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ABSTRACT

Latent variable models have been widely applied for the analysis and visualization
of large datasets. In the case of sequential data, closed-form inference is possible
when the transition and observation functions are linear. However, approximate
inference techniques are usually necessary when dealing with nonlinear evolution
and observations. Here, we propose a novel variational inference framework for
the explicit modeling of time series, Variational Inference for Nonlinear Dynamics
(VIND), that is able to uncover nonlinear observation and latent dynamics from
sequential data. The framework includes a structured approximate posterior, and
an algorithm that relies on the fixed-point iteration method to find the best estimate
for latent trajectories. We apply the method to several datasets and show that it is
able to accurately infer the underlying dynamics of these systems, in some cases
substantially outperforming state-of-the-art methods.

1 INTRODUCTION

In recent years, advances on neural data acquisition have made it possible to record the simultaneous
sequential activity of up to thousands of neurons (Paninski & Cunningham (2017)). The analysis of
these datasets often focuses on dimensionality reduction techniques that encode the activity of the
population in a lower dimensional latent trajectory (Cunningham & Yu (2014)). At the other extreme,
there is a big body of detailed electrophysiological data coming from voltage measurements in single
cells (Jones et al. (2009)). In this setting it is understood that the underlying dynamics is in fact highly
nonlinear and multidimensional, though the experimenter only has access to a one-dimensional (1D)
observation. From such 1D recordings, the task is to approximately recover the complete hidden
latent space paths and dynamics.

A host of sophisticated techniques has been proposed for the analysis of complex sequential data that
is not well described by linear transitions and observations (Archer et al. (2015); Chung et al. (2015);
Gao et al. (2016; 2015); Hernandez et al. (2017); Johnson et al. (2016); Krishnan et al. (2015; 2016);
Linderman et al. (2017); Pandarinath et al. (2018); Sussillo et al. (2016); Zhao & Memming Park
(2017); Wu et al. (2017; 2018)). In that context, we here present Variational Inference for Nonlinear
Dynamics (VIND). The main contribution of VIND is an algorithm that allows variational inference
(VI) from structured, intractable approximations to the posterior distribution. In particular, VIND
can handle variational posteriors that (i) represent nonlinear evolution in the latent space, and (ii)
disentangle the latent dynamics (transition) from the data encoding (recognition). Crucially, the
VIND approximate posterior shares the exact nonlinear structure of latent dynamics evolution with
the model for data generation. This makes the VIND approximation potentially more powerful than
models in which the choice of approximate posterior is made solely on grounds of tractability.

VIND relies on two key ideas. Firstly, it makes use of the fact that given an intractable posterior
Q(Z|X), it is always possible to compute a tractable Gaussian approximation to it. This Gaussian
approximation inherits its parameters from Q(Z|X) (Chung et al. (2015)), so optimizing for it can
be interpreted as indirectly optimizing Q(Z|X). The second novel aspect of VIND is the use of the
fixed-point iteration (FPI) method to significantly speed up the computation of the aforementioned
Gaussian approximation.

In this work we focus on a VIND variant in which the latent dynamics is represented as a Locally
Linear Dynamical System (LLDS). The running time of LLDS/VIND is linear in the number of
time points in a trial. We are especially interested in determining LLDS/VIND’s ability to infer the
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hidden dynamics, as demonstrated by its generative / predictive capabilities. After training, can the
VIND-trained model generate data that is indistinguishable from the original observations, if provided
with a suitable starting point? In the second half of this work we apply VIND to four datasets, one
synthetic and three using experimental data, and show that VIND excels in this task, in some cases
outperforming established methods by orders of magnitude in the predictive mean squared error
(MSE).

2 VARIATIONAL INFERENCE WITH NONLINEAR DYNAMICS (VIND)

For a set of temporally ordered, correlated, noisy observations X ≡ {x1, . . .xT }, xt ∈ RdX , a
latent variable model proposes an additional, time-ordered set of random variables Z ≡ {z1, . . . zT },
zT ∈ RdZ that is hidden from view. The hidden state zt is endowed with a stochastic dynamics:
zt+1 ∼ p(zt+1|z1:t) by which it evolves. The observations xt are generated by drawing samples
from a zt-dependent probability distribution.

A naive objective for such a model is the marginal log-likelihood log p(X), with the latent variables
integrated out of the joint. However, it is well known that for anything other than the simplest
distributions, marginalization with respect to Z is intractable (Bishop (2006)). VI overcomes this
problem by approximating the posterior p(Z|X) with a distribution q(Z|X), the Recognition Model
(RM), from a tractable class. The objective becomes the celebrated ELBO, a lower bound to log p(X)
(Jordan et al. (1999)):

log p(X) ≥ LELBO(X) = E
q
[log p(X,Z)]− E

q
[log q(Z|X)] . (1)

Successful VI relies on the choice of the approximation q(Z|X). This choice is constrained by two
goals that stand in tension: expressiveness and tractability. We approach the search for a suitable
class of variational posterior by considering the joint p(X,Z). Our focus is on factorizations of the
form:

p(X,Z) ≡ pφ,θ(X,Z) = cφ,θ ·Hφ(Z)

T∏
t=0

fθ(xt|zt) , (2)

where the distribution parameters have been written explicitly. The unnormalized densities fθ stand
for an observation model that, for the purposes of this work, can be either Gaussian, xt|zt ∼
N
(
mθ(zt),Σ

)
, or Poisson, xt|zt ∼ Poisson

(
λθ(zt)

)
. The respective mean, mθ(zt), and rate,

λθ(zt), are arbitrary nonlinear functions of the latent state zt, that we represent as neural networks.
The standard deviation Σ of the Gaussian observation model is taken to be zt-independent. cφ,θ is a
normalization constant. Hφ is the latent evolution term in Z-space with a Markov Chain structure
Johnson et al. (2016); Krishnan et al. (2015; 2016); Archer et al. (2015); Gao et al. (2016):

Hφ(Z) = h0(z0)

T∏
t=1

hφ(zt|zt−1) , (3)

z0 ∼ N
(
a0,Γ0

)
, (4)

zt|zt−1 ∼ N
(
aφ(zt−1), Γ

)
, (5)

where aφ(z) is an arbitrary nonlinearity.

From Eq. (2), the posterior distribution of the Generative Model (GM) can be factorized as

pφ,θ(Z|X) =
cφ,θ

∏
fθ(xt|zt)

pφ,θ(X)
·Hφ(Z) . (6)

We used Eq. (6) as a guidance to propose the inclusion of the GM evolution term Hφ(Z) into the
variational posterior. We start then with an approximation that factorizes as:

Qφ,ϕ(Z|X) = αφ,ϕ(X)Gϕ(X,Z)Hφ(Z) . (7)

We refer to Qφ,ϕ(Z|X) as the parent distribution. By design, the factor Gϕ in the parent contains all
the dependence on X. For definiteness, the case

Gϕ(X,Z) =

T∏
t=0

gϕ(zt|xt) , zt|xt ∼ N (µϕ(xt),Λ
−1
ϕ (xt)) , (8)
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is considered in this work, where µ(x) and Λ(x) are nonlinear maps.

In Eq. (7), αφ,ϕ is a normalization constant that, regardless of the specific form of Gϕ, cannot be
computed in closed form. This is most easily seen by noticing that due to the nonlinearity h(zT |zT−1),
integration with respect to zT yields an intractable zT−1-dependent factor. Hence, VI cannot be
formulated directly in terms of the parent, since expectation values with respect to Qφ,ϕ cannot be
computed in closed form.

VIND represents a way out of this conundrum that, effectively, allows for the use of an intractable,
unnormalized distribution as the Recognition Model in VI. The idea is to define a Gaussian approxima-
tion qφ,ϕ(Z|X) to the parent; this child distribution is then used as the variational posterior in Eq. (1).
The inference problem becomes tractable since the child is normal. Importantly, the parameters in
qφ,ϕ(Z|X), with respect to which we optimize, are inherited from the parent. After training, they
can be replaced back into Qφ,ϕ(Z|X) obtaining, in particular, the nonlinear dynamics aφ(z) for the
latent space. In this novel way, VIND achieves the reuse of the latent dynamics h(zt|zt−1) of the
GM in the RM.

Concretely, let qφ,ϕ be a Laplace approximation to Qφ,ϕ,

qφ,ϕ(Z|X) = N
(
Pφ,ϕ(X),C−1

φ,ϕ(X)
)
. (9)

The mean Pφ,ϕ in Eq. (9) is the solution to the equation

∂

∂Z
logQφ,ϕ(Z|X)

∣∣∣∣
Z=P

= 0 , (10)

and the precision is given by

[Cφ,ϕ(X)]ij =
∂2

∂Zi∂Zj
logQφ,ϕ(Z|X)

∣∣∣∣
Z=Pφ,ϕ(X)

≡
[
sφ,ϕ

(
Pφ,ϕ(X),X

)]
ij
, (11)

where Eq. (11) defines sφ,ϕ. A closed form solution for Eq. (10) is not possible in general. However,
for a large class of distributions, and in particular for any Qφ,ϕ such that logQφ,ϕ includes terms
quadratic in Z, it is possible to rewrite Eq. (10) in the form

P = rφ,ϕ(P,X) . (12)

In this form, the latter can be approximately solved by making use of the FPI method. This
approximate solution provides the mean for the variational approximation qφ,ϕ(Z|X).

Henceforth, VIND’s algorithm includes two steps per epoch that are carried out in alternation (see
Algorithm 1 in App. A). The first step is a FPI that, for the current values of the parameters φ, ϕ,
determines the mean and variance of a Laplace approximation to the parent. The second is a regular
ADAM gradient ascent update Kingma & Ba (2014) with respect to the ELBO objective. Upon
convergence, the set of parameters φ, ϕ, θ that maximizes the ELBO can be plugged into aφ(z), to
obtain a dynamical rule that interpolates between the different latent trajectories inferred from the
data trials.

In the experiments conducted in this paper, the nonlinear dynamics is specified as aφ(z) = Aφ(z)z
where Aφ(z) is a state-space dependent dZ × dZ matrix. We call this evolution rule, a Locally Linear
Dynamical System, and the resulting inference algorithm LLDS/VIND. To derive it, consider a parent
distribution distribution Qφ,ϕ, as defined in Eq. (7). The mean µϕ and the standard deviation Λ−1

ϕ in
Eq. (8) are represented as deep neural networks:

µϕ = NNϕµ(xt) , Λϕ = NNϕΛ
(xt) . (13)

The remaining ingredient of Qφ,ϕ is the shared evolution law Hφ, Eq. (3). We write the hφ factors
that determine the latent evolution model as

hϕ(zt+1|zt) = exp

{
−1

2

(
zt+1 −Aϕ(zt)zt

)T
Γ
(
zt+1 −Aϕ(zt)zt

)}
, (14)

where Γ is a constant precision matrix. Eq. (14) can be thought of as describing the stochastic
evolution of a “locally linear” dynamical system:

zt+1 ∼ A(zt)zt + noise . (15)

By LLDS/VIND we refer to VIND with this specific parameterization of the nonlinearity aφ(zt) in
Eq. (5). LLDS/VIND has some desirable features:

3



Under review as a conference paper at ICLR 2019

1. The limit of linear evolution is easily taken as Aφ(zt)→ const..
2. maxZ |Aφ(zt)− I| is a simple measure of the smoothness of the latent trajectories.

The equation for the Laplace mean is found by taking derivatives of Qφ,ϕ with respect to the hidden
path:

∂ logQφ,ϕ
∂Z

∣∣∣∣
Z=P

= 0 . (16)

Using Eqs. (3) and (8) we find

logQφ,ϕ = logCφ,ϕ −
1

2

[
(Z−Mϕ)TΛϕ(Z−Mϕ) + ZTSφ(Z)Z

]
(17)

where Mϕ = {µϕ(x1), . . . ,µϕ(xT )} and Sφ(Z) is a state-space-dependent covariance with tridiag-
onal form:

Sφ(Z) =



AT0 ΓA0 −AT0 Γ 0 . . . . . . 0 0
−ΓA0 AT1 ΓA1 AT1 Γ . . . . . . 0 0

0 −ΓA1 . . . . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . . . . −ATT−2Γ 0
0 0 . . . . . . −ΓAT−2 ATT−1ΓAT−1 −ATT−1Γ
0 0 . . . . . . 0 −ΓAT−1 ATTΓAT


(18)

Here Ai ≡ Aφ(zi).

Inserting Eq. (17) into Eq. (16) we obtain the LLDS/VIND equation for the posterior, Eq. (12), with

rφ,ϕ(P,X) =
[
Λϕ + Sφ(P)

]−1
(

ΛϕMϕ −
1

2
PT ∂Sφ(P)

∂P
P

)
. (19)

Note that it is not necessary to find the value of Cφ,ϕ. Moreover, we remark that the matrix
Λϕ + Sφ(P) is block-tridiagonal and can be inverted in O(T ). Although Eq. (12) cannot be solved
analytically, a solution can be approximated by choosing an initial point P(0) and iterating

P(n) = rφ,ϕ(P(n−1),X) , (20)

The VIND method assumes that this FPI converges. In practice, this assumption can be guaran-
teed throughout training by appropriate choices of hyperparameters and network architectures (see
App. A.2).

During training, the mean P represents the best current estimate of the latent trajectory. Note that the
FPI step in Eq. (20) mixes all the components in P. In particular, the i-th component of P(n) depends
in general on all the components of P(n−1) via the inverse covariance in Eq. (19). Thus, at every
training epoch, the best estimate for the path at a specific time point t contains information from the
complete data, both to the past and to the future of t. This is analogous to the Kalman smoother.

3 RELATION TO PREVIOUS WORK

The problem of inference for sequential data has been treated extensively in the literature. The GfLDS
and PfLDS models introduced in Archer et al. (2015); Gao et al. (2016) are particular cases of VIND
in which the dynamics in the latent space is linear and time-invariant, i.e. zt|zt−1 ∼ N

(
Azt−1, Q

)
.

In the jargon used in this paper, this corresponds to the situation in which the parent distribution
is Gaussian, and therefore equal to its own Laplace approximation. Eq. equation 10 can be solved
analytically in this case and no FPI step is needed. Gaussian Process Factor Analysis (GPFA) Yu
et al. (2009) assumes linear, time-invariant dynamics as well as a linear observation model, i.e.
xt|zt ∼ N

(
Czt + d, R

)
, for some C, d, and R. We will be explicitly comparing our results to

results obtained by these models.

In Krishnan et al. (2015), Deep Kalman Filters (DKF) were proposed to handle variational posterior
distributions that describes nonlinear evolution in the latent space. Their approximate posterior,
analogous to the parent distribution in this paper, is plugged directly into the ELBO. This imposes
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some restrictions in the form the posterior can take - for instance, it must be Gaussian conditioned on
the observations. VIND can handle factorizations of the parent distribution that are not restricted
in this way, an example being LLDS/VIND, which has the form in Eq. equation 7. VIND’s ability
to handle unnormalizable parent distributions is due to the fact that VIND’s actual approximate
posterior is always strictly normal. The same authors built upon their idea in Krishnan et al. (2016),
where a variational posterior was proposed that partially uses the conditional structure implied by the
generative model. In this paper, a similar prescription is used by assuming that Qφ,ϕ and pφ,ϕ share
exactly the same factorization for the latent evolution.

The authors of Johnson et al. (2016) combine probabilistic graphical models with message passing in
an approach based on conjugate priors. The approximate posterior distributions considered in that
work are restricted by the conjugacy requirements, in particular, the evolution term must belong to
the exponential family. VIND’s parent distribution is not subject to this requirement. However, since
VIND’s actual approximate posterior is still Gaussian, it may be possible to combine the two methods
into one that can handle both nonlinear evolution and discrete latent variables.

In Chung et al. (2015), Gaussian noise is added to the deterministic evolution rule of an RNN in the
context of a variational autoencoder, termed VRNN. Similarly to LLDS/VIND, these authors share
the evolution factorization between the generative model and the approximate posterior and, indeed,
the only difference between the structure of their model and that of LLDS/VIND is that the evolution
there is expressed as an RNN instead of as an LLDS. However, their inference algorithm only uses
past data to estimate the hidden state at any given time. VIND’s algorithm, based on the FPI, uses
information both from the past and from the future to estimate the latent paths. In Kalantari et al.
(2018) a non-parametric approach was taken to determine the best latent dimension in an LDS. It
would be interesting to apply those same methods to VIND. Finally, in Pandarinath et al. (2018);
Sussillo et al. (2016) a sophisticated, bidirectional, Deep Learning-based RNN architecture called
LFADS was proposed with neuroscience applications in mind. For both LFADS and DKF, we found
difficult to modify their code to compute the quantities that are used in this paper to evaluate the
quality of training. However, given the expressive power of these works, we expect them to perform
comparably to VIND in the tasks considered in the next section.

4 RESULTS

We demonstrate the capabilities of LLDS/VIND by applying it to four characteristic datasets, each
of which illustrates a VIND feature. First, we use synthetically generated 10D data with added
Gaussian noise, and latent evolution determined by an Euler discretization of the Lorenz system.
This dataset is the simplest and cleanly illustrates VIND’s ability to infer the underlying nonlinear
dynamics. Secondly we use a multi-electrode neural recording from a mouse performing a delayed-
discrimination task. LLDS/VIND is run with both Gaussian and Poisson observation models. It
is found that while a Gaussian observation model is superior for the explaining the variance in the
data, the Poisson model performs better when it comes to interpolation of the dynamics. This is a
common VIND tradeoff. The third dataset consists of a 1D voltage measurement from single-cell
recordings. The problem in this case is not dimensionality reduction but rather to determine the
underlying dynamics. We find that the minimum number of latent dimensions VIND requires to
describe this dataset coincides with the naive expectation. Finally, we apply VIND to discovering
dynamics in a more complex dataset coming from dorsal cortex calcium imaging, and find that it is
possible to model the data using a surprisingly low number of latent dimensions. We also use VIND
to reconstruct dynamics from one side of the brain to the other.

Given an inferred starting point in state-space, the quality of the dynamics uncovered by LLDS/VIND
can be ascertained by evolving the system k steps into the future without any input data. To clarify
terminology, this is not strict prediction in the sense of pure extrapolation, since we use information
about all xt, both in the past and in the future, to infer the starting point. In order to avoid doubt,
we use the term forward interpolate. Forward interpolation essentially tests the extent to which
the dynamics are accurately learned. We take VIND’s capability for forward interpolation as the
main measure of the fit’s success. As we will show, this task remains highly challenging for simpler
smoothing priors like the latent LDS, and it is one of the key strengths of VIND.
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Figure 1: Comparison of results for the Lorenz dataset (dz = 3) between GfLDS and VIND: (left)
R2
k comparison; (center) R2

10 as a function of dimension of the latent space; (right) VIND’s inferred
validation trajectories for this dataset.

To make this analysis quantitative, we compute the k-step mean squared error (MSEk) on test data,
and its normalized version, the R2

k, defined as

MSEk =

T−k∑
t=0

(xt+k − x̂t+k)
2
, R2

k = 1− MSEk∑T−k
t=0 (xt+k − x̄)

2
(21)

where x̄ is the data average for this trial and x̂t+k is the prediction at time t+k. The latter is obtained
by i) using the full data X to obtain the best estimate for zt, ii) using k times the LLDS/VIND
evolution equation zt+1 = Aϕ(z)zt, or zt+1 = Azt for the LDSs, to find the latent state k time steps
in the future, and iii) using the generative network to compute the forward-interpolated observation.
Note that in particular, k = 0 corresponds to the standard R2. The more general R2

k ensures
that VIND yields more than just a good autoencoder. We will be comparing results obtained with
LLDS/VIND to several models, namely, GfLDS, PfLDS, and GPFA (see Sec. 3 for details).

4.1 LORENZ SYSTEM

The Lorenz system is a classical nonlinear differential equation in 3 independent variables.

ż1 = σ(z2 − z1) ,

ż2 = z1(ρ− z3)− z2 , (22)
ż3 = z1z2 − βz3 .

This is a well studied system with chaotic solutions and that serves to cleanly demonstrate VIND’s
capabilities for inferring nonlinear dynamics. We generated numerical solutions of the Lorenz system
from randomly generated initial conditions, for σ = 10, ρ = 28, β = 8/3, and additive Gaussian
noise. Gaussian observations in a 10D space were then generated with the mean specified by a
z-dependent neural network. The complete synthetic data consisted of 100 trials, each comprising
250 time-steps, of which 80% was used for training and the remaining for validation.

The results of the fit to this data are shown in Fig. 1. The left panel shows the R2
k comparison for

VIND and GfLDS fits, with dZ = 3. Strikingly, for this dataset, VIND’s performance is 2-3 orders of
magnitude better than GfLDS. The right panel illustrates VIND’s capability to infer properties of the
underlying dynamics: VIND hits peak performance at dZ = 3, the true dimensionality of this system.
In the rightmost panel, all the paths inferred by VIND have been put together, showing the famous
butterfly pattern.

4.2 ELECTROPHYSIOLOGY

We analyzed data collected from mice performing a delayed discrimination task in a simultaneous
recording session, using multi-unit electrophysiology (64 channel Janelia silicon probe) Guo et al.
(2014); Li et al. (2015). In this task, the animals were trained to discriminate the location of a pole
using whiskers. The pole was presented at t = −1.3s, and an auditory go cue at t = 0 signaled the
beginning of the response epoch. During response, the mice reported the perceived pole position
by licking one of two lick ports. Neurons in this task exhibit complex dynamics across behavioral
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Figure 2: Electrophysiology data. (left) Sample cell spike rates, t = 0 signals the start of the response
epoch (center) Performance of explained variance (R2) using different setups of VIND and other
models. (right) Performance of forward interpolation (R2

k) using two setups of VIND models.

epochs; some neurons show ramping and persistent activity from sample to delay, which relates to
the preparation of the choice at response Guo et al. (2014); Li et al. (2015); Wei et al. (2018), while
some other neurons show the peaking activity in response to the behavioral epochs, see Fig. (2, left).

We asked whether VIND can capture the variety of neural dynamics using a few latent observations.
The data was fitted for dZ = 5, using a Poisson observation model. The fit not only reproduces the
neural observation, but also provides insights to the dynamics in the latent space. Details can be
found in Fig. 6 in App. B. Subsequently, a 10-fold cross-validation method was used to decide the
performance of fit using VIND’s Gaussian and Poisson observation models with up to 12 dimensions
in the latent space, regardless of trial type. The R2 was computed to determine the performance
of VIND as compared to other models. For VIND, both Poisson and Gaussian observation models
were used. These are compared to a Peristumulus Time Histogram (PSTH), a GPFA model Yu et al.
(2009), as well as GfLDS and PLDS Archer et al. (2015); Gao et al. (2016). The results are shown
in the center panel in Fig. 2. We found that nonlinear Gaussian VIND performs the best regarding
explained variance of the data.

Next we analyzed the forward interpolation capabilities of the fitted models to the neural data using
R2
k. In this case the Poisson observation model gives a substantially better forward interpolation,

signaling a dynamical system that more accurately represents the data evolution. This can be seen in
the right panel in Fig. 6. These two results combined exemplify the VIND tradeoff between explained
variance and forward interpolation capabilities. Using Poisson observations, VIND is less able to fit
the higher frequency components of the data. The resulting dynamical system, however, is smoother
and more appropriately captures the evolution of the system, see App. B.

4.3 SINGLE CELL VOLTAGE DATA

We demonstrate VIND’s versatility to uncover underlying dynamics of a system by applying it to
1D voltage electrophysiology data recorded from single cells. This is not a dimensionality reduction
problem but rather one of recovering the latent phase space from a single variable to identify the
‘true dimensionality’ of the system under study. The data is the publicly available Allen Brain Atlas
dataset Jones et al. (2009).

Intracellular voltage recordings from cells from the Primary Visual Cortex of the mouse, area layer 4
were selected. Trials with no spikes were removed, resulting in 44 trials from 7 different cells. The
input for each of the remaining trials consists of a step-function with an amplitude between 80 and
151pA. Observations were split into training (30 trials) and validation sets (14 trials). The data was
then down-sampled from 50, 000 time bins (sample rate of 50 kHz) to 5, 000 in equal-time intervals,
and subsequently normalized by dividing each trial by its maximal value.

LLDS/VIND was fit to this data for dZ = 2, . . . , 8, repeated across 10 runs. The top three fits were
averaged and the results are summarized in Fig. 3. The center panel displays the R2

10 values for each
choice of latent dimensionality. The fits consistently improve up to dZ = 5, after which there are
diminishing returns. Single cell voltage data has traditionally been modeled using variants of the
classical Hodgkin-Huxley neuron model (Hodgkin & Huxley (1952)), a set of nonlinear differential
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Figure 3: Summary of the LLDS/VIND fit to the Allen dataset: (left) The dataset, neurons respond to
an input current; (center) VIND vs GfLDS comparison for the best 5D fits; (right) R2

10 for different
dimensions. The performance increases up to dZ = 5 possibly indicating the hidden dimensionality
of the system.

equations in 4 independent variables, plus an optional independent input current. It is interesting that
5 is exactly the minimal number of latent dimensions that provide a good VIND fit for this data. The
right panel displays R2

k with dZ = 5 for VIND and for GfLDS. VIND outperforms GfLDS by an
order of magnitude.

We show the forward-interpolated observations and sample paths for selected runs using VIND
and GfLDS in Fig. 4 . The left panel represents the observations over a rolling window, k = 10
time-points in advance for both VIND and GfLDS. The dynamics inferred by GfLDS are unable
to capture the nonlinearities for both the hyperpolarization and depolarization epochs. The latent
trajectories for this data are plotted in the center panel. The dimensions inferred by VIND exhibit
similar behavior to that of Hodgkin-Huxley gating variables. As shown in the right panel, we find that
in state-space, spikes are represented by big cycles (red), while interspiking fluctuations correspond
to separate regions of phase space (blue). For each trial, the height of the voltage spike is coded in
the diameter of the cycles.

Figure 4: Inferred sample paths: (left) Original data (green) versus the 10-step (2ms) forward
interpolation given by VIND and by GfLDS; (center) Latent trajectories for a 5D VIND fit of this
data, showing behavior similar to the Hodgkin-Huxley gating variables; (right) A 3D cross-section of
the latent space showing the representation of the spikes as big cycles (red) and the transient periods
(blue).

4.4 SPONTANEOUS ACTIVITY IN WIDEFIELD IMAGING DATA

The unsupervised modeling of spontaneous brain activity is inherently challenging due to the lack of
task structure. Here, we model the temporal dynamics of widefield optical mapping (WFOM) data
and simultaneous behavior recorded from an awake head-fixed mouse during spontaneous activity
Ma et al. (2016a). This data was recorded and corrected for hemodynamics in the Laboratory for
Functional Optical Imaging at Columbia University. The recording and preprocessing details for
both cortical dynamics and the movement speed signal are provided in App. D. An example frame
of the data is shown in Fig. 5 (top-left). The preprocessing of the WFOM cortical data leads to
reduced-dimension, denoised cortical activity (as detailed in App. D). The temporal activity of the
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Figure 5: Widefield Imaging Data: (top-left) An example frame of the data. The temporal dynamics
and behavior signal are characterized by X after preprocessing, which are simultaneously modeled
using both GfLDS and VIND. (bottom-left) Variance weighted average R2 values for k-step forward
interpolation, with dZ = 9. (center) An example fit of X using VIND on held out data. Only 4 of the
signals in the 148-dimensional X signal are shown here. (right) A different VIND model was fit to
the temporal dynamics of only the left hand side (LHS) of the brain (XLHS). The latents (ZLHS) are
used to reconstruct the temporal dynamics of the right hand side (RHS) of the video (XRHS). Fits
are shown on 4 of the 66-dimensional XRHS in held out data.

cortex and the movement speed (jointly called X) are simultaneously modeled using both GfLDS
and VIND, with the results for validation data on one mouse shown in Fig. 5, where dX = 148,
and dZ = 9. The k−step forward interpolation is shown in Fig. 5 (bottom-left), with varying k, for
both VIND and GfLDS. 4 of the 148 dimensions of X and X̂ on validation data are shown in Fig.
5 (center). VIND is seen to outperform GfLDS, capturing the fine-tuned dynamics in X , thus also
leading to better interpolations. We highlight VIND’s capability to roughly capture the dynamics of
the whole superficial dorsal cortex using a 9-D latent vector and the corresponding evolution and
generative network.

Next, a VIND model was fit to the brain dynamics of only the left hand side (LHS) of the brain, after
similar preprocessing of the data. Here, dXLHS = 60, dZLHS = 9. A separate neural network was
fit from the latents learned on the left hand side (ZLHS) to the temporal dynamics of the right hand
side (RHS) of the brain (XRHS ; dXRHS = 66), with an MSE loss function. The goal was to infer
dynamics from one half of the brain to the other. 5 out of 66 reconstructions of the temporal dynamics
of the RHS in held-out data are shown in Fig. 5 (right) (variance weighted average R2 = 0.49
for entire data). For comparison, we ran a baseline CCA analysis which yielded an R2 of 0.45.
This shows that the latent variables learned by VIND on one half of the brain are useful to coarsely
reconstruct the temporal dynamics of the other half.

5 DISCUSSION

In this work we introduced VIND, a novel variational inference framework for nonlinear latent
dynamics that is able to handle intractable distributions. We successfully implemented the method for
the specific case of Locally Linear Dynamical Systems, which allows for a fast inference algorithm
(linear in T ). When applied to real data, VIND consistently outperforms other methods, in particular
methods that rely on an approximate posterior representing linear dynamics. Furthermore, VIND’s
fits yield insights about the dynamics of these systems. Highlights are the ability to identify the
transition points and distinguish among trial types in the electrophysiology task, the dimensionality
suggested by VIND’s fits for the single-cell voltage data, and the ability of the latents learned from
one half of the brain to reconstruct activity from the other half in widefield imaging data. Moreover,
VIND can be naturally extended to handle labelled data and data with inputs. This is work in progress.

LLDS/VIND is written in tensorflow and the source code is publicly available.
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Algorithm 1 Learning VIND: At every epoch P
(ep)
i is the numerical estimate of the hidden path

corresponding to batch i, while P
(ep)
φ,ϕ(Xi) is the φ, ϕ-dependent posterior mean.

Initialize φ, ϕ, θ ← φ(0)ϕ(0), θ(0).
for all i do

Initialize P
(ep)
i ← P

(0)
i

end for
ep← 1,
while not converged do

for all i do
P

(ep)
φ,ϕ(Xi)← rφ,ϕ(P

(ep−1)
i ,Xi).

C
(ep)
φ,ϕ(Xi)← sφ,ϕ(P

(ep−1)
i ,Xi)

Get Zi ∼ qφ,ϕ(Z|Xi) = N
(
P

(ep)
φ,ϕ(Xi),

(
C

(ep)
φ,ϕ(Xi)

)−1
)

end for
Perform ADAM gradient descent on

∑
i LELBO(Xi,Zi): Update φ, ϕ, θ ← φ(ep)ϕ(ep), θ(ep)

P
(ep)
i ← P

(ep)
φ,ϕ(Xi)|φ(ep)ϕ(ep)

ep← ep + 1.
end while

A LLDS/VIND

In this appendix, we provide details of the VIND framework for the LLDS parameterization of the
hidden dynamics.

A.1 ALGORITHM

As detailed in Alg. 1, each training epoch consists of two steps that are carried in alternate fashion: the
FPI that updates the best estimate of the latent path and a gradient descent step that updates the model
parameters. For optimization of the ELBO we used stochastic gradient descent. As it is customary, in
order to estimate the gradients, the so called “reparameterization trick” is used. Samples are extracted
from the variational approximation qφ,ϕ:

Zi = P
(ep)
φ,ϕ(Xi) +

[
C

(ep)
φ,ϕ(Xi)

]−1/2

ε (23)

where ε is a standard normal, (Kingma & Welling (2013); Jimenez Rezende et al. (2014)).

A.2 IMPLEMENTATION DETAILS

We provide here extra details of the LLDS/VIND implementation that was used throughout the paper:

• The initial path estimates P
(0)
i are taken to be µϕ(Xi).

• VIND is initialization-sensitive. Empirically, we found that it is important that the initial path
estimates fall within a region where the nonlinearity is not severe (maxPi |Aφ(zt)−I| . 0.1
for every trial i).
• To encourage smoothness of the latent dynamics, Aφ(zt) was specified as

Aφ(zt) = A + α ·Bφ(zt) (24)

where A is a state-space-independent linear transformation initialized to the identity, α is
a nontrainable hyperparameter of the model, and Bφ(zt) = NNφB (zt). This set up has
the added benefit that α = 0 is equivalent, both the statistical model and the algorithm, to
GfLDS/PfLDS (Archer et al. (2015); Gao et al. (2016)).
• The local transformation Aφ(zt) is redundant (it is akin to a gauge transformation in physics

parlance). To see this, note that for every zt, the image of the transformation Aφ(zt)zt is at
most Rn. On the other hand Aφ(zt) has dimensionality Rn2

. In other words, given zt and

12
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zt+1, there is a continuum of matrices Aφ(zt) that satisfy zt+1 = Aφ(zt)zt. It follows that
Aφ(zt) can be substantially restricted without loss of generality (“fixing the gauge”). We
found that the best results were obtained when Aφ(zt) was constrained to be symmetric.
• Experiments showed that setting the number of FPIs at n = 2 in Eq. (20) is enough for

producing good convergence results across datasets.
• In all experiments we found that there is no noticeable decrease in performance if the

gradient terms in Eq. (19), and the corresponding ones for sφ,ϕ are neglected. These terms
are subleading compared to ΛϕMϕ both because they are proportional to the nonlinearity,
small as required by smoothness, and because the gradient is applied on a deep neural
network.
• The FPI in Eq. (12) is in the contractive regime within a domain D, P

(0)
i ∈ D; D ⊂ RT×dZ

when the Jacobian J of the map rφ,ϕ satisfies that the absolute value of its determinant is
smaller than 1. This can be guaranteed for any starting point P

(0)
i by invoking the Gershgorin

Circle Theorem (Eisstein), which yields a bound on the absolute value of the eigenvalues
of a matrix. For the specific case of LLDS/VIND, the entries of J are suppressed both
by the small hyperparameter α and to the gradients of the deep neural network Bφ(zt),
Eq. (24. This makes the Gershgorin bound easy to satisfy. Convergence of the algorithm
is not straightforward from this argument, since it must cycle through different batches of
training data, which may lie in different basins of the FPI map. Nevertheless, in practice we
found the Jacobian suppression to be enough to guarantee convergence.

B DETAILS OF THE ELECTROPHYSIOLOGY FIT

Figure 6: Examples of latent dimension dynamics for Gaussian and Poisson VIND in validation data.
Black lines, posterior pole location; red lines, anterior pole location. Notice how the inferred paths
differ for posterior and anterior pole locations. Also note visible changes in dynamics at t = −1.3
(stimulus), and t = 0 (go cue).

The experimental details in Sec. 4.2 are as follows. The recording session contains 18 simultaneous
recorded units, with 74 lick-right trials (in blue; posterior pole location) and 100 lick-right trials
(in red; anterior pole location). Spike counts were binned in a 67 ms non-overlapped time window,
where the maximum spike count is 10 and minimum is 0. The fit covers time points (almost the entire
recordings) from -0.5 sec from sample onset to 2.0 sec from response (wherefore the trial contains 77
time bins).

Fig. 6A shows the average neuronal activity of 3 representative cells in the recordings. Cell #1 is a
typical neuron with small separation of trials, but strong peaking activity at transition from delay to
response epochs. Cells #2, 3 exhibit the stereotypical ramping activity and separations of different
trial types, which are assumed for preparation of the movements. Both setups of VIND models
(Poisson and Gaussian, nonlinear evolutions, dz = 5) can reproduce the complex and variable neural
dynamics in the held-out trials (9 lick-left trials; 9 lick-right trials). Particular, Gaussian VIND model
can capture the changes of dynamics on even finer timescales (dash lines vs dot lines; Poisson vs
Gaussian VIND models). This observation agrees with higher performance of explained variance
(R2; Fig. 2).
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The latent dynamics are smoother in the Poisson VIND model, (Fig. 6BC). We have found that in
VIND fits, smoother trajectories are correlated with superior performance in the forward interpolation
tasks. Intuitively, for noisier latent paths, the algorithm attempts to ascribe some of the variance to
the dynamical system, which hurts the forward interpolation capabilities. In the Poisson VIND fit
represented in Fig. 6, the latent dynamics in dimension 2 and 3 appears to represent the preparation
of the choice where the neural dynamics for different trial types gradually diverges with time. The
dynamics in dimension 1 shows rapid peaking dynamics at the transitions of the behavioral epochs.
However, those two types of dynamics were mixed and separations of trial types were in Gaussian
VIND model. In general, ramping and peaking dynamics is not operated by distinguishable groups of
neurons, yet to our surprise they are separated in the latent space.

C DETAILS OF THE SINGLE CELL VOLTAGE DATA FITS

For the Allen data, Fig. 7 shows simulated paths (forward interpolation with noise) versus the
corresponding real data. Fig. 8 shows several views of the same two latent paths corresponding to
two different input currents.

Figure 7: Data (green) versus simulation of the observations (red) from the smoothed path: 10 steps
ahead (left), 20 steps ahead (center), and 30 steps ahead (right). Some signs of deterioration of the
prediction start to appear for the latter (failed spikes, late spiking times).

Figure 8: Different views of a 3D cross section of 5D latent paths for two different trials, showing
how the paths occupy different regions of state-space depending on the value of the constant input
current.

D PREPROCESSING OF WIDEFIELD IMAGING DATA

Macro-scale wide-field optical mapping (WFOM) is an increasingly popular technique for surveying
neural activity over very large areas of cortex with high temporal resolution. WFOM can image
the fluorescence of genetically-encoded calcium (GCaMP6f) indicators using LED illumination and
camera detection scheme. We use methods for correcting fluorescence recordings of neural activity
for confounding contamination by changes in hemoglobin concentration and oxygenation as in Ma
et al. (2016b), by measuring both neural fluorescence signals and hemodynamics. This correction
provides us with an accurate change in fluorescence of neural regions (∆F/F ). An example frame
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of the data is shown in Fig. 5A, 464-by-473 pixels. The activity of the mouse is simultaneously
recorded using a webcam pointed at the mouse’s body, and the movement speed at time t is taken as
a 1D signal consisting of the standard deviation of the difference in value of all pixels from time t− 1
to time t.

We use a WFOM recording of length 2 minutes, where the signals are sampled at 10Hz, thus leading
to 1200 time points. We normalize ∆F/F to lie between 0 and 1 for every video, and then apply
block singular value decomposition (SVD) to the videos for denoising and dimensionality reduction
Buchanan et al. (2018). First, we fit an anisotropic Wiener filter in a 4 × 4 neighborhood of each
pixel to reduce uncorrelated noise while preserving spatially-local, time-correlated signals. Next, the
video is partitioned into 25 (5× 5) blocks, and SVD is performed on the pixels in each block. The
temporal components are ranked according to a metric defined on their empirical autocorrelation
function, and components that fall within a 99% confidence interval of Gaussian white noise are
discarded. Moreover, those temporal components that have a signal-to-noise ratio lower than 1.6 are
also discarded. The remaining temporal components from each block are concatenated, and these
form the X matrix, here 147× 1200. This is augmented using a 1D behavior signal that is extracted
using the standard deviation of successive frames from a webcam recording the lateral view of the
mouse’s body, representing the speed of the mouse’s movements in arbitrary units. We used different
sessions of recording from the same mouse, preprocessed in the same way, to obtain training and
validation data.
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