
Published as a conference paper at ICLR 2017

LEARNING TO NAVIGATE
IN COMPLEX ENVIRONMENTS

Piotr Mirowski∗, Razvan Pascanu∗, Fabio Viola, Hubert Soyer, Andrew J. Ballard,
Andrea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu,
Dharshan Kumaran, Raia Hadsell

DeepMind
London, UK

{piotrmirowski, razp, fviola, soyer, aybd, abanino, mdenil, goroshin, sifre,

korayk, dkumaran, raia} @google.com

ABSTRACT

Learning to navigate in complex environments with dynamic elements is an impor-
tant milestone in developing AI agents. In this work we formulate the navigation
question as a reinforcement learning problem and show that data efficiency and task
performance can be dramatically improved by relying on additional auxiliary tasks
leveraging multimodal sensory inputs. In particular we consider jointly learning
the goal-driven reinforcement learning problem with auxiliary depth prediction
and loop closure classification tasks. This approach can learn to navigate from raw
sensory input in complicated 3D mazes, approaching human-level performance
even under conditions where the goal location changes frequently. We provide
detailed analysis of the agent behaviour1, its ability to localise, and its network
activity dynamics, showing that the agent implicitly learns key navigation abilities.

1 INTRODUCTION

The ability to navigate efficiently within an environment is fundamental to intelligent behavior.
Whilst conventional robotics methods, such as Simultaneous Localisation and Mapping (SLAM),
tackle navigation through an explicit focus on position inference and mapping (Dissanayake et al.,
2001), here we follow recent work in deep reinforcement learning (Mnih et al., 2015; 2016) and
propose that navigational abilities could emerge as the by-product of an agent learning a policy
that maximizes reward. One advantage of an intrinsic, end-to-end approach is that actions are not
divorced from representation, but rather learnt together, thus ensuring that task-relevant features are
present in the representation. Learning to navigate from reinforcement learning in partially observable
environments, however, poses several challenges.

First, rewards are often sparsely distributed in the environment, where there may be only one goal
location. Second, environments often comprise dynamic elements, requiring the agent to use memory
at different timescales: rapid one-shot memory for the goal location, together with short term memory
subserving temporal integration of velocity signals and visual observations, and longer term memory
for constant aspects of the environment (e.g. boundaries, cues).

To improve statistical efficiency we bootstrap the reinforcement learning procedure by augmenting
our loss with auxiliary tasks that provide denser training signals that support navigation-relevant
representation learning. We consider two additional losses: the first one involves reconstruction of a
low-dimensional depth map at each time step by predicting one input modality (the depth channel)
from others (the colour channels). This auxiliary task concerns the 3D geometry of the environment,
and is aimed to encourage the learning of representations that aid obstacle avoidance and short-term
trajectory planning. The second task directly invokes loop closure from SLAM: the agent is trained
to predict if the current location has been previously visited within a local trajectory.
∗Denotes equal contribution
1A video illustrating the navigation agents is available at: https://youtu.be/lNoaTyMZsWI

1

Published as a conference paper at ICLR 2017

Figure 1: Views from a small 5× 10 maze, a large 9× 15 maze and an I-maze, with corresponding maze layouts
and sample agent trajectories. The mazes, which will be made public, have different textures and visual cues as
well as exploration rewards and goals (shown right).

To address the memory requirements of the task we rely on a stacked LSTM architecture (Graves
et al., 2013; Pascanu et al., 2013). We evaluate our approach using five 3D maze environments and
demonstrate the accelerated learning and increased performance of the proposed agent architecture.
These environments feature complex geometry, random start position and orientation, dynamic goal
locations, and long episodes that require thousands of agent steps (see Figure 1). We also provide
detailed analysis of the trained agent to show that critical navigation skills are acquired. This is
important as neither position inference nor mapping are directly part of the loss; therefore, raw
performance on the goal finding task is not necessarily a good indication that these skills are acquired.
In particular, we show that the proposed agent resolves ambiguous observations and quickly localizes
itself in a complex maze, and that this localization capability is correlated with higher task reward.

2 APPROACH

We rely on a end-to-end learning framework that incorporates multiple objectives. Firstly it tries to
maximize cumulative reward using an actor-critic approach. Secondly it minimizes an auxiliary loss
of inferring the depth map from the RGB observation. Finally, the agent is trained to detect loop
closures as an additional auxiliary task that encourages implicit velocity integration.

The reinforcement learning problem is addressed with the Asynchronous Advantage Actor-Critic
(A3C) algorithm (Mnih et al., 2016) that relies on learning both a policy π(at|st; θ) and value function
V (st; θV) given a state observation st. Both the policy and value function share all intermediate
representations, both being computed using a separate linear layer from the topmost layer of the
model. The agent setup closely follows the work of (Mnih et al., 2016) and we refer to this work for
the details (e.g. the use of a convolutional encoder followed by either an MLP or an LSTM, the use
of action repetition, entropy regularization to prevent the policy saturation, etc.). These details can
also be found in the Appendix B.

The baseline that we consider in this work is an A3C agent (Mnih et al., 2016) that receives only RGB
input from the environment, using either a recurrent or a purely feed-forward model (see Figure 2a,b).
The encoder for the RGB input (used in all other considered architectures) is a 3 layer convolutional
network. To support the navigation capability of our approach, we also rely on the Nav A3C agent
(Figure 2c) which employs a two-layer stacked LSTM after the convolutional encoder. We expand the
observations of the agents to include agent-relative velocity, the action sampled from the stochastic
policy and the immediate reward, from the previous time step. We opt to feed the velocity and
previously selected action directly to the second recurrent layer, with the first layer only receiving the
reward. We postulate that the first layer might be able to make associations between reward and visual
observations that are provided as context to the second layer from which the policy is computed.
Thus, the observation st may include an image xt ∈ R3×W×H (where W and H are the width and

2

Published as a conference paper at ICLR 2017

xt rt-1 {vt, at-1}

enc

ᵨ
ᬭ

xt

enc

ᵨ
ᬭ

enc

ᵨ
ᬭ Loop

(L)

Depth
(D1)

a. FF A3C c. Nav A3C d. Nav A3C +D1D2L

xt rt-1 {vt, at-1}

enc

ᵨ
ᬭ

xt

b. LSTM A3C

Depth
(D2)

Figure 2: Different architectures: (a) is a convolutional encoder followed by a feedforward layer and policy (π)
and value function outputs; (b) has an LSTM layer; (c) uses additional inputs (agent-relative velocity, reward,
and action), as well as a stacked LSTM; and (d) has additional outputs to predict depth and loop closures.

height of the image), the agent-relative lateral and rotational velocity vt ∈ R6, the previous action
at−1 ∈ RNA , and the previous reward rt−1 ∈ R.

Figure 2d shows the augmentation of the Nav A3C with the different possible auxiliary losses. In
particular we consider predicting depth from the convolutional layer (we will refer to this choice
as D1), or from the top LSTM layer (D2) or predicting loop closure (L). The auxiliary losses are
computed on the current frame via a single layer MLP. The agent is trained by applying a weighted
sum of the gradients coming from A3C, the gradients from depth prediction (multiplied with βd1

, βd2
)

and the gradients from the loop closure (scaled by βl). More details of the online learning algorithm
are given in Appendix B.

2.1 DEPTH PREDICTION

The primary input to the agent is in the form of RGB images. However, depth information, covering
the central field of view of the agent, might supply valuable information about the 3D structure of
the environment. While depth could be directly used as an input, we argue that if presented as an
additional loss it is actually more valuable to the learning process. In particular if the prediction
loss shares representation with the policy, it could help build useful features for RL much faster,
bootstrapping learning. Since we know from (Eigen et al., 2014) that a single frame can be enough to
predict depth, we know this auxiliary task can be learnt. A comparison between having depth as input
versus as an additional loss is given in Appendix C, which shows significant gain for depth as a loss.

Since the role of the auxiliary loss is just to build up the representation of the model, we do not
necessarily care about the specific performance obtained or nature of the prediction. We do care
about the data efficiency aspect of the problem and also computational complexity. If the loss is to be
useful for the main task, we should converge faster on it compared to solving the RL problem (using
less data samples), and the additional computational cost should be minimal. To achieve this we use
a low resolution variant of the depth map, reducing the screen resolution to 4x16 pixels2.

We explore two different variants for the loss. The first choice is to phrase it as a regression task, the
most natural choice. While this formulation, combined with a higher depth resolution, extracts the
most information, mean square error imposes a unimodal distribution (van den Oord et al., 2016).
To address this possible issue, we also consider a classification loss, where depth at each position
is discretised into 8 different bands. The bands are non-uniformally distributed such that we pay
more attention to far-away objects (details in Appendix B). The motivation for the classification
formulation is that while it greatly reduces the resolution of depth, it is more flexible from a learning
perspective and can result in faster convergence (hence faster bootstrapping).

2The image is cropped before being subsampled to lessen the floor and ceiling which have little relevant
depth information.

3

Published as a conference paper at ICLR 2017

2.2 LOOP CLOSURE PREDICTION

Loop closure, like depth, is valuable for a navigating agent, since can be used for efficient exploration
and spatial reasoning. To produce the training targets, we detect loop closures based on the similarity
of local position information during an episode, which is obtained by integrating 2D velocity over
time. Specifically, in a trajectory noted {p0, p1, . . . , pT }, where pt is the position of the agent at time
t, we define a loop closure label lt that is equal to 1 if the position pt of the agent is close to the
position pt′ at an earlier time t′. In order to avoid trivial loop closures on consecutive points of the
trajectory, we add an extra condition on an intermediary position pt′′ being far from pt. Thresholds η1
and η2 provide these two limits. Learning to predict the binary loop label is done by minimizing the
Bernoulli loss Ll between lt and the output of a single-layer output from the hidden representation ht
of the last hidden layer of the model, followed by a sigmoid activation.

3 RELATED WORK

There is a rich literature on navigation, primarily in the robotics literature. However, here we focus on
related work in deep RL. Deep Q-networks (DQN) have had breakthroughs in extremely challenging
domains such as Atari (Mnih et al., 2015). Recent work has developed on-policy RL methods such
as advantage actor-critic that use asynchronous training of multiple agents in parallel (Mnih et al.,
2016). Recurrent networks have also been successfully incorporated to enable state disambiguation
in partially observable environments (Koutnik et al., 2013; Hausknecht & Stone, 2015; Mnih et al.,
2016; Narasimhan et al., 2015).

Deep RL has recently been used in the navigation domain. Kulkarni et al. (2016) used a feedforward
architecture to learn deep successor representations that enabled behavioral flexibility to reward
changes in the MazeBase gridworld, and provided a means to detect bottlenecks in 3D VizDoom.
Zhu et al. (2016) used a feedforward siamese actor-critic architecture incorporating a pretrained
ResNet to support navigation to a target in a discretised 3D environment. Oh et al. (2016) investigated
the performance of a variety of networks with external memory (Weston et al., 2014) on simple
navigation tasks in the Minecraft 3D block world environment. Tessler et al. (2016) also used the
Minecraft domain to show the benefit of combining feedforward deep-Q networks with the learning
of resuable skill modules (cf options: (Sutton et al., 1999)) to transfer between navigation tasks. Tai &
Liu (2016) trained a convnet DQN-based agent using depth channel inputs for obstacle avoidance in
3D environments. Barron et al. (2016) investigated how well a convnet can predict the depth channel
from RGB in the Minecraft environment, but did not use depth for training the agent.

Auxiliary tasks have often been used to facilitate representation learning (Suddarth & Kergosien,
1990). Recently, the incorporation of additional objectives, designed to augment representation
learning through auxiliary reconstructive decoding pathways (Zhang et al., 2016; Rasmus et al., 2015;
Zhao et al., 2015; Mirowski et al., 2010), has yielded benefits in large scale classification tasks. In
deep RL settings, however, only two previous papers have examined the benefit of auxiliary tasks.
Specifically, Li et al. (2016) consider a supervised loss for fitting a recurrent model on the hidden
representations to predict the next observed state, in the context of imitation learning of sequences
provided by experts, and Lample & Chaplot (2016) show that the performance of a DQN agent in a
first-person shooter game in the VizDoom environment can be substantially enhanced by the addition
of a supervised auxiliary task, whereby the convolutional network was trained on an enemy-detection
task, with information about the presence of enemies, weapons, etc., provided by the game engine.

In contrast, our contribution addresses fundamental questions of how to learn an intrinsic repre-
sentation of space, geometry, and movement while simultaneously maximising rewards through
reinforcement learning. Our method is validated in challenging maze domains with random start and
goal locations.

4 EXPERIMENTS

We consider a set of first-person 3D mazes from the DeepMind Lab environment (Beattie et al., 2016)
(see Fig. 1) that are visually rich, with additional observations available to the agent such as inertial

4

Published as a conference paper at ICLR 2017

(a) Static maze (small) (b) Static maze (large) (c) Random Goal I-maze

(d) Random Goal maze (small) (e) Random Goal maze (large) (f) Random Goal maze (large): different formu-
lation of depth prediction

Figure 3: Rewards achieved by the agents on 5 different tasks: two static mazes (small and large) with fixed
goals, two static mazes with comparable layout but with dynamic goals and the I-maze. Results are averaged
over the top 5 random hyperparameters for each agent-task configuration. Star in the label indicates the use of
reward clipping. Please see text for more details.

information and local depth information.3 The action space is discrete, yet allows finegrained control,
comprising 8 actions: the agent can rotate in small increments, accelerate forward or backward or
sideways, or induce rotational acceleration while moving. Reward is achieved in these environments
by reaching a goal from a random start location and orientation. If the goal is reached, the agent is
respawned to a new start location and must return to the goal. The episode terminates when a fixed
amount of time expires, affording the agent enough time to find the goal several times. There are
sparse ‘fruit’ rewards which serve to encourage exploration. Apples are worth 1 point, strawberries 2
points and goals are 10 points. Videos of the agent solving the maze are linked in Appendix A.

In the static variant of the maze, the goal and fruit locations are fixed and only the agent’s start
location changes. In the dynamic (Random Goal) variant, the goal and fruits are randomly placed on
every episode. Within an episode, the goal and apple locations stay fixed until the episode ends. This
encourages an explore-exploit strategy, where the agent should initially explore the maze, then retain
the goal location and quickly refind it after each respawn. For both variants (static and random goal)
we consider a small and large map. The small mazes are 5× 10 and episodes last for 3600 timesteps,
and the large mazes are 9× 15 with 10800 steps (see Figure 1). The RGB observation is 84× 84.

The I-Maze environment (see Figure 1, right) is inspired by the classic T-maze used to investigate
navigation in rodents (Olton et al., 1979): the layout remains fixed throughout, the agent spawns in
the central corridor where there are apple rewards and has to locate the goal which is placed in the
alcove of one of the four arms. Because the goal is hidden in the alcove, the optimal agent behaviour
must rely on memory of the goal location in order to return to the goal using the most direct route.
Goal location is constant within an episode but varies randomly across episodes.

The different agent architectures described in Section 2 are evaluated by training on the five mazes.
Figure 3 shows learning curves (averaged over the 5 top performing agents). The agents are a
feedforward model (FF A3C), a recurrent model (LSTM A3C), the stacked LSTM version with
velocity, previous action and reward as input (Nav A3C), and Nav A3C with depth prediction from
the convolution layer (Nav A3C+D1), Nav A3C with depth prediction from the last LSTM layer
(Nav A3C+D2), Nav A3C with loop closure prediction (Nav A3C+L) as well as the Nav A3C with

3The environments used in this paper are publicly available at https://github.com/deepmind/lab.

5

Published as a conference paper at ICLR 2017

Figure 4: left: Example of depth predictions (pairs of ground truth and predicted depths), sampled every 40 steps.
right: Example of loop closure prediction. The agent starts at the gray square and the trajectory is plotted in
gray. Blue dots correspond to true positive outputs of the loop closure detector; red cross correspond to false
positives and green cross to false negatives. Note the false positives that occur when the agent is actually a few
squares away from actual loop closure.

all auxiliary losses considered together (Nav A3C+D1D2L). In each case we ran 64 experiments
with randomly sampled hyper-parameters (for ranges and details please see the appendix). The mean
over the top 5 runs as well as the top 5 curves are plotted. Expert human scores, established by a
professional game player, are compared to these results. The Nav A3C+D2 agents reach human-level
performance on Static 1 and 2, and attain about 91% and 59% of human scores on Random Goal 1
and 2.

In Mnih et al. (2015) reward clipping is used to stabilize learning, technique which we employed in
this work as well. Unfortunately, for these particular tasks, this yields slightly suboptimal policies
because the agent does not distinguish apples (1 point) from goals (10 points). Removing the reward
clipping results in unstable behaviour for the base A3C agent (see Appendix C). However it seems
that the auxiliary signal from depth prediction mediates this problem to some extent, resulting in
stable learning dynamics (e.g. Figure 3f, Nav A3C+D1 vs Nav A3C*+D1). We clearly indicate
whether reward clipping is used by adding an asterisk to the agent name.

Figure 3f also explores the difference between the two formulations of depth prediction, as a regression
task or a classification task. We can see that the regression agent (Nav A3C*+D1[MSE]) performs
worse than one that does classification (Nav A3C*+D1). This result extends to other maps, and
we therefore only use the classification formulation in all our other results4. Also we see that
predicting depth from the last LSTM layer (hence providing structure to the recurrent layer, not just
the convolutional ones) performs better.

We note some particular results from these learning curves. In Figure 3 (a and b), consider the
feedforward A3C model (red curve) versus the LSTM version (pink curve). Even though navigation
seems to intrinsically require memory, as single observations could often be ambiguous, the feed-
forward model achieves competitive performance on static mazes. This suggest that there might be
good strategies that do not involve temporal memory and give good results, namely a reactive policy
held by the weights of the encoder, or learning a wall-following strategy. This motivates the dynamic
environments that encourage the use of memory and more general navigation strategies.

Figure 3 also shows the advantage of adding velocity, reward and action as an input, as well as the
impact of using a two layer LSTM (orange curve vs red and pink). Though this agent (Nav A3C)
is better than the simple architectures, it is still relatively slow to train on all of the mazes. We
believe that this is mainly due to the slower, data inefficient learning that is generally seen in pure
RL approaches. Supporting this we see that adding the auxiliary prediction targets of depth and
loop closure (Nav A3C+D1D2L, black curve) speeds up learning dramatically on most of the mazes
(see Table 1: AUC metric). It has the strongest effect on the static mazes because of the accelerated
learning, but also gives a substantial and lasting performance increase on the random goal mazes.

Although we place more value on the task performance than on the auxiliary losses, we report the
results from the loop closure prediction task. Over 100 test episodes of 2250 steps each, within a
large maze (random goal 2), the Nav A3C*+D1L agent demonstrated very successful loop detection,
reaching an F-1 score of 0.83. A sample trajectory can be seen in Figure 4 (right).

4An exception is the Nav A3C*+D1L agent on the I-maze (Figure 3c), which uses depth regression and
reward clipping. While it does worse, we include it because some analysis is based on this agent.

6

Published as a conference paper at ICLR 2017

Mean over top 5 agents Highest reward agent
Maze Agent AUC Score % Human Goals Position Acc Latency 1:>1 Score

I-Maze FF A3C* 75.5 98 - 94/100 42.2 9.3s:9.0s 102
LSTM A3C* 112.4 244 - 100/100 87.8 15.3s:3.2s 203
Nav A3C*+D1L 169.7 266 - 100/100 68.5 10.7s:2.7s 252
Nav A3C+D2 203.5 268 - 100/100 62.3 8.8s:2.5s 269
Nav A3C+D1D2L 199.9 258 - 100/100 61.0 9.9s:2.5s 251

Static 1 FF A3C* 41.3 79 83 100/100 64.3 8.8s:8.7s 84
LSTM A3C* 44.3 98 103 100/100 88.6 6.1s:5.9s 110
Nav A3C+D2 104.3 119 125 100/100 95.4 5.9s:5.4s 122
Nav A3C+D1D2L 102.3 116 122 100/100 94.5 5.9s:5.4s 123

Static 2 FF A3C* 35.8 81 47 100/100 55.6 24.2s:22.9s 111
LSTM A3C* 46.0 153 91 100/100 80.4 15.5s:14.9s 155
Nav A3C+D2 157.6 200 116 100/100 94.0 10.9s:11.0s 202
Nav A3C+D1D2L 156.1 192 112 100/100 92.6 11.1s:12.0s 192

Random Goal 1 FF A3C* 37.5 61 57.5 88/100 51.8 11.0:9.9s 64
LSTM A3C* 46.6 65 61.3 85/100 51.1 11.1s:9.2s 66
Nav A3C+D2 71.1 96 91 100/100 85.5 14.0s:7.1s 91
Nav A3C+D1D2L 64.2 81 76 81/100 83.7 11.5s:7.2s 74.6

Random Goal 2 FF A3C* 50.0 69 40.1 93/100 30.0 27.3s:28.2s 77
LSTM A3C* 37.5 57 32.6 74/100 33.4 21.5s:29.7s 51.3
Nav A3C*+D1L 62.5 90 52.3 90/100 51.0 17.9s:18.4s 106
Nav A3C+D2 82.1 103 59 79/100 72.4 15.4s:15.0s 109
Nav A3C+D1D2L 78.5 91 53 74/100 81.5 15.9s:16.0s 102

Table 1: Comparison of four agent architectures over five maze configurations, including random and static
goals. AUC (Area under learning curve), Score, and % Human are averaged over the best 5 hyperparameters.
Evaluation of a single best performing agent is done through analysis on 100 test episodes. Goals gives the
number of episodes where the goal was reached one more more times. Position Accuracy is the classification
accuracy of the position decoder. Latency 1:>1 is the average time to the first goal acquisition vs. the average
time to all subsequent goal acquisitions. Score is the mean score over the 100 test episodes.

5 ANALYSIS

5.1 POSITION DECODING

In order to evaluate the internal representation of location within the agent (either in the hidden units
ht of the last LSTM, or, in the case of the FF A3C agent, in the features ft on the last layer of the
conv-net), we train a position decoder that takes that representation as input, consisting of a linear
classifier with multinomial probability distribution over the discretized maze locations. Small mazes
(5× 10) have 50 locations, large mazes (9× 15) have 135 locations, and the I-maze has 77 locations.
Note that we do not backpropagate the gradients from the position decoder through the rest of the
network. The position decoder can only see the representation exposed by the model, not change it.

An example of position decoding by the Nav A3C+D2 agent is shown in Figure 6, where the initial
uncertainty in position is improved to near perfect position prediction as more observations are
acquired by the agent. We observe that position entropy spikes after a respawn, then decreases once
the agent acquires certainty about its location. Additionally, videos of the agent’s position decoding
are linked in Appendix A. In these complex mazes, where localization is important for the purpose of
reaching the goal, it seems that position accuracy and final score are correlated, as shown in Table
1. A pure feed-forward architecture still achieves 64.3% accuracy in a static maze with static goal,
suggesting that the encoder memorizes the position in the weights and that this small maze is solvable
by all the agents, with sufficient training time. In Random Goal 1, it is Nav A3C+D2 that achieves
the best position decoding performance (85.5% accuracy), whereas the FF A3C and the LSTM A3C
architectures are at approximately 50%.

In the I-maze, the opposite branches of the maze are nearly identical, with the exception of very
sparse visual cues. We observe that once the goal is first found, the Nav A3C*+D1L agent is capable
of directly returning to the correct branch in order to achieve the maximal score. However, the linear
position decoder for this agent is only 68.5% accurate, whereas it is 87.8% in the plain LSTM A3C
agent. We hypothesize that the symmetry of the I-maze will induce a symmetric policy that need not
be sensitive to the exact position of the agent (see analysis below).

7

Published as a conference paper at ICLR 2017

Figure 5: Trajectories of the Nav A3C*+D1L agent in the I-maze (left) and of the Nav A3C+D2 random goal
maze 1 (right) over the course of one episode. At the beginning of the episode (gray curve on the map), the
agent explores the environment until it finds the goal at some unknown location (red box). During subsequent
respawns (blue path), the agent consistently returns to the goal. The value function, plotted for each episode,
rises as the agent approaches the goal. Goals are plotted as vertical red lines.

Figure 6: Trajectory of the Nav A3C+D2 agent in the random goal maze 1, overlaid with the position probability
predictions predicted by a decoder trained on LSTM hidden activations, taken at 4 steps during an episode.
Initial uncertainty gives way to accurate position prediction as the agent navigates.

A desired property of navigation agents in our Random Goal tasks is to be able to first find the goal,
and reliably return to the goal via an efficient route after subsequent re-spawns. The latency column
in Table 1 shows that the Nav A3C+D2 agents achieve the lowest latency to goal once the goal has
been discovered (the first number shows the time in seconds to find the goal the first time, and the
second number is the average time for subsequent finds). Figure 5 shows clearly how the agent finds
the goal, and directly returns to that goal for the rest of the episode. For Random Goal 2, none of the
agents achieve lower latency after initial goal acquisition; this is presumably due to the larger, more
challenging environment.

5.2 STACKED LSTM GOAL ANALYSIS

Figure 7(a) shows shows the trajectories traversed by an agent for each of the four goal locations.
After an initial exploratory phase to find the goal, the agent consistently returns to the goal location.
We visualize the agent’s policy by applying tSNE dimension reduction (Maaten & Hinton, 2008)
to the cell activations at each step of the agent for each of the four goal locations. Whilst clusters
corresponding to each of the four goal locations are clearly distinct in the LSTM A3C agent, there
are 2 main clusters in the Nav A3C agent – with trajectories to diagonally opposite arms of the maze
represented similarly. Given that the action sequence to opposite arms is equivalent (e.g. straight, turn
left twice for top left and bottom right goal locations), this suggests that the Nav A3C policy-dictating
LSTM maintains an efficient representation of 2 sub-policies (i.e. rather than 4 independent policies)
– with critical information about the currently relevant goal provided by the additional LSTM.

5.3 INVESTIGATING DIFFERENT COMBINATIONS OF AUXILIARY TASKS

Our results suggest that depth prediction from the policy LSTM yields optimal results. However,
several other auxiliary tasks have been concurrently introduced in (Jaderberg et al., 2017), and thus
we provide a comparison of reward prediction against depth prediction. Following that paper, we
implemented two additional agent architectures, one performing reward prediction from the convnet
using a replay buffer, called Nav A3C*+R, and one combining reward prediction from the convnet
and depth prediction from the LSTM (Nav A3C+RD2). Table 2 suggests that reward prediction (Nav
A3C*+R) improves upon the plain stacked LSTM architecture (Nav A3C*) but not as much as depth
prediction from the policy LSTM (Nav A3C+D2). Combining reward prediction and depth prediction
(Nav A3C+RD2) yields comparable results to depth prediction alone (Nav A3C+D2); normalised
average AUC values are respectively 0.995 vs. 0.981. Future work will explore other auxiliary tasks.

8

Published as a conference paper at ICLR 2017

(a) Agent trajectories for episodes with
different goal locations

(b) LSTM activations from A3C agent (c) LSTM activations from Nav
A3C*+D1L agent

Figure 7: LSTM cell activations of LSTM A3C and Nav A3C*+D1L agents from the I-Maze collected over
multiple episodes and reduced to 2 dimensions using tSNE, then coloured to represent the goal location.
Policy-dictating LSTM of Nav A3C agent shown.

Navigation agent architecture
Maze Nav A3C* Nav A3C+D1 Nav A3C+D2 Nav A3C+D1D2 Nav A3C*+R Nav A3C+RD2

I-Maze 143.3 196.7 203.5 197.2 128.2 191.8
Static 1 60.1 103.2 104.3 100.3 86.9 105.1
Static 2 59.9 153.1 157.6 151.6 100.6 155.5
Random Goal 1 45.5 57.6 71.1 63.2 54.4 72.3
Random Goal 2 37.0 66.0 82.1 75.1 68.3 80.1

Table 2: Comparison of five navigation agent architectures over five maze configurations with random and
static goals, including agents performing reward prediction Nav A3C*+R and Nav A3C+RD2, where reward
prediction is implemented following (Jaderberg et al., 2017). We report the AUC (Area under learning curve),
averaged over the best 5 hyperparameters.

6 CONCLUSION

We proposed a deep RL method, augmented with memory and auxiliary learning targets, for training
agents to navigate within large and visually rich environments that include frequently changing
start and goal locations. Our results and analysis highlight the utility of un/self-supervised auxiliary
objectives, namely depth prediction and loop closure, in providing richer training signals that bootstrap
learning and enhance data efficiency. Further, we examine the behavior of trained agents, their ability
to localise, and their network activity dynamics, in order to analyse their navigational abilities.

Our approach of augmenting deep RL with auxiliary objectives allows end-end learning and may
encourage the development of more general navigation strategies. Notably, our work with auxiliary
losses is related to (Jaderberg et al., 2017) which independently looks at data efficiency when
exploiting auxiliary losses. One difference between the two works is that our auxiliary losses are
online (for the current frame) and do not rely on any form of replay. Also the explored losses are very
different in nature. Finally our focus is on the navigation domain and understanding if navigation
emerges as a bi-product of solving an RL problem, while Jaderberg et al. (2017) is concerned with
data efficiency for any RL-task.

Whilst our best performing agents are relatively successful at navigation, their abilities would be
stretched if larger demands were placed on rapid memory (e.g. in procedurally generated mazes),
due to the limited capacity of the stacked LSTM in this regard. It will be important in the future to
combine visually complex environments with architectures that make use of external memory (Graves
et al., 2016; Weston et al., 2014; Olton et al., 1979) to enhance the navigational abilities of agents.
Further, whilst this work has focused on investigating the benefits of auxiliary tasks for developing
the ability to navigate through end-to-end deep reinforcement learning, it would be interesting for
future work to compare these techniques with SLAM-based approaches.

ACKNOWLEDGEMENTS

9

Published as a conference paper at ICLR 2017

We would like to thank Alexander Pritzel, Thomas Degris and Joseph Modayil for useful discussions,
Charles Beattie, Julian Schrittwieser, Marcus Wainwright, and Stig Petersen for environment design
and development, and Amir Sadik and Sarah York for expert human game testing.

REFERENCES

Trevor Barron, Matthew Whitehead, and Alan Yeung. Deep reinforcement learning in a 3-d block-
world environment. In Deep Reinforcement Learning: Frontiers and Challenges, IJCAI, 2016.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich KÃijttler,
Andrew Lefrancq, Simon Green, Victor Valdes, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. Deepmind lab. In arXiv, 2016. URL https://arxiv.org/
abs/1612.03801.

MWM Gamini Dissanayake, Paul Newman, Steve Clark, Hugh F. Durrant-Whyte, and Michael
Csorba. A solution to the simultaneous localization and map building (slam) problem. IEEE
Transactions on Robotics and Automation, 17(3):229–241, 2001.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using a
multi-scale deep network. In Proc. of Neural Information Processing Systems, NIPS, 2014.

Alex Graves, Mohamed Abdelrahman, and Geoffrey Hinton. Speech recognition with deep recurrent
neural networks. In Proceedings of the International Conference on Acoustics, Speech and Signal
Processing, ICASSP, 2013.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 2016.

Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps.
Proc. of Conf. on Artificial Intelligence, AAAI, 2015.

Max Jaderberg, Volodymir Mnih, Wojciech Czarnecki, Tom Schaul, Joel Z. Leibo, David Silver, and
Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In Submitted to
Int’l Conference on Learning Representations, ICLR, 2017.

Jan Koutnik, Giuseppe Cuccu, JÃijrgen Schmidhuber, and Faustino Gomez. Evolving large-scale
neural networks for vision-based reinforcement learning. In Proceedings of the 15th annual
conference on Genetic and evolutionary computation, GECCO, 2013.

Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J. Gershman. Deep successor
reinforcement learning. CoRR, abs/1606.02396, 2016. URL http://arxiv.org/abs/1606.
02396.

Guillaume Lample and Devendra Singh Chaplot. Playing FPS games with deep reinforcement
learning. CoRR, 2016. URL http://arxiv.org/abs/1609.05521.

Xiujun Li, Lihong Li, Jianfeng Gao, Xiaodong He, Jianshu Chen, Li Deng, and Ji He. Recurrent
reinforcement learning: A hybrid approach. In Proceedings of the International Conference on
Learning Representations, ICLR, 2016. URL https://arxiv.org/abs/1509.03044.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

Piotr Mirowski, Marc’Aurelio Ranzato, and Yann LeCun. Dynamic auto-encoders for semantic
indexing. In NIPS Deep Learning and Unsupervised Learning Workshop, 2010.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, et al. Human-level
control through deep reinforcement learning. Nature, 518:529–533, 2015.

Volodymyr Mnih, AdriÃă PuigdomÃĺnech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proc. of Int’l Conf. on Machine Learning, ICML, 2016.

10

Published as a conference paper at ICLR 2017

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, et al. Massively
parallel methods for deep reinforcement learning. In Proceedings of the International Conference
on Machine Learning Deep Learning Workshop, ICML, 2015.

Karthik Narasimhan, Tejas D. Kulkarni, and Regina Barzilay. Language understanding for text-based
games using deep reinforcement learning. In Proc. of Empirical Methods in Natural Language
Processing, EMNLP, 2015.

Junhyuk Oh, Valliappa Chockalingam, Satinder P. Singh, and Honglak Lee. Control of memory,
active perception, and action in minecraft. In Proc. of International Conference on Machine
Learning, ICML, 2016.

David S Olton, James T Becker, and Gail E Handelmann. Hippocampus, space, and memory.
Behavioral and Brain Sciences, 2(03):313–322, 1979.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. How to construct deep
recurrent neural networks. arXiv preprint arXiv:1312.6026, 2013.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised
learning with ladder networks. In Advances in Neural Information Processing Systems, NIPS,
2015.

Steven C Suddarth and YL Kergosien. Rule-injection hints as a means of improving network
performance and learning time. In Neural Networks, pp. 120–129. Springer, 1990.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1):181–211, 1999.

Lei Tai and Ming Liu. Towards cognitive exploration through deep reinforcement learning for mobile
robots. In arXiv, 2016. URL https://arxiv.org/abs/1610.01733.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie Mannor. A deep
hierarchical approach to lifelong learning in minecraft. CoRR, abs/1604.07255, 2016. URL
http://arxiv.org/abs/1604.07255.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5 – rmsprop: Divide the gradient by a running
average of its recent magnitude. In Coursera: Neural Networks for Machine Learning, volume 4,
2012.

A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks. 2016.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Yuting Zhang, Kibok Lee, and Honglak Lee. Augmenting supervised neural networks with unsu-
pervised objectives for large-scale image classification. In Proc. of International Conference on
Machine Learning, ICML, 2016.

Junbo Zhao, Michaël Mathieu, Ross Goroshin, and Yann LeCun. Stacked what-where auto-encoders.
Int’l Conf. on Learning Representations (Workshop), ICLR, 2015. URL http://arxiv.org/
abs/1506.02351.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim, Abhinav Gupta, Li Fei-Fei, and Ali
Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement learning.
CoRR, abs/1609.05143, 2016. URL http://arxiv.org/abs/1609.05143.

11

Published as a conference paper at ICLR 2017

Supplementary Material

A VIDEOS OF TRAINED NAVIGATION AGENTS

We show the behaviour of Nav A3C*+D1L agent in 5 videos, corresponding to the 5 navigation
environments: I-maze5, (small) static maze6, (large) static maze7, (small) random goal maze8 and
(large) random goal maze9. Each video shows a high-resolution video (the actual inputs to the agent
are down-sampled to 84×84 RGB images), the value function over time (with fruit reward and goal
acquisitions), the layout of the mazes with consecutive trajectories of the agent marked in different
colours and the output of the trained position decoder, overlayed on top of the maze layout.

B NETWORK ARCHITECTURE AND TRAINING

B.1 THE ONLINE MULTI-LEARNER ALGORITHM FOR MULTI-TASK LEARNING

We introduce a class of neural network-based agents that have modular structures and that are trained
on multiple tasks, with inputs coming from different modalities (vision, depth, past rewards and past
actions). Implementing our agent architecture is simplified by its modular nature. Essentially, we
construct multiple networks, one per task, using shared building blocks, and optimise these networks
jointly. Some modules, such as the conv-net used for perceiving visual inputs, or the LSTMs used for
learning the navigation policy, are shared among multiple tasks, while other modules, such as depth
predictor gd or loop closure predictor gl, are task-specific. The navigation network that outputs the
policy and the value function is trained using reinforcement learning, while the depth prediction and
loop closure prediction networks are trained using self-supervised learning.

Within each thread of the asynchronous training environment, the agent plays on its own episode of
the game environment, and therefore sees observation and reward pairs {(st, rt)} and takes actions
that are different from those experienced by agents from the other, parallel threads. Within a thread,
the multiple tasks (navigation, depth and loop closure prediction) can be trained at their own schedule,
and they add gradients to the shared parameter vector as they arrive. Within each thread, we use a
flag-based system to subordinate gradient updates to the A3C reinforcement learning procedure.

B.2 NETWORK AND TRAINING DETAILS

For all the experiments we use an encoder model with 2 convolutional layers followed by a fully
connected layer, or recurrent layer(s), from which we predict the policy and value function. The
architecture is similar to the one in (Mnih et al., 2016). The convolutional layers are as follows. The
first convolutional layer has a kernel of size 8x8 and a stride of 4x4, and 16 feature maps. The second
layer has a kernel of size 4x4 and a stride of 2x2, and 32 feature maps. The fully connected layer,
in the FF A3C architecture in Figure 2a has 256 hidden units (and outputs visual features ft). The
LSTM in the LSTM A3C architecture has 256 hidden units (and outputs LSTM hidden activations ht).
The LSTMs in Figure 2c and 2d are fed extra inputs (past reward rt−1, previous action at expressed
as a one-hot vector of dimension 8 and agent-relative lateral and rotational velocity vt encoded by a
6-dimensional vector), which are all concatenated to vector ft. The Nav A3C architectures (Figure
2c,d) have a first LSTM with 64 or 128 hiddens and a second LSTM with 256 hiddens. The depth
predictor modules gd, g′d and the loop closure detection module gl are all single-layer MLPs with 128
hidden units. The depth MLPs are followed by 64 independent 8-dimensional softmax outputs (one
per depth pixel). The loop closure MLP is followed by a 2-dimensional softmax output. We illustrate
on Figure 8 the architecture of the Nav A3C+D+L+Dr agent.

Depth is taken as the Z-buffer from the Labyrinth environment (with values between 0 and 255),
divided by 255 and taken to power 10 to spread the values in interval [0, 1]. We empirically decided
to use the following quantization: {0, 0.05, 0.175, 0.3, 0.425, 0.55, 0.675, 0.8, 1} to ensure a uniform

5Video of the Nav A3C*+D1L agent on the I-maze: https://youtu.be/PS4iJ7Hk_BU
6Video of the Nav A3C*+D1L agent on static maze 1: https://youtu.be/-HsjQoIou_c
7Video of the Nav A3C*+D1L agent on static maze 2: https://youtu.be/kH1AvRAYkbI
8Video of the Nav A3C*+D1L agent on random goal maze 1: https://youtu.be/5IBT2UADJY0
9Video of the Nav A3C*+D1L agent on random goal maze 2: https://youtu.be/e10mXgBG9yo

1

Published as a conference paper at ICLR 2017

16	
8x8	/	4x4	

3	
84x84	

32	
4x4	/	2x2	

256	

128	

128	

2	

64x8	

64	 256	

1	

6	

8	

8	

1	xt

vt

at�1

rt�1

⇡

V

ft

ht

gl(ht)

gd(ft)

128	 64x8	

gd(ft)gl(ht)’

Figure 8: Details of the architecture of the Nav A3C+D+L+Dr agent, taking in RGB visual inputs xt, past
reward rt−1, previous action at−1 as well as agent-relative velocity vt, and producing policy π, value function
V , depth predictions gd(ft) and g′d(ht) as well as loop closure detection gl(ht).

binning across 8 classes. The previous version of the agent had a single depth prediction MLP gd for
regressing 8× 16 = 128 depth pixels from the convnet outputs ft.

The parameters of each of the modules point to a subset of a common vector of parameters. We
optimise these parameters using an asynchronous version of RMSProp (Tieleman & Hinton, 2012).
(Nair et al., 2015) was a recent example of asynchronous and parallel gradient updates in deep
reinforcement learning; in our case, we focus on the specific Asynchronous Advantage Actor Critic
(A3C) reinforcement learning procedure in (Mnih et al., 2016).

Learning follows closely the paradigm described in (Mnih et al., 2016). We use 16 workers and the
same RMSProp algorithm without momentum or centering of the variance. Gradients are computed
over non-overlaping chunks of the episode. The score for each point of a training curve is the average
over all the episodes the model gets to finish in 5e4 environment steps.

The whole experiments are run for a maximum of 1e8 environment step. The agent has an action
repeat of 4 as in (Mnih et al., 2016), which means that for 4 consecutive steps the agent will use the
same action picked at the beginning of the series. For this reason through out the paper we actually
report results in terms of agent perceived steps rather than environment steps. That is, the maximal
number of agent perceived step that we do for any particular run is 2.5e7.

In our grid we sample hyper-parameters from categorical distributions:

• Learning rate was sampled from [10−4, 5 · 10−4].
• Strength of the entropy regularization from [10−4, 10−3].
• Rewards were not scaled and not clipped in the new set of experiments. In our previous set

of experiments, rewards were scaled by a factor from {0.3, 0.5} and clipped to 1 prior to
back-propagation in the Advantage Actor-Critic algorithm.
• Gradients are computed over non-overlaping chunks of 50 or 75 steps of the episode. In our

previous set of experiments, we used chunks of 100 steps.

The auxiliary tasks, when used, have hyperparameters sampled from:

• Coefficient βd of the depth prediction loss from convnet features Ld sampled from
{3.33, 10, 33}.
• Coefficient β′d of the depth prediction loss from LSTM hiddens Ld′ sampled from
{1, 3.33, 10}.
• Coefficient βl of the loop closure prediction loss Ll sampled from {1, 3.33, 10}.

Loop closure uses the following thresholds: maximum distance for position similarity η1 = 1 square
and minimum distance for removing trivial loop-closures η2 = 2 squares.

2

Published as a conference paper at ICLR 2017

(a) Random Goal maze (small): comparison of reward clipping (b) Random Goal maze (small): comparison of depth prediction

Figure 9: Results are averaged over the top 5 random hyperparameters for each agent-task configuration. Star in
the label indicates the use of reward clipping. Please see text for more details.

C ADDITIONAL RESULTS

C.1 REWARD CLIPPING

Figure 9 shows additional learning curves. In particular in the left plot we show that the baselines
(A3C FF and A3C LSTM) as well as Nav A3C agent without auxiliary losses, perform worse without
reward clipping than with reward clipping. It seems that removing reward clipping makes learning
unstable in absence of auxiliary tasks. For this particular reason we chose to show the baselines with
reward clipping in our main results.

C.2 DEPTH PREDICTION AS REGRESSION OR CLASSIFICATION TASKS

The right subplot of Figure 9 compares having depth as an input versus as a target. Note that using
RGBD inputs to the Nav A3C agent performs even worse than predicting depth as a regression task,
and in general is worse than predicting depth as a classification task.

C.3 NON-NAVIGATION TASKS IN 3D MAZE ENVIRONMENTS

We have evaluated the behaviour of the agents introduced in this paper, as well as agents with
reward prediction, introduced in (Jaderberg et al., 2017) (Nav A3C*+R) and with a combination of
reward prediction from the convnet and depth prediction from the policy LSTM (Nav A3C+RD2),
on different 3D maze environments with non-navigation specific tasks. In the first environment,
Seek-Avoid Arena, there are apples (yielding 1 point) and lemons (yielding -1 point) disposed in
an arena, and the agents needs to pick all the apples before respawning; episodes last 20 seconds.
The second environment, Stairway to Melon, is a thin square corridor; in one direction, there is a
lemon followed by a stairway to a melon (10 points, resets the level) and in the other direction are
7 apples and a dead end, with the melon visible but not reachable. The agent spawns between the
lemon and the apples with a random orientation. Both environments have been released in DeepMind
Lab (Beattie et al., 2016). These environments do not require navigation skills such as shortest path
planning, but a simple reward identification (lemon vs. apple or melon) and persistent exploration.
As Figure 10 shows, there is no major difference between auxiliary tasks related to depth prediction
or reward prediction. Depth prediction boosts the performance of the agent beyond that of the stacked
LSTM architecture, hinting at a more general applicability of depth prediction beyond navigation
tasks.

C.4 SENSITIVITY TOWARDS HYPER-PARAMETER SAMPLING

For each of the experiments in this paper, 64 replicas were run with hyperparameters (learning rate,
entropy cost) sampled from the same interval. Figure 11 shows that the Nav architectures with

3

Published as a conference paper at ICLR 2017

(a) Seek-Avoid (learning curves) (b) Stairway to Melon (learning curves)

(c) Seek-Avoid (layout) (d) Stairway to Melon (layout)

Figure 10: Comparison of agent architectures over non-navigation maze configurations, Seek-Avoid Arena and
Stairway to Melon, described in details in (Beattie et al., 2016). Image credits for (c) and (d): (Jaderberg et al.,
2017).

(a) Static maze (small) (b) Random Goal maze (large) (c) Random Goal I-maze

Figure 11: Plot of the Area Under the Curve (AUC) of the rewards achieved by the agents, across different
experiments and on 3 different tasks: large static maze with fixed goals, large static maze with comparable layout
but with dynamic goals, and the I-maze. The reward AUC values are computed for each replica; 64 replicas
were run per experiment and the reward AUC values are sorted by decreasing value.

auxiliary tasks achieve higher results for a comparatively larger number of replicas, hinting at the fact
that auxiliary tasks make learning more robust to the choice of hyperparameters.

C.5 ASYMPTOTIC PERFORMANCE OF THE AGENTS

Finally, we compared the asymptotic performance of the agents, both in terms of navigation (final
rewards obtained at the end of the episode) and in terms of their representation in the policy LSTM.
Rather than visualising the convolutional filters, we quantify the change in representation, with and

4

Published as a conference paper at ICLR 2017

Agent architecture
Frames Performance LSTM A3C* Nav A3C+D2

120M Score (mean top 5) 57 103
Position Acc 33.4 72.4

240M Score (mean top 5) 90 114
Position Acc 64.1 80.6

Table 3: Asymptotic performance analysis of two agents in the Random Goal 2 maze, comparing training for
120M Labyrinth frames vs. 240M frames.

without auxiliary task, in terms of position decoding, following the approach explained in Section 5.1.
Specifically, we compare the baseline agent (LSTM A3C*) to a navigation agent with one auxiliary
task (depth prediction), that gets about twice as many gradient updates for the same number of frames
seen in the environment: once for the RL task and once for the auxiliary depth prediction task. As
Table 3 shows, the performance of the baseline agent as well as the position decoding accuracy do
significantly increase after twice the number of training steps (going from 57 points to 90 points, and
from 33.4% to 66.5%, but do not reach the performance and position decoding accuracy of the Nav
A3C+D2 agent after half the number of training frames. For this reason, we believe that the auxiliary
task do more than simply accelerate training.

5

