
Under review as a conference paper at ICLR 2019

GUIDED EXPLORATION IN DEEP REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper proposes a new method to drastically speed up deep reinforcement
learning (deep RL) training for problems that have the property of state-action
permissibility (SAP). Two types of permissibility are defined under SAP. The first
type says that after an action at is performed in a state st and the agent reaches
the new state st+1, the agent can decide whether the action at is permissible or
not permissible in state st. The second type says that even without performing
the action at in state st, the agent can already decide whether at is permissible or
not in st. An action is not permissible in a state if the action can never lead to an
optimal solution and thus should not be tried. We incorporate the proposed SAP
property into two state-of-the-art deep RL algorithms to guide their state-action
exploration. Results show that the SAP guidance can markedly speed up training.

1 INTRODUCTION

Most existing Reinforcement Learning (RL) algorithms are generic algorithms that can be applied
to any application modeled as a RL problem (Sutton & Barto, 2017). These algorithms often take
a long time to train (Arulkumaran et al., 2017). But in many applications, some properties of the
problems can be exploited to drastically reduce the RL training time. This paper identifies such a
property, called state-action permissibility (SAP). This property can speed up RL training markedly
for the class of RL problems with the property.

We propose two types of permissibility under SAP. The first type says that after an action at is
performed in a state st and the agent reaches the new state st+1, the agent can decide whether
the action at is permissible or not permissible in state st. The second type says that even without
performing the action at in state st, the agent can already decide whether at is permissible or not
in st. An action is not permissible in a state if the action can never lead to an optimal solution and
thus should not be tried. An action is permissible if it is not known to be non-permissible (i.e., the
permissible action can still be non-permissible but it is not known). Clearly, the agent should avoid
choosing non-permissible actions. Since the second type of permissibility is simple and we will see it
in the experiment section, we will focus only on the first type. The first type is also intuitive because
we humans often encounter situations when we regret a past action, and based on that acquired
knowledge, we can avoid doing the same thing in an identical or similar situation in the future.

Let us use an example in autonomous driving (Figure 1) to illustrate the SAP property. In this example,
the car needs to learn appropriate steering control actions to keep it driving within a lane (often called
lane keeping). A and B are the lane separation lines (track edges), and C is the center line (track axis)
of the lane. We use the term ”track” and ”lane” interchangeably in the paper. The ideal trajectory for
the car to drive on is the center line. We assume that at a particular time step t the car is in state st
(see Figure 1). It takes an action at, i.e., it turns the steering wheel counterclockwise for a certain
degree. This action leads the car to the new state st+1. As we can see, st+1 is a worse state than st.
More importantly, it is also quite clear that action at is non-permissible in state st as it would never
lead to an optimal solution in the long run in accumulated reward and thus should not have been
taken. When facing a similar situation in the future, the agent should avoid choosing at to reduce the
possibility of making repetitive mistakes.

The SAP property can be leveraged to drastically reduce the action exploration space of RL. Following
the above example, we know that at in state st is not permissible as it moved the car away further
from the center line. However, knowing this fact only after the action has been taken is not very

1

Under review as a conference paper at ICLR 2019

useful. It is more useful if the information can be used to help predict permissible and non-permissible
actions in a new state so that a permissible action can be chosen in the first place. This is the goal of
the proposed technique. Note that for type 2 permissibility, prediction is not needed.

It is important to emphasize here that choosing a permissible action at each state is by no means a
greedy decision that counters the RL’s philosophy of sacrificing the immediate reward to optimize for
the accumulated reward over the long run (or many steps). Permissibility is defined in such a way that
a non-permissible action cannot be an action that will lead to an optimal accumulated reward over the
long run. The class of problems with the SAP property is also quite large as most robot functions
involving navigation or physical movements and even many games of this nature have this property,
e.g., flappy bird1, pong game1, cart-pole (Brockman et al., 2016), robot arm reacher (Brockman et al.,
2016), etc. This is so because it is similar to us humans that in most cases our prior knowledge about
the environment can tell us what movements/actions will not help us reach our goals. In general,
RL learning with the SAP guidance is analogous to human learning which tries to smartly choose
permissible/promising actions rather than blindly try all possibilities.

Figure 1: An illustrative exam-
ple of the lane keeping task in
autonomous driving.

We propose to make use of previous states, their actions, and the
permissibility information of the actions to build a binary pre-
dictive (or classification) model. Given the current state and a
candidate action in the state, the model predicts whether the action
is permissible or non-permissible in the state. We discuss how to
make use of this predictor to guide the RL training in Sec. 4. A ma-
jor advantage of the proposed predictive model is that it is trained
concurrently with the RL model. It requires no human labeling of
training data, which are obtained automatically during RL training
by defining an Action Permissibility function and exploiting the
SAP property (see Sec. 4). As the agent experiences more states
and actions during RL training and gathers knowledge (labels) of
action permissibility, the predictive model becomes more accurate
(stabilizes after some time), which in turn provides more accurate
guidance to the RL training, making it more efficient.

Two questions that one may ask: (1) how to decide permissibility
of an action, and (2) what happens if the predictive model predicts wrongly? For (1), the answer is
that it is task/domain dependent. Our approach allows the user to provide an Action Permissibility
(AP) function to make the decision. For (2), there are two cases. First, if a non-permissible action is
predicted as permissible, it causes no issue. If a non-permissible action is chosen for a state, it just
results in some waste of time. After the action is performed, the agent will detect that the action is
non-permissible and it will be added to the training data for the predictive model to improve upon in
the next iteration. Second, if a permissible action is predicted as non-permissible, this is a problem as
in the worst case (although unlikely), RL may find no solution. We solve this problem in Section 4.

In summary, this paper makes the following contributions. (1) It identifies a special property SAP
in a class of RL problems that can be leveraged to cut down the exploration space to markedly
improve the RL training efficiency. To our knowledge, the property has not been reported before. (2)
It proposes a novel approach to using the SAP property, i.e., building a binary predictive model to
predict whether an action in a state is permissible or not ahead of time. (3) Experimental results show
that the proposed approach can result in a huge speedup in RL training.

2 RELATED WORK

Exploration-exploitation trade-off (Sutton & Barto, 2017) has been a persistent problem that makes
RL slow. Researchers have studied how to make RL more efficient. Kohl & Stone (2004) proposed a
policy gradient RL to automatically search the set of possible parameters with the goal of finding
the fastest possible quadrupedal locomotion. Dulac-Arnold et al. (2012) formulated a RL problem in
supervised learning setting. Narendra et al. (2016) proposed an approach that use multiple models to
enhance the speed of convergence. Among other notable works, Duan et al. (2016) proposed RL2 to
quickly learn new tasks in a few trials by encoding it in a recurrent neural network that learns through
a general-purpose (”slow”) RL algorithm. Wu et al. (2017) proposed a method to adaptively balance

1https://github.com/ntasfi/PyGame-Learning-Environment

2

Under review as a conference paper at ICLR 2019

the exploration-exploitation trade-off and Nair et al. (2017) tried to overcome the exploration problem
in the actor-critic model DDPG Lillicrap et al. (2016) by providing demonstrations. Deisenroth &
Rasmussen (2011) proposes a policy-search framework for data-efficient learning from scratch. Bacon
et al. (2017) focused on learning internal policies and the termination conditions of options, and
Asmuth et al. (2008) focused on potential-based shaping functions and its use in model-based learning
algorithms. Although these works contribute in RL speed up, their problem set up, frameworks, and
approaches differ significantly from ours. Recent advances in meta reinforcement learning have
contributed in large policy improvements at test time with minimal sample complexity requirements
Duan et al. (2016); Wang et al. (2016); Kulkarni et al. (2016); Finn et al. (2017), but have inadequately
addressed the issue of exploration. Our work also significantly differs from these work, as we focus
on guiding RL exploration by learning/leveraging the knowledge of state-action permissibilty. The
recent work in (Abel et al., 2015) focused on leveraging the knowledge of action priors provided by a
human expert or learned through experiences from related problems. In contrast, our work learns the
state-action permissibility from the same problem. Also, Abel et al. (2015) does not introduce the
concept of SAP. Several researchers also proposed some other techniques for detecting symmetry and
state equivalence to speed up RL (Mahajan & Tulabandhula, 2017; Girgin et al., 2010; Bianchi et al.,
2004; Osband et al., 2013; Bai & Russell, 2017). We focus on constraining the exploration space by
leveraging a special property of the underlying task.

Since our approach involves prediction, it is seemingly related to model-based RL (Deisenroth &
Rasmussen, 2011; Kamalapurkar et al., 2016; Berkenkamp et al., 2017; Nagabandi et al., 2018;
Clavera et al., 2018), which aims to learn the transition function of the environment. However, our
work is not about learning the transition probabilities and is still model-free. SAP provides a scope
for encoding human knowledge into model-free setting and leverage the knowledge for fast policy
learning, as opposed to learning the model of the environment in the model-based approach.

3 BACKGROUND

We will incorporate the SAP guidance into two deep RL algorithms, Double Deep Q Network
(DDQN) (van Hasselt et al., 2016) and Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2016). We introduce them here, which are based on Q-learning (Watkins & Dayan, 1992). Q-learning
employs the greedy policy µ(s) = argmaxaQ(s, a). For continuous state space, it is performed
with function approximators parameterized by θQ, optimized by minimizing the mean square loss:

L(θQ) = Est∼ρβ ,at∼β,ri∼E [(Q(st, at|θQ)− yt)2] (1)

where, yt = r(st, at) + γQ(st+1, µ(at+1)|θQ) and ρβ is the discounted state transition distribution
for policy β. The dependency of yt on θQ is typically ignored.

Recently, Mnih et al. (2015; 2013) adapted Q-learning by using deep neural networks as non-linear
function approximators and a replay buffer to stabilize learning, known as Deep Q-learning or DQN.
van Hasselt et al. (2016) introduced Double Deep Q-Network (DDQN) by introducing a separate
target network for calculating yt to deal with the over-estimation problem in DQN.

For continuous action space problems, Q-learning is usually solved using an Actor-Critic method,
e.g., Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016). DDPG maintains an Actor
µ(s) with parameters θµ, a Critic Q(s, a) with parameters θQ, and a replay buffer R as a set of
experience tuples (st, at, rt, st+1) like DQNs (Mnih et al., 2015; 2013) to store transition history for
training. Training rollouts are collected with extra noise for exploration: at = µ(s) +Nt, where Nt
is a noise process. In each training step, DDPG samples a minibatch of N tuples fromR to update
the Actor and Critic networks and minimizes the following loss to update the Critic:

L(θQ) =
1

N

∑
i

[yi −Q(si, ai|θQ)2] (2)

where, yi = ri + γQ(si+1, µ(si+1)|θQ). The Actor parameters θµ are updated using the sampled
policy gradient:

∇θµJ =
1

N

∑
i

∇a [Q(s, a|θQ)|s=si,a=µ(s) ∇θµµ(s|θ
µ)|s=si] (3)

3

Under review as a conference paper at ICLR 2019

4 PROPOSED TECHNIQUE

The proposed framework consists of the state-action permissibility (SAP) property, action permissi-
bility prediction model, and the integration of the predictive model in RL to guide RL training.

4.1 STATE-ACTION PERMISSIBILITY

Let r : (S,A)→ R be the reward function for a given MDP with state space S and action space A.
In this work, we assume that the action space is one-dimensional (expressed by one variable) 2.

Definition 1 (permissible and non-permissible action): If an action at in a state st cannot lead to an
optimal solution (or accumulated reward) in the long run, the action is said to be a non-permissible
action in the state. If the action at in the state st is not known to be non-permissible, it is permissible.

Definition 2 (type 1 permissibility): Let a state transition in a RL problem be (st, at, rt, st+1). We
say that the RL problem has the type 1 SAP property if there is an type 1 action permissibility (AP1)
function f1 : (S,A) → {0, 1} that can determine whether the action at in state st is permissible
[f1(st, at|st+1) = 1] or non-permissible [f1(st, at|st+1) = 0] in st after the action at has been
performed and the agent has reached state st+1.

Definition 3 (type 2 permissibility): Let the RL agent be in state st at a time step t. We say that a RL
problem has the type 2 SAP property if there is an type 2 action permissibility (AP2) function f2 :
(S,A)→ {0, 1} that can determine whether an action at in state st is permissible [f2(st, at) = 1] or
non-permissible [f2(st, at) = 0] without performing action at.

Clearly, a permissible action may still be non-permissible, but it is not known. Both types of action
permisibility functions may not be unique for a problem. Since type 2 permissibility is simple, we
focus only on type 1 permissibility. We illustrate it using an example in the lane keeping task.

Figure 2: Visualizing the param-
eters of lane keeping task imme-
diate reward function.

Example 1. Let, at any given time in motion, θ be the angle be-
tween the car’s direction and direction of the track (lane) center
axis, Vx be the car speed along the longitudinal axis and δtrack
be the distance of the car from the track center (center line) (see
Figure 2). Given this setting, we use the following reward function
(an improved version3 of that in (Lillicrap et al., 2016)) for the
lane keeping task:

r = Vx(cos θ − sin θ − δtrack) (4)

From the reward function, we see that the car gets the maximum
reward (Vx) only when it is aligned with the track axis and δtrack =
0; otherwise the reward will be less than Vx.

Let δtrack,t and δtrack,t+1 be the distance of the car from the lane
center line (track axis) corresponding to state st and state st+1

respectively. The following is an AP1 function:

f1(at, st|st+1) =

{
0 if δtrack,t+1 − δtrack,t > 0

1 Otherwise
(5)

This AP1 function says that any action results in the car to move further away from the track axis
(center line) is not permissible.4 This clearly satisfies the type 1 SAP property. It is type 1 because
without performing the action, one will not know whether the action is permissible or not.

2We leave the multi-dimensional continuous action space case to our future work.
3https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html
4Note that in a sharp turn, if the curvature of the lane is too large for the car to follow, we humans may drive

to the outer side of the lane or even cut into the neighboring lane (if there is no danger) before the turn. This is
usually because we drive too fast. In this work, we do not deal with speed control, which adds another dimension
to our action space. We leave multi-dimensional action space RL to our future work.

4

Under review as a conference paper at ICLR 2019

4.2 LEARNING TYPE 1 ACTION PREMISSIBILITY (AP1) PREDICTOR

AP1 function only gives knowledge about the permissibility of an “executed” action. Thus, we need
to continuously learn the permissibility of actions for a given state utilizing our past experiences and
to predict action exploration for future states. Note that AP2 clearly does not need prediction.

As indicated earlier, AP1 prediction is a binary classification problem with two classes. Given the
current state s and an action a, the goal of the AP1 predictor is to predict whether a is permissible
or not permissible in s. Note that AP1 predictor is a learned predictive model or classifier, which is
different from the AP1 function, a user provided function. The labeled training data for building AP1
predictor is produced by AP1 function f1, which determines whether an action at a particular state
was permissible or not permissible after the action has been performed on the state during the RL
training. Each example of the training data consists of values of all variables representing a state and
the action taken in the state with its class (permissible or non-permissible). After many initial steps of
RL, a set of training examples for building the AP1 predictor is collected.

Since the training of the AP1 predictor is performed continuously along with the RL training, to
manage the process and the stream of new training examples, we maintain a training data buffer K
similar to the replay bufferR in (Lillicrap et al., 2016; Mnih et al., 2013) to train the AP1 predictor.
Given a RL experience tuple (st, at, rt, st+1) at time step t, we extract the tuple (st, at, l(at)) and
store it in K. Here, l(at) is the class label for at in st, permissible (+ve class) or non-permissible (-ve
class) and is inferred using the AP1 function f1. Similar to the replay bufferR, K is finite in size and
when it gets full, newer tuples replace oldest ones having the same class label l(at).

We train AP1 predictor E with a balanced dataset at a time step t as follows. For time step t, if both
the number of +ve as well as -ve tuples (or examples) in K are at least NE/2 (ensures NE/2 +ve and
NE/2 -ve examples can be sampled from K), we sample a balanced dataset DE of size NE from
K. Then, we train the neural network AP1 predictor E with parameter θE using DE . Note that, AP1
predictor is just a supervised learning model. We discuss the network architecture of AP1 predictor
used for our experiments in Appendix Section. For training E, we use mini-batch gradient decent to
update θE and minimize L2-regularized binary cross-entropy loss:

L(θE) = − 1

NE

∑
(si,ai,l(ai))∈DE

[l(ai) log E(si, ai|θE) + (1− l(ai)) log (1− E(si, ai|θE))] +
λ

2

∑
‖θE‖22

(6)

where λ is the regularization parameter. We discuss the use of the AP1 predictor in a RL model below.

4.3 GUIDING RL MODEL WITH AP1 PREDICTOR

The proposed AP1 predictor can work with various RL models. In this work, we incorporate it into
two deep RL models: the actor-critic model Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2016) and the Double Deep Q Network (DDQN) (van Hasselt et al., 2016) (see Section 3).
We chose DDPG because it is a state-of-the-art for learning continuous control tasks and DDQN
because it is a state-of-the-art for solving continuous state and discrete action space RL problems.
Our integrated algorithm of DDPG and AP1 predictor E is called DDPG-AP1, and of DDQN
and E DDQN-AP1. The training process of Actor µ and Critic Q of DDPG-AP1 (and that of Q
network for DDQN-AP1) is identical to the DDPG (DDQN) algorithm (see Section 3) except one
major modification (discussed later). The training of AP1 predictor E of DDPG-AP1/DDQN-AP1 is
performed simultaneously with the training of the corresponding RL model. In the following, we
discuss how a trained E (say, up to time step t) helps in guided action exploration.

Algorithm 1 presents the action selection process of DDPG-AP1/DDQN-AP1. Given the trained AP1
predictor E at time step t, action selection for st works as follows: Initially, DDPG-AP1/DDQN-AP1
selects action at randomly from action space A via an exploration process upto t ≤ te steps (or state
transitions). This phase is usually called the Exploration Phase in the RL literature (line 2-4). After
t > te, the exploration process is not used further. For t > to, AP1 guided action selection process
(line 6-18) is enabled, where to < te. Initially, when the RL agent starts learning, the tuples stored in
K are few in number and thus, are not enough to build a good AP1 predictor. Moreover, E also needs
a diverse set of training examples (tuples) to learn well. Thus, for the initial set of steps (t ≤ to), AP1
guidance is not used, but E is trained. This phase is called the Observation Phase, which is the initial

5

Under review as a conference paper at ICLR 2019

Algorithm 1 AP Guided Action Selection for RL
Input: Current state st; µ(s|θµ) as RL Action selection model (e.g, Actor network in DDPG or DDQN); AP1 predictorE(s, a|θE);
current time step t; Observation time step threshold to; Exploration time step threshold te (> to); probability threshold αe and αtr (> αe)
for consultingE and vt−1

acc (E) as validation accuracy ofE computed at time step t− 1.
Output: at: action selected for execution in st

1: Select action at = µ(st|θµ) for st
2: if t ≤ te then . Exploration phase
3: at = Exploration(at) . Use Noise process for DDPG and exploration strategy for DDQN
4: end if
5: if t > to then . Start AP1 guidance when t > to (observation phase is over)
6: if t > te and vt−1

acc (E) ≥ δacc then
7: Set α = αtr . α for training/learning phase
8: else
9: Set α = αe . α for exploration phase
10: end if
11: ˆl(at)← E(st, at|θE) . Predict permissibility class label of action at usingE
12: if ˆl(at) is -ve (non-permissible) and Uniform(0, 1) < α then
13: Select Candidate Action SpaceAst fromA and buildDst as {(st, a) | a ∈ Ast} . For DDPG, we sampleAst using

low-variance uniform sampling fromA and for DDQN,A being finite,Ast =A− {at}
14: AP (st) = {a |E(st, a) is +ve, (st, a) ∈ Dst}
15: ifAP (st) 6= ∅ then
16: Randomly sample at fromAP (st) . at is sampled from predicted permissible action space
17: end if
18: end if
19: end if
20: Return at

to steps of the exploration phase. After observation phase is over (t > to), for to < t ≤ te time steps,
AP1 Predictor based guidance (Line 5-19) and exploration process (Line 2-4) work together, and for
t > te, only AP1 based guidance (Line 5-19) works. We call this phase the Learning/Training Phase,
where no more action exploration is done using the exploration process (line 2-4).

For t > to, the AP1 based guidance (lines 5-19) works as follows: the action selected in line 1-4 is
fed to E for AP1 prediction with probability α. Some explanation is in order here about α. α ∈ [0, 1)
controls the degree by which DDPG-AP1/DDQN-AP1 consults E. As mentioned in Section 1, since
AP1 predictor is hard to be 100% accurate, we need to deal with the case where a permissible action
is predicted as non-permissible (false negative) (false positive is not an issue, see Section 1). This is
a problem because in the worst case (although unlikely), RL may not find a solution. We deal with
the problem by letting the Actor to listen to E for α% of the time. This probability ensures that the
RL model executes the action generated by itself (including some false negatives) on environment
(1− α)% of the time. Moreover, setting appropriate α also allows the RL model to experience some
bad (non-permissible actions) experiences through out its training, which stabilizes RL learning.
For to < t ≤ te, we set α to a small value αe to encourage more random exploration. Once the
exploration phase is over (t > te), α set to a bigger value αtr (> αe) so that DDPG-AP1/DDQN-AP1
often consults E for its guidance.

In line 11, if at is predicted as permissible by E, we skip lines 12-19 and action at (selected in line
1-4) gets returned (and executed on the environment, not in the algorithm). Otherwise, in line 13, the
RL model selects a candidate action set Ast for st of size N from the action space A and finds a
permissible action for the current state st. For DDPG-AP1, the action space being continuous, we
estimate permissible action space as follows: We sample an action set Ast for st of size N from
the full action space A using low-variance uniform sampling. In this process, first, A is split into N
equal sized intervals and an action is sampled from each interval following uniform distribution to
produce a set of sampled actions for state st, denoted byAst . Such a sampling procedure ensures that
the actions are sampled uniformly over A with variances between consecutive samples being low.
Thus, any action in A will be equally likely to be selected, provided it is predicted to be permissible
(+ve) by E (line 14)5. For DDQN-AP1, the action space being finite, we set Ast = A− {at}. Once
Ast is selected, RL model forms a dataset Dst by pairing st with each a ∈ Ast and feeds Dst to E
in a single batch to estimate a permissible action space for st as AP (st) (line 16). Here +ve means
permissible. Next, RL model randomly samples an action at from AP (st) (line 16) and executes it
on environment (not in Algorithm 1). If AP (st) = ∅, the original at (selected in line 1-4) is returned

5As AP predictor does not learn the value function, it is more logical to estimate the action permissibility
space and let RL find the best policy from that space. Thus, we use uniform sampling to choose action from the
estimated permissible action space rather than choosing the best action (greedily) based on AP prediction score.

6

Under review as a conference paper at ICLR 2019

and gets executed. The values of the hyper-parameters to, te, αe, αtr and δacc are chosen empirically
(reported and discussed in Appendix).

Modified Training of DDPG-AP1/DDQN-AP1. Once at gets executed on environment and the
RL model receives an experience tuple expt=(st, at, rt, st+1), we label the expt as permissible or
non-permissible using the user-provided action permissibility function. We split the Replay buffer
into two equal parts, one half to store the non-permissible experiences and the other half to store the
permissible experiences. When the buffer gets full, only a permissible experience can replace another
permissible experience and an non-permissible experience can replace an non-permissible one.

At each step of RL training, we sample batch-size/2 experiences from the permissible section of the
buffer and sample batch-size/2 experiences from the non-permissible section and then, use those
samples for RL model training. This ensures a balanced training process where the RL model always
gets trained on good and bad experiences, and also deals with catastrophic forgetting. Note that, in our
permissibility based guidance, RL model observes more bad experiences during exploration phase
compared to that in learning phase. Storing good and bad experiences in two half ensures the bad
experiences do not get erased from buffer by good ones observed due to the guidance mechanism.

5 EXPERIMENTAL EVALUATION

We evaluate the proposed DDPG-AP and DDQN-AP techniques in the applications of the lane
keeping (steering control) task and the Flappy Bird game respectively and analyze their learning
performances, and compare them with the baseline.

5.1 LANE KEEPING TASK

We use an open-source, standard autonomous driving simulator TORCS (Loiacono et al., 2013)
following (Sallab et al., 2016; 2017) for both learning and evaluation. We used five sensor readings to
represent the state vector which we found are sufficient for learning good policies in diverse driving
situations. The goal of our experiment is to assess how well the driving agent has learned to drive to
position itself on the track/lane axis (the lane keeping task).6 Thus, our model and baselines focus
on predicting the right steering angle that can keep the car aligned with the track axis while driving
with a default speed. During training, whenever the car goes out of the track, we terminate the current
episode and initiate a new one. We use five diverse road tracks in our experiments. Among these 5
road tracks, we used the wheel-2 track for training and the rest of the four tracks for testing. Due
to various curvature variations, we consider wheel-2 as ideal for training all possible scenarios. We
present a summary of state sensors, road tracks and also, discuss network architecture and hyper
parameter settings in the Appendix.

Compared Algorithms. Our goal is to compare our DDPG-AP (AP1 and AP2) models below with
the original DDPG algorithm (the baseline, without any action selection guidance). Note that here
we also propose a type-2 AP guidance based on some characteristics of driving.

DDPG-AP1. DDPG-AP1 is an extension of DDPG that uses type 1 AP function as proposed in
equation 5 for the lane keeping task. Here, we use AP1 predictor for guidance.

DDPG-AP2. DDPG-AP2 is an extension of DDPG that applies the following two type 2 AP functions
(or constraints): (1) If the car is on the left of lane center line and current action at > at−1 (previous
action), instead of applying at, it samples actions uniformly from (-1.0, at−1)7. In other words, when
the car is on left of the center line, it should avoid taking any left turn further. Similarly, (2) if the
car is on the right of the lane center line and at < at−1, then sample actions from (at−1, 1.0) and it
should avoid turning right further. Otherwise, the car executes at. These constraints are applied only
when δtrack,t − δtrack,t−1 > 0, i.e., only when the car moves away from the track center due to its
previous action. If the car is moving closer to the track center, it is permissible. This method gives
very strong constraints on car’s movement. Clearly, this model does not need AP prediction.

6By no means are we solving the whole self-driving problem, which is much more complex. For example, in
real driving, we sometimes have to go out of lane/track to avoid a collision or to be able make a shape turn due
to high speed. In such a case in self-driving, the system can dynamically generate a virtual lane for the car to
travel based on the current situation. We leave this, speed control, and other issues to our future work.

7Steering value -1 and +1 means full right and left respectively

7

Under review as a conference paper at ICLR 2019

Table 1: Performance of DDPG and DDPG-AP variants on different test tracks.
DDPG DDPG-AP2 DDPG-AP1 DDPG-(AP1+AP2)

Training track: Wheel-2 [After 3k steps training]
Test track Lap ? Total Reward Lap ? Total reward Lap ? Total reward Lap ? Total reward

E-road N
(17.59%) 4460.96 Y 53371.60 Y 53189.98 Y 54667.40

Spring N
(4.30%) 8258.29 N

(44.28%) 162875.81 Y 368724.99 Y 371795.67

CG Track 3 N
(5.75%) 1574.31 Y 46948.97 Y 46364.52 Y 48199.51

Oleth Ross N
(16.82%) 8784.68 Y 105419.94 Y 103557.34 Y 107168.99

DDPG DDPG-AP2 DDPG-AP1 DDPG-(AP1+AP2)
Training track: Wheel-2 [After 15k training steps]

Test track Lap ? Total reward Lap ? Total reward Lap ? Total reward Lap ? Total reward
E-road Y 40785.05 Y 53653.04 Y 56217.72 Y 56333.61

Spring N
(36.68%) 117519.69 Y 368559.39 Y 382746.63 Y 383541.04

CG Track 3 Y 37011.54 Y 46975.31 Y 49085.96 Y 49535.38
Oleth Ross Y 86275.80 Y 105584.83 Y 109506.41 Y 110384.84

DDPG-(AP1+AP2). Version of DDPG where we combine our DDPG-AP1 (type 1 AP) and DDPG-
AP2 (type 2 AP) to give us DDPG-(AP1+AP2). Here, we learn AP1 predictor for training DDPG-
(AP1+AP2) due to the use of type 1 permissibilty.

Figure 3: Avg. reward over past 100 training
steps of DDPG and DDPG-AP variants on lane
keeping task.

Results and Analysis. Figure 3 shows the com-
parative result of DDPG-AP variants and DDPG
with regard to the average reward over the train-
ing steps. We conducted training for 15k steps
and report the moving average of reward over the
past 100 steps. The minor fluctuations in the curve
shows the stability in learning, i.e., how smoothly
each algorithm has learned to keep the car aligned
to the track center axis/line. A sharp fall indicates
a sudden end of episode, i.e., when the car goes out
of track with a large -ve reward. We can see that
the moving average reward for DDPG-AP1 and
DDPG-(AP1+AP2) increases very rapidly com-
pared to other algorithms and gets stable more
quickly (around 2500 steps), whereas the learning
of DDPG is quite unstable. We discuss more about
the learning curves for all algorithms in Appendix.

We also evaluated AP1 predictor’s validation accuracy and found that the accuracy always stays above
70% during initial training steps and stabilizes with an average of 80% (see Appendix), signifying
that our AP1 predictor learns well to classify permissible actions from the non-permissible ones.

Table 1 shows the performance of the algorithms on unseen test tracks considering both 3k and 15k
steps of training. We use each algorithm to drive the car for one lap of each track and report the total
reward obtained by each algorithm. the ”Lap ?” column indicates whether the car has completed the
lap or not, and if not, (%) of the total track length the car has covered from its beginning position,
before it went out of track.

Considering the results for the 3k training steps (which is very few for learning a stable policy),
we see that DDPG and DDPG-AP2 has not learned to make the car complete one lap for all test
tracks. Both DDPG-AP1 and DDPG-(AP1+AP2) perform much better in term of lap completion.
Considering 15k training steps, we see that all algorithms except DDPG have learned to keep the
car on track for all test tracks. The highest total reward values and lap completion information in
DDPG-(AP1+AP2) (considering all test tracks) indicate that DDPG-(AP1+AP2) has learned to find
the most general policy quickly compared to others. Although DDPG-AP2 was competitive with
DDPG-AP1 in 3k training steps, the rewards obtained in 15k are less than those for DDPG-AP1 and
DDPG-(AP1+AP2). This shows that the policy learned by DDPG-AP2 is sub-optimal.

5.2 FLAPPY BIRD

Since this is a discrete action space problem, we use the RL network DDQN (see Section 3). DDQN-
AP variants and DDQN network architectures and hyper parameter settings are provided in the

8

Under review as a conference paper at ICLR 2019

Appendix. We use the open source pygame version of Flappy Bird8 for evaluation. The goal here is to
make a bird learn to fly and navigate through gaps between pipes (see Figure 4(b) in Appendix), where
the allowed actions are {flap, no flap}. The flap action causes an increase in upward acceleration and
not flap makes the bird fall downward due to gravity.

AP Functions. Analyzing the Flappy bird game setting, we observed that whenever the bird flaps, it
accelerates upward by 9 pixels and if it does not flap it accelerates downward by 1 pixel. An optimal
solution for the game is when the expected trajectory of the bird follows the midway of the pipe gap.
To achieve this and make each move safer (less prone to crashing the pipe), the bird should accelerate
downward by some steps before the next flap. Thus, if the bird is above the next pipe gap center line,
a flap increases the chance of hitting the upper pipe compared to that when below the gap center line.
Also, if the bird is below the top surface of next lower pipe, not flapping causes the bird to fall down
and reduces the possibility of reaching to the next pipe gap on the next flap without hitting the lower
pipe. Based on this observation, a type-2 AP function for the game can be formulated as follows:

Let c be the horizontal line that passes through the mid point of the next pipe gap and δtc be the
vertical distance of the agent (bird) from c at state st. If δtc > 0, the bird lies above the gap center line
c and vice versa. Also, let l be the horizontal line that passes through the next lower pipe Y coordinate
(i.e., Y-coordinate of next gap’s bottom left point) and δtl be the vertical distance of the agent (bird)
from l at state st. If δtl > 0, the bird lies above the lower pipe top surface line l and vice versa. Then
a type-2 AP function can be defined as:

f2(at, st) =

{
0 if C1 or C2

1 Otherwise
(7)

where C1={δtc > 0, at = “flap”} and C2 = {δtl < 0, at = “noflap”}. C1 says that when the bird
is above c, performing action “flap” that increases vertical acceleration (causing the bird move further
up) is non-permissible. Similarly, when the bird is below l, performing “no flap” results in the bird to
move further down and so is non-permissible (C2). Here whether an action at satisfies any condition
in {C1, C2} can be determined at st.Thus, f2 in equation 7 indicates type 2 permissibility.

However, even if the bird is above l, repeated “no flap” action can cause the bird to hit surface of
lower pipe specially when the bird is within the pipe gap. And only when the bird crashes at st+1, we
can conclude that “no flap” in st was non permissible. Thus, we introduce a type 1 AP function (see
Section 4.1) as follows:

f1(at, st|st+1) =

{
0 if C3

1 Otherwise
(8)

where C3={δtl > 0, at = “noflap”, st+1 = crash}. C3 indicates whether the bird has crashed to
lower pipe top surface in state st+1 due to “no flap” in st. Thus, a new and stronger AP function
(AP1+AP2) can be designed that combines f1 and f2 involving C1, C2 and C3 which covers all our
action non permissibilty cases for the Flappy bird game.

Compared Algorithms. We compare DDQN-AP (AP1 and AP2) models below with the original
DDQN algorithm (the baseline, without any action selection guidance).

DDQN-AP1. DDQN-AP1 is an extension of DDQN that uses only f1 (equation 8). Permissibility
guidance for this version is very week as non-permissible experiences are only accumulated in the
buffer when the bird crashes the lower pipe top surface, which are not many. Thus, this version does
not result in significant improvement in speedup. Its results are not included in Table 2.

DDQN-AP2. DDQN-AP2 is an extension of DDQN that applies the type 2 AP function f2 (equation
7). This is a much stronger DDQN-AP variant compared to DDQN-AP1.

DDQN-(AP1+AP2). Version of DDQN where we combine our DDQN-AP1 (type 1 AP, f1 in
equation 8) and DDQN-AP2 (type 2 AP, f2 in equation 7) to give DDPG-(AP1+AP2). Here, we
learn the AP predictor to guide the learning of RL model, and use combined AP function involving
conditions C1, C2 and C3 to label the permissibility of an action taken.

Experimental Results. We trained DDQN-AP2, DDQN-(AP1+AP2) and DDQN for 200k steps with
ε-greedy strategy. We conducted two experiments, In the first experiment, we used 30k exploration
time steps and in the second experiment, we used 60k exploration time steps. 1000 initial observation

8github.com/yenchenlin/DeepLearningFlappyBird

9

Under review as a conference paper at ICLR 2019

Table 2: Average test scores over 50 games (episodes) of DDQN, DDQN-AP2 and DDQN-(AP1+AP2) on
hard difficulty level (pipe gap = 100) of the Flappy bird game. The 50 games consists of five test experiments
conducted with five different random seeds (10 games have been played in each test experiment by the model
trained on a given random seed).

training
steps

exploration steps = 30k exploration steps = 60k

DDQN DDQN-AP2 DDQN-
(AP1+AP2) DDQN DDQN-AP2 DDQN-

(AP1+AP2)
100k 20.96 55.22 165.4 1.68 49.98 44.48
150k 49.5 94.24 349.04 25.88 108.5 318.04
200k 80.62 148.8 663.74 77.14 181.06 827.42

steps were used in both cases. In both experiments, we observed drastic growth in reward during
training for both DDQN-AP2 and DDQN-(AP1+AP2) compared to that for DDQN. The learning
curves of DDQN and DDQN-AP variants for the 60k exploration experiments are shown and discussed
in Appendix. We also noted that AP predictor’s validation accuracy always stays above 90% during
training and stabilizes with an average of 97.8% (discussed more in Appendix).

Next, we evaluate the performance of the trained DDQN-AP2, DDQN-(AP1+AP2) and DDQN in
terms of the average test score achieved by each algorithm over 50 test games (episodes). Table 2
shows the test performance of the said algorithms recorded after 100k, 150k and 200k training steps.
We see that DDQN-AP2 performs significantly better than DDQN (baseline) and DDPG-(AP1+AP2)
outperforms them both by a large margin. Note that the average scores for all three algorithms
for 100k and 150k training steps are higher for the 30k exploration steps experiment compared
to the 60k exploration steps one. This is because with only 30k exploration steps, the algorithms
gets a longer training (post-exploration) phase for the network than with 60k exploration steps. For
example, considering the 150k training steps evaluation, the learning phase has 120k steps for the
30k exploration steps experiment but only 90k steps for the 60k exploration steps one. However, at
the 200k training step, DDQN-AP2, DDQN-(AP1+AP2) in the 60k exploration steps experiment
performs significantly better than that for the 30k exploration steps one as the sufficiently longer
exploration phase introduces more stability in learning and assists AP based guidance in accelerating
the learning process in post-exploration/training phase.

6 DISCUSSION AND FUTURE WORK

This work deals with a class of RL problems with the SAP property. Examples of this class of
problems primarily include robot navigation problems, planning for solving a task, some games, etc.
For such a problem, it is often not hard to specify an AP function with expert’s domain knowledge.
However, by no means do we claim that the SAP property is applicable to all RL problems. Some
RL problems don’t have the SAP property or it is hard to specify AP functions for them (e.g.,
environments with high dimensional action space like humanoid Brockman et al. (2016)). We should
note that this work does not focus on designing procedures to identify AP functions as AP functions
depend on specific application and expert’s knowledge. Also, it does not require the user to provide an
“optimal AP function” as several AP functions can usually be designed for a given problem. This work
mainly aims to provide a framework to guide the existing Deep RL algorithms when a fairly good
AP function can be designed for an environment. In the future, we plan to extend our framework to
multi-dimensional continuous and discrete action spaces and apply it to other practical applications.

7 CONCLUSION

This paper proposes an novel property, called state-action permissibilty (SAP), for improving the
RL training efficiency in problems with this property. To leverage this property, we proposed two
types of action permissibility (AP1 and AP2) to help DRL algorithms select promising actions to
speed up training. This is analogous to human RL learning in which we always smartly choose
permissible actions based on our prior knowledge rather than randomly/blindly try all possibilities.
Our experiments showed that the proposed method is highly effective.

REFERENCES

David Abel, David Ellis Hershkowitz, Gabriel Barth-Maron, Stephen Brawner, Kevin O’Farrell,
James MacGlashan, and Stefanie Tellex. Goal-based action priors. In Twenty-Fifth International
Conference on Automated Planning and Scheduling, 2015.

10

Under review as a conference paper at ICLR 2019

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A brief
survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

John Asmuth, Michael L Littman, and Robert Zinkov. Potential-based shaping in model-based
reinforcement learning. In AAAI, pp. 604–609, 2008.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, pp.
1726–1734, 2017.

Aijun Bai and Stuart Russell. Efficient reinforcement learning with hierarchies of machines by
leveraging internal transitions. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI, pp. 19–25, 2017.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In Advances in Neural Information Processing
Systems, pp. 908–918, 2017.

Reinaldo AC Bianchi, Carlos HC Ribeiro, and Anna HR Costa. Heuristically accelerated q–learning: a
new approach to speed up reinforcement learning. In Brazilian Symposium on Artificial Intelligence,
pp. 245–254. Springer, 2004.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter
Abbeel. Model-based reinforcement learning via meta-policy optimization. arXiv preprint
arXiv:1809.05214, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2̂: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Gabriel Dulac-Arnold, Ludovic Denoyer, Philippe Preux, and Patrick Gallinari. Fast reinforcement
learning with large action sets using error-correcting output codes for mdp factorization. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 180–194.
Springer, 2012.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. ICML, 2017.

Sertan Girgin, Faruk Polat, and Reda Alhajj. Improving reinforcement learning by using sequence
trees. Machine Learning, 81(3):283–331, 2010.

Rushikesh Kamalapurkar, Patrick Walters, and Warren E Dixon. Model-based reinforcement learning
for approximate optimal regulation. Automatica, 64:94–104, 2016.

Nate Kohl and Peter Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion.
In IEEE International Conference on Robotics and Automation, 2004., volume 3, pp. 2619–2624.
IEEE, 2004.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances in
neural information processing systems, pp. 3675–3683, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. ICLR,
2016.

Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi. Simulated car racing championship:
Competition software manual. arXiv preprint arXiv:1304.1672, 2013.

11

Under review as a conference paper at ICLR 2019

Anuj Mahajan and Theja Tulabandhula. Symmetry detection and exploitation for function approxi-
mation in deep rl. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, pp. 1619–1621. International Foundation for Autonomous Agents and Multiagent Systems,
2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynam-
ics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 7559–7566. IEEE, 2018.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcom-
ing exploration in reinforcement learning with demonstrations. arXiv preprint arXiv:1709.10089,
2017.

Kumpati S Narendra, Yu Wang, and Snehasis Mukhopadhay. Fast reinforcement learning using
multiple models. In Decision and Control (CDC), 2016 IEEE 55th Conference on, pp. 7183–7188.
IEEE, 2016.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, pp. 3003–3011, 2013.

Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. End-to-end deep
reinforcement learning for lane keeping assist. arXiv preprint arXiv:1612.04340, 2016.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driving. Electronic Imaging, 2017(19):70–76, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
http://incompleteideas.net/book/bookdraft2017nov5.pdf, 2017.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning.
In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos, Charles
Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763, 2016.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 1992.

Huasen Wu, Xueying Guo, and Xin Liu. Adaptive exploration-exploitation tradeoff for opportunistic
bandits. arXiv preprint arXiv:1709.04004, 2017.

APPENDIX

THE TORCS SIMULATOR

The Open Racing Car Simulator (TORCS) provides us with graphics and physics engines for
Simulated Car Racing (SCR). The availability of the diverse set of road tracks with varying curvatures,
landscapes and slopes in TORCS makes it an appropriate choice for model evaluation in different
driving scenarios. It also allows us to play with different car control parameters like steering angle,
velocity, acceleration, brakes, etc. More details can be found at https://www.cs.bgu.ac.
il/˜yakobis/files/patch_manual.pdf. For our lane keeping (steering control) problem
setting, we identified and used five sensor variables that are sufficient for learning the steering control
action as presented in Table 3. The trackPos parameter in Table 3 has been used as a parameter for

12

https://www.cs.bgu.ac.il/~yakobis/files/patch_manual.pdf
https://www.cs.bgu.ac.il/~yakobis/files/patch_manual.pdf

Under review as a conference paper at ICLR 2019

(a) (b)
Figure 4: Snapshot of (a) Torcs simulator (b) Flappy Bird game.

designing the AP1 function in our concerned lane keeping task (see Equation 5 in the paper). Figure
4(a) shows a snapshot of TORCS simulator.

Figure 5 shows the five tracks (along with their lengths) used for evaluation. These tracks are diverse
in landscapes and slopes. The Wheel-2 track is used for training the model and the rest four tracks
are used for testing.

Wheel-2 Spring E-road CG Track 3 Oleth Ross
(6205.46m) (22129.77m) (3260.43m) (2843.10m) (6282.81m)

Figure 5: Various road tracks (with track length) used in our experiments.

LANE KEEPING: RL MODEL IMPLEMENTATION DETAILS

Network Architecture. For our lane keeping (steering control) task, the Actor network is a feed
forward (fully connected) network with 128 units in layer-1 and 256 units in layer-2 followed by the
action projection (output) layer. In the Critic network, we first learn state representation s using two
fully connected layers of 128 and 256 units. We also learn a representation of the action a chosen by
Actor at state s with one fully connected layer of 256 units. Then, we concatenate s and a and learn a
combined representation with a fully connected layer of 256 units before projecting it into Q-value
(the output layer) for the state s and given the action a in s. This implementation of the Actor and
Critic networks is inspired by a related open-source implementations available on Web9.

The network architecture for AP1 predictor is identical to that of Critic except that instead of Q-value,
the combined representation of s and a is projected into two class (binary classification) output
through a softmax projection (classification in this case) layer. We train both networks with Adam
optimizer.

Hyper-parameter Settings. The important empirically chosen parameters of the model are: learning
rates for Actor is set as 0.0001, Critic as 0.001 and AP predictor as 0.001, the regularization parameter
λ as 0.01, δacc = 0.7, discount factor for Critic updates as 0.9, target network update parameter as
0.001, αe as 0.5 and αtr as 0.9, replay buffer size as 100k, knowledge buffer size as 10k (stores
tuples in 9:1 ratio as training and validation examples), batch size as 128, sample size as 128 used
for AP1-based guidance. to is set as 200 and te is set as 1200 for both 15k training and 3k training
experiments. Sample size for building the dataset for training AP1 predictor at each step is set as
2k and validation sample dataset size as 200 which is used to compute validation accuracy of AP1
predictor at each step of RL training. We employed the popularly used Ornstein-Uhlenbeck process
for noise-based exploration with σ = 0.3 and θ = 0.15 following standard settings for DDPG
exploration.

FLAPPY BIRD: RL MODEL IMPLEMENTATION DETAILS

Figure 4(b) shows a snapshot of the Flappy Bird game for textithard difficulty level.

9github.com/yanpanlau/DDPG-Keras-Torcs

13

Under review as a conference paper at ICLR 2019

Table 3: TORCS state and action variables along with their descriptions used in our experiments.
State Variables

Name Range (unit) Description
angle [-π, π] (rad) Angle between the car direction and the direction of the track center axis.
trackPos (-∞,+∞) Distance between the car and the track center axis. The value is normalized w.r.t

to the track width: it is 0 when car is on the axis, -1 when the car is on the right
edge of the track and +1 when it is on the left edge of the car. Values greater
than 1 or smaller than -1 mean that the car is out of track.

speedX (-∞,+∞)(km/h) Speed of the car along its longitudinal axis.
speedY (-∞,+∞)(km/h) Speed of the car along its transverse axis .
speedZ (-∞,+∞)(km/h) Speed of the car along its Z-axis

Action
Steering [-1, 1] Steering value: -1 and +1 means respectively full right and left, that corresponds

to an angle of 0.366519 rad.

Network Architecture. We use deep convolution network for constructing the double DQN (DDQN)
following (Hasselt et al. 2015) and an existing open-source implementations available on Web10. The
input to the double DQN network is a 80x80x4 tensor containing a rescaled, and gray-scale, version
of the last four frames. The first convolution layer convolves the input with 32 filters of size 8 (stride
4), the second layer has 64 filters of size 4 (stride 2), the final convolution layer has 64 filters of
size 3 (stride 1). In between the first and second convolution layer, we apply a max pooling layer of
size 2 (stride 2) with ’SAME’ padding. The representation obtained in the third convolution layer
is flattened and fed to a fully-connected (FC) hidden layer of 512 units to get a representation (say,
hidden representation hs) which is then projected into Q-value (output layer) of size 2 (there are two
possible actions for the Flappy bird game, flapping or not flapping).

The network architecture of the AP1 predictor is built as a shared network (shared weights) with that
of DDQN upto the layer learning the state representation hfc1. We use a FC layer of 256 units to learn
representation of an action a. Then, we concatenate two representations (i.e., hfc1 and representation
of a) and learn a combined representation of the concatenated vector using another FC layer of 256
units. Finally, the combined representation is projected into two class (binary classification) output
through a softmax projection layer. We train both DDQN and AP1 predictor networks with Adam
optimizer.

Note that, due to the shared representation learning of state s, the parameters of the shared network
are trained with both AP1 predictor loss (equation 6) and RL loss (equation 2). The AP1 predictor loss
being a supervised learning loss function with fixed target labels (unlike estimated target Q values)
accelerates the training. For the lane keeping task, the network architecture being much simpler,
we can train two networks (RL and AP1 predictor) quickly without the need for learning a shared
representation of the state variable.

Although DDQN-AP2 does not require an AP predictor, we observed performance improvement
when we trained DDQN-AP2 parameters with cross entropy loss [like in DDQN-(AP1+AP2)] over
examples annotated by type-2 AP function apart from the RL loss. Note that, as DDQN-AP2 performs
non permissible actions with (1-α)% probability, we can use type-2 AP function to label the executed
actions and populate a knowledge buffer just like in case of AP1 based guidance. The results reported
in Table 2 corresponds to this version of DDQN-AP2.

Hyper-parameter Settings. For Flappy bird, the empirically chosen hyper-parameters are: learning
rates for DDQN as 5e-6 and AP predictor as 0.0001, regularization parameter λ as 0.01, δacc = 0.95,
discount factor as 0.95, target network update parameter as 0.001, αe as 0.3 and αtr as 0.8, replay
buffer size as 50k, knowledge buffer size as 25k (stores tuples in 9:1 ratio as training and validation
examples), batch size for training as 128, sample size as 2 used for AP-based guidance (as there
are two possible actions for Flappy bird), to as 1000, te as 30k for 30k exploration steps training
experiments (see Table 2), te as 60k for 60k exploration steps training experiments, sample size for
building dataset for training AP1 predictor at each step as 2k, and validation sample dataset size as
200 which is used to compute validation accuracy of AP1 predictor at each step of the training.

For training of DDQN and DDQN-AP, we use ε-greedy strategy for the action space exploration.
For 30k annealing steps training experiments, we set initial ε as 1.0, final ε as 0.01 and annealing

10github.com/yenchenlin/DeepLearningFlappyBird

14

Under review as a conference paper at ICLR 2019

steps as 30k with observation phase of 1k steps. For 60k annealing steps training experiments, we set
annealing steps as 60k keeping all other parameters same as that for 30k.

Accelarated Training of DDQN-AP variants for Flappy Bird. The training of AP variants shows
drastic improvement over the baseline algorithm, when the reward for a non-permissible transition is
less than that for permissible one. In lane keeping task, the (continuous valued) reward function in
equation 4 ensures that any non-permissible action (labeled by the AP1 function in equation 5) will
always have less reward than that for a permissible one in a state.

However, unlike lane keeping, for Flappy bird, often permissible and non-permissible actions (labeled
by the AP2 functions in equation 7) receives the same reward of 0.1 from the environment. This is
because, in the game, whenever the bird crosses a pipe, it gets 1.0 immediate reward; if it crashes, it
gets -1.0 immediate reward and otherwise, if it remains alive, it gets 0.1 always. Due to such (discrete)
reward function for the game, even if the AP1 predictor and AP functions (including type 1 and
type 2) can differentiate between good and bad moves during training, the RL model doesn’t learn
the knowledge online. Rather, it slowly figures it out using Bellman equation in a delayed learning
process. This basically diminishes the advantage of using AP guidance.

To alleviate this problem, we introduced the idea of instant policy rectification, i.e., whenever the bird
executes a non-permissible action at and receives a non-permissible experience, it assumes that it
has (virtually) crashed. Thus, for a non-permissible experience, the bird (virtually) ends the episode
with an immediate reward of -1.0 and end of episode flag being true. Thus, for all non-permissible
experiences stored in the replay buffer, we train the DDQN-AP variants with target Q value of -1.0
(i.e. the target Q value for a real experience causing crash) and for all permissible experiences in
replay buffer, we follow the traditional Bellman equation and target Q network to estimate the target
Q value. This drastically accelerated the training of DDQN-AP variants.

ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSIONS

Hyper-parameter Tuning for AP-Guided Exploration. The parameters, to and te are adopted
from existing RL methods, which denote the number of steps in the observation phase (during which
epsilon is set as 1.0) and the number of steps in the exploration phase (during which epsilon value is
annealed from 1.0 to a low value, here 0.01) respectively.

The newly introduced parameters αe, αtr and δacc have their distinct objectives as follows: αe and
αtr are the values of alpha in exploration and post exploration (training) phase respectively and
control the degree by which agent listens to AP predictor. If we set αe = 0, it denotes the agent does
not utilize the permissibility knowledge at all during the exploration phase and so, the growth of
the learning curve will be slow compared to that for αe > 0. Generally, we keep 0 < αe ≤ 0.5 to
encourage more diverse exploration which also help in AP predictor training and quickly populates
non-permissible replay buffer. αtr is generally set 1 > αtr ≥ 0.5. High αtr indicates the agent will
more often listen to the AP predictor and thus, explore good actions more often than repeatedly
executing bad actions (non-permissible ones).

δacc helps in measuring the validation performance of the AP predictor and has two objectives: (1) It
sets an accuracy threshold on the performance of the AP predictor so that if the predictors validation
accuracy is < δacc, it indicates the learned model is not reliable and needs more training; (2) if
validation accuracy is ≥ δacc, then the learned model is considered reliable to assist the agent in
exploration. Hence, after training for an initial number of steps, if the validation accuracy stays
≥ δacc, we can postpone the training of AP predictor until its validation accuracy at a given step falls
below δacc. We also found that setting these hyper-parameters does not require very exhaustive fine
tuning and they are robust to agent’s performance (considering minor changes in their tuned values).

Learning curves. Figure 6 shows the average number of episodes consumed by each algorithm in
15k training steps (or state transitions) noted over 5 training experiments with various random seeds.
If an algorithm consumes less number of episodes, it means the algorithm learns quicker to keep
the car moving without going out of track. From Figure 6, we observe that DDPG took more than
100 episodes (on avg.) to learn to drive for a considerable amount of distance. However, the sharp
falls in the average reward and initiation of a new episode indicate that the learning is yet not stable.
Among all, DDPG-AP1 and DDPG-(AP1+AP2) learn very quickly, and as their curves do not fall
down, which indicates the car has never gone out of track after 20th (for DDPG-(AP1+AP2)) and

15

Under review as a conference paper at ICLR 2019

Figure 6: Avg. reward per episode for DDPG and DDPG-AP variants on lane keeping task over five
training experiments with different random seeds.

Figure 7: Avg. reward over past 100 episodes for DDQN and DDQN-AP variants on Flappy bird over
five training experiments (60k exploration phase) with different random seeds.

26th (for DDPG-AP1) episodes on average. Overall, DDPG-(AP1+AP2) not only learns quicker but
also achieves best performance in terms of per episode reward and in test runs (see Table 1).

Figure 7 shows the average reward over past 100 training episodes (or games) for DDQN and DDQN-
AP variants and episodes consumed by each algorithm in 200k training steps (state transitions).
From Figure 7, we see that both DDQN-AP2 and DDQN-(AP1+AP2) trains much more rapidly
than the baseline DDQN which is reflected in the escalating growth of the avg. reward curve
and avoids collision with pipes for a longer period of time, consuming less episodes compared to
DDQN. Although both DDQN-AP2 and DDQN-(AP1+AP2) learns rapidly, the learning of DDQN-
(AP1+AP2) is more stable due to the incorporation of type-1 AP function (eqn. 8) in learning,
covering all possible non-permissibility cases, which is reflected in its test performance (see Table 2).

(a) (b)
Figure 8: Validation accuracy of AP predictor/classifier over training
steps for (a) lane keeping task and (b) flappy bird (corresponding to
the 60k exploration training experiment).

Validation Performance
of AP1 Predictor. Figure 8
shows the validation accuracy
of AP1 classifier(s) for initial
no. of training steps. As we
can see in both 8(a) and 8(b),
the validation accuracy of
the AP classifiers increases
over time with the incoming
examples labeled by the
corresponding AP function
and then, gradually saturates to
fairly high accuracy, denoting
the learning has becomes
stable. This suggests that, we
do not need to train the predictor for all steps during whole training period. During RL training, we
postpone the training of the predictor, whenever the validation accuracy is above a threshold (δacc)
and resume its training whenever the validation accuracy falls below the threshold util it again goes
above δacc. Here, δacc is considered as the threshold for predictor’s reliability.

16

	Introduction
	Related Work
	Background
	Proposed Technique
	State-Action Permissibility
	Learning Type 1 Action Premissibility (AP1) Predictor
	Guiding RL Model with AP1 Predictor

	Experimental Evaluation
	Lane Keeping Task
	Flappy Bird

	Discussion and Future Work
	Conclusion

