actions ai.

∂Greg

∂ai
=
∂G

∂ai
+ α

i+w∑
τ=i

∂xτ
∂ai

∂

∂xτ
log p(xτ ) , (5)

where we denote by xτ a concatenated vector of observations oτ , . . . oτ+w and actions aτ , . . . aτ+w,
over a window of size w. Thus to enable a regularized gradient-based optimization procedure, we
need means to compute ∂

∂xτ
log p(xτ ).

In order to evaluate log p(xτ ) (or its derivative), one needs to train a separate model p(xτ ) of the
past experience, which is the task of unsupervised learning. In principle, any probabilistic model
can be used for that. In this paper, we propose to regularize trajectory optimization with a denoising
autoencoder (DAE) which does not build an explicit probabilistic model p(xτ ) but rather learns to
approximate the derivative of the log probability density. The theory of denoising [23, 27] states that
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the optimal denoising function g(x̃) (for zero-mean Gaussian corruption) is given by:

g(x̃) = x̃+ σ2
n

∂

∂x̃
log p(x̃) ,

where p(x̃) is the probability density function for data x̃ corrupted with noise and σn is the standard
deviation of the Gaussian corruption. Thus, the DAE-denoised signal minus the original gives
the gradient of the log-probability of the data distribution convolved with a Gaussian distribution:
∂
∂x̃ log p(x̃) ∝ g(x)− x . Assuming ∂

∂x̃ log p(x̃) ≈
∂
∂x log p(x) yields

∂Greg

∂ai
=
∂G

∂ai
+ α

i+w∑
τ=i

∂xτ
∂ai

(g(xτ )− xτ ) . (6)

Using ∂
∂x̃ log p(x̃) instead of ∂

∂x log p(x) can behave better in practice because it is similar to replacing
p(x) with its Parzen window estimate [36]. In automatic differentiation software, this gradient can
be computed by adding the penalty term ‖g(xτ )− xτ‖2 to G and stopping the gradient propagation
through g. In practice, stopping the gradient through g did not yield any benefits in our experiments
compared to simply adding the penalty term ‖g(xτ )− xτ‖2 to the cumulative reward, so we used
the simple penalty term in our experiments. Also, this kind of regularization can easily be used with
gradient-free optimization methods such as cross-entropy method (CEM) [3].

Our goal is to tackle high-dimensional problems and expressive models of dynamics. Neural networks
tend to fare better than many other techniques in modeling high-dimensional distributions. However,
using a neural network or any other flexible parameterized model to estimate the input distribution
poses a dilemma: the regularizing network which is supposed to keep planning from exploiting the
inaccuracies of the dynamics model will itself have weaknesses which planning will then exploit.
Clearly, DAE will also have inaccuracies but planning will not exploit them because unlike most other
density models, DAE develops an explicit model of the gradient of logarithmic probability density.

The effect of adding DAE regularization in the industrial process control benchmark discussed in the
previous section is shown in Fig. 1c.

3.3 Related work

Several methods have been proposed for planning with learned dynamics models. Locally linear time-
varying models [17, 19] and Gaussian processes [8, 15] or mixture of Gaussians [29] are data-efficient
but have problems scaling to high-dimensional environments. Recently, deep neural networks have
been successfully applied to model-based RL. Nagabandi et al. [24] use deep neural networks as
dynamics models in model-predictive control to achieve good performance, and then shows how
model-based RL can be fine-tuned with a model-free approach to achieve even better performance.
Chua et al. [5] introduce PETS, a method to improve model-based performance by estimating and
propagating uncertainty with an ensemble of networks and sampling techniques. They demonstrate
how their approach can beat several recent model-based and model-free techniques. Clavera et al. [6]
combines model-based RL and meta-learning with MB-MPO, training a policy to quickly adapt to
slightly different learned dynamics models, thus enabling faster learning.

Levine and Koltun [20] and Kumar et al. [17] use a KL divergence penalty between action distributions
to stay close to the training distribution. Similar bounds are also used to stabilize training of policy
gradient methods [31, 32]. While such a KL penalty bounds the evolution of action distributions, the
proposed method also bounds the familiarity of states, which could be important in high-dimensional
state spaces. While penalizing unfamiliar states also penalize exploration, it allows for more controlled
and efficient exploration. Exploration is out of the scope of the paper but was studied in [10], where a
non-zero optimum of the proposed DAE penalty was used as an intrinsic reward to alternate between
familiarity and exploration.

4 Experiments on Motor Control

We show the effect of the proposed regularization for control in standard Mujoco environments: Cart-
pole, Reacher, Pusher, Half-cheetah and Ant available in [4]. See the description of the environments
in Appendix B. We use the Probabilistic Ensembles with Trajectory Sampling (PETS) model from
[5] as the baseline, which achieves the best reported results on all the considered tasks except for Ant.
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Figure 3: Visualization of trajectory optimization at timestep t = 50. Each row has the same model
but a different optimization method. The models are obtained by 5 episodes of end-to-end training.
Row above: Cartpole environment. Row below: Half-cheetah environment. Here, the red lines
denote the rewards predicted by the model (imagination) and the black lines denote the true rewards
obtained when applying the sequence of optimized actions (reality). For a low-dimensional action
space (Cartpole), trajectory optimizers do not exploit inaccuracies of the dynamics model and hence
DAE regularization does not affect the performance noticeably. For a higher-dimensional action space
(Half-cheetah), gradient-based optimization without any regularization easily exploits inaccuracies of
the dynamics model but DAE regularization is able to prevent this. The effect is less pronounced
with gradient-free optimization but still noticeable.

The PETS model consists of an ensemble of probabilistic neural networks and uses particle-based
trajectory sampling to regularize trajectory optimization. We re-implemented the PETS model using
the code provided by the authors as a reference.

4.1 Regularized trajectory optimization with models trained with PETS

In MPC, the innermost loop is open-loop control which is then turned to closed-loop control by taking
in new observations and replanning after each action. Fig. 3 illustrates the adversarial effect during
open-loop trajectory optimization and how DAE regularization mitigates it. In Cartpole environment,
the learned model is very good already after a few episodes of data and trajectory optimization stays
within the data distribution. As there is no problem to begin with, regularization does not improve the
results. In Half-cheetah environment, trajectory optimization manages to exploit the inaccuracies of
the model which is particularly apparent in gradient-based Adam. DAE regularization improves both
but the effect is much stronger with Adam.

The problem is exacerbated in closed-loop control since it continues optimization from the solution
achieved in the previous time step, effectively iterating more per action. We demonstrate how
regularization can improve closed-loop trajectory optimization in the Half-cheetah environment. We
first train three PETS models for 300 episodes using the best hyperparameters reported in [5]. We
then evaluate the performance of the three models on five episodes using four different trajectory
optimizers: 1) Cross-entropy method (CEM) which was used during training of the PETS models,
2) Adam, 3) CEM with the DAE regularization and 4) Adam with the DAE regularization. The results
averaged across the three models and the five episodes are presented in Table 1.

Table 1: Comparison of PETS with CEM and Adam optimizers in Half-cheetah

Optimizer CEM CEM + DAE Adam Adam + DAE

Average Return 10955± 2865 12967± 3216 – 12796± 2716

We first note that planning with Adam fails completely without regularization: the proposed actions
lead to unstable states of the simulator. Using Adam with the DAE regularization fixes this problem
and the obtained results are better than the CEM method originally used in PETS. CEM appears
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to regularize trajectory optimization but not as efficiently CEM+DAE. These open-loop results are
consistent with the closed-loop results in Fig. 3.

4.2 End-to-end training with regularized trajectory optimization

In the following experiments, we study the performance of end-to-end training with different trajectory
optimizers used during training. Our agent learns according to the algorithm presented in Algorithm 1.
Since the environments are fully observable, we use a feedforward neural network as in (1) to model
the dynamics of the environment. Unlike PETS, we did not use an ensemble of probabilistic networks
as the forward model. We use a single probabilistic network which predicts the mean and variance of
the next state (assuming a Gaussian distribution) given the current state and action. Although we only
use the mean prediction, we found that also training to predict the variance improves the stability of
the training.

For all environments, we use a dynamics model with the same architecture: three hidden layers of size
200 with the Swish non-linearity [26]. Similar to prior works, we train the dynamics model to predict
the difference between st+1 and st instead of predicting st+1 directly. We train the dynamics model
for 100 or more epochs (see Appendix C) after every episode. This is a larger number of updates
compared to five epochs used in [5]. We found that an increased number of updates has a large effect
on the performance for a single probabilistic model and not so large effect for the ensemble of models
used in PETS. This effect is shown in Fig. 6.

For the denoising autoencoder, we use the same architecture as the dynamics model. The state-action
pairs in the past episodes were corrupted with zero-mean Gaussian noise and the DAE was trained to
denoise it. Important hyperparameters used in our experiments are reported in the Appendix C. For
DAE-regularized trajectory optimization we used either CEM or Adam as optimizers.

The learning progress of the compared algorithms is presented in Fig. 4. Note that we report the
average returns across different seeds, not the maximum return seen so far as was done in [5].2 In
Cartpole, all the methods converge to the maximum cumulative reward but the proposed method
converges the fastest. In the Cartpole environment, we also compare to a method which uses Gaussian
Processes (GP) as the dynamics model (algorithm denoted GP-E in [5], which considers only the
expectation of the next state prediction). The implementation of the GP algorithm was obtained
from the code provided by [5]. Interestingly, our algorithm also surpasses the Gaussian Process (GP)
baseline, which is known to be a sample-efficient method widely used for control of simple systems.
In Reacher, the proposed method converges to the same asymptotic performance as PETS, but faster.
In Pusher, all algorithms perform similarly.

In Half-cheetah and Ant, the proposed method shows very good sample efficiency and very rapid
initial learning. The agent learns an effective running gait in only a couple of episodes.3 The
results demonstrate that denoising regularization is effective for both gradient-free and gradient-based
planning, with gradient-based planning performing the best. The proposed algorithm learns faster
than PETS in the initial phase of training. It also achieves performance that is competitive with
popular model-free algorithms such as DDPG, as reported in [5].

However, the performance of the proposed method does not improve after initial 10 episodes, so it
does not reach the asymptotic performance of PETS (see results for PETS for Half-cheetah after 300
episodes in Table 1). This result is evidence of the importance of exploration: the DAE regularization
essentially penalizes exploration, which can harm asymptotic performance in complex environments.
In PETS, CEM leaves some noise in the trajectories, which might help to obtain better asymptotic
performance. The result presented in Appendix E provides some evidence that at least a part of the
problem is lack of exploration.

We also compare the performance of our method with Model-Based Meta Policy Optimization
(MB-MPO) [6], an approach that combines the benefits of model-based RL and meta learning: the
algorithm trains a policy using simulations generated by an ensemble of models, learned from data.
Meta-learning allows this policy to quickly adapt to the various dynamics, hence learning how to
quickly adapt in the real environment, using Model-Agnostic Meta Learning (MAML) [12]. In

2 Because of the different metric used, the PETS results presented in this paper may appear worse than in [5].
However, we verified that our implementation of PETS obtains similar results to [5] for the metric used in [5].

3 Videos of our agents during training can be found at https://sites.google.com/view/
regularizing-mbrl-with-dae/home.
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Figure 4: Results of our experiments on the five benchmark environments, in comparison to PETS
[5]. We show the return obtained in each episode. All the results are averaged across 5 seeds, with
the shaded area representing standard deviation. PETS is a recent state-of-the-art model-based RL
algorithm and GP-based (Gaussian Processes) control algorithms are well known to be sample-
efficient and are extensively used for the control of simple systems.
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Figure 5: Comparison to MB-MPO [6], MB-TRPO [18] and MB-MPC [24] on Half-cheetah. We
plot the average return over the last 20 episodes. Our results are averaged across 3 seeds, with the
shaded area representing standard deviation. Note that the comparison numbers are picked from [6]
and the results from the first 20 episodes are not reported.

Fig. 5 we compare our method to MB-MPO and other model-based methods included in [6]. This
experiment is done in the Half-cheetah environment with shorter episodes (200 timesteps) in order to
compare to the results reported in [6]. The results show that our method learns faster than MB-MPO.

5 Discussion

In recent years, a lot of effort has been put in making deep reinforcement algorithms more sample-
efficient, and thus adaptable to real world scenarios. Model-based reinforcement learning has shown
promising results, obtaining sample-efficiency even orders of magnitude better than model-free
counterparts, but these methods have often suffered from sub-optimal performance due to many
reasons. As already noted in the recent literature [24, 5], out-of-distribution errors and model
overfitting are often sources of performance degradation when using complex function approximators.
In this work we demonstrated how to tackle this problem using regularized trajectory optimization.
Our experiments demonstrate that the proposed solution can improve the performance of model-based
reinforcement learning.
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While trajectory optimization is a key component in model-based RL, there are clearly several other
issues which need to be tackled in complex environments:

• Local minima for trajectory optimization. There can be multiple trajectories that are
reasonable solutions but in-between trajectories can be very bad. For example, we can take a
step with a right or left foot but both will not work. We tackled this issue by trying multiple
initializations, which worked for the considered environments, but better techniques will be
needed for more complex environments.

• The planning horizon problem. In the presented experiments, the planning procedure
did not care about what happens after the planning horizon. This was not a problem for
the considered environments due to nicely formatted reward. Other solutions like value
functions, multiple time scales or hierarchy for planning are required with sparser reward
problems. All of these are compatible with model-based RL.

• Open-loop vs. closed-loop (compounding errors). The implicit planning assumption of
trajectory optimization is open-loop control. However, MPC only takes the first action
and then replans (closed-loop control). If the outcome is uncertain (e.g., due to stochastic
environments or imperfect forward model), this can lead to overly pessimistic controls.

• Local optima of the policy. This is the well-known exploration-exploitation dilemma. If
the model has never seen data of alternative trajectories, it may predict their consequences
incorrectly and never try them (because in-between trajectories can be genuinely worse).
Good trajectory optimization (exploitation) can harm long-term performance because it
reduces exploration, but we believe that it is better to add explicit exploration. With model-
based RL, intrinsically motivated exploration is a particularly interesting option because it
is possible to balance exploration and the expected cost. This is particularly important in
hazardous environments where safe exploration is needed.

• High-dimensional input space. Sensory systems like cameras, lidars and microphones can
produce vast amounts of data and it is infeasible to plan based on detailed prediction on low
level such as pixels. Also, predictive models of pixels may miss the relevant state.

• Changing environments. All the considered environments were static but real-world systems
keep changing. Online learning and similar techniques are needed to keep track of the
changing environment.

Still, model-based RL is an attractive approach and not only due to its sample-efficiency. Compared to
model-free approaches, model-based learning makes safe exploration and adding known constraints
or first-principles models much easier. We believe that the proposed method can be a viable solution
for real-world control tasks especially where safe exploration is of high importance.

We are currently working on applying the proposed methods for real-world problems such as assisting
operators of complex industrial processes and for control of autonomous mobile machines.
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