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ABSTRACT

We propose to improve trust region policy search with normalizing flows policy.
We illustrate that when the trust region is constructed by KL divergence constraint,
normalizing flows policy can generate samples far from the ’center’ of the previous
policy iterate, which potentially enables better exploration and helps avoid bad
local optima. We show that normalizing flows policy significantly improves upon
factorized Gaussian policy baseline, with both TRPO and ACKTR, especially on
tasks with complex dynamics such as Humanoid.

1 INTRODUCTION

In on-policy optimization, vanilla policy gradient algorithms suffer from occasional updates with
large step size, which lead to collecting bad samples that the policy cannot recover from (Schulman
et al., 2015). Motivated to overcome such instability, Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015) constraints the KL divergence between consecutive policies to achieve much
more stable updates. However, with factorized Gaussian policy, such KL divergence constraint can
put a very stringent restriction on the new policy, making it either hard to bypass locally optimal
solutions or slow down the learning process.

Can we improve the learning process of trust region policy search by using a more expressive policy
class? Intuitively, a more expressive policy class has more capacity to represent complex distributions
and the KL constraint may not impose very strict restriction on the sample space. Though prior works
(Haarnoja et al., 2017; 2018b;a) have proposed to use implicit generative models as policies, their
focus is on off-policy learning. In this work, we show how normalizing flows can be combined with
on-policy learning and boost the performance of trust region policy optimization.

The structure of our paper is as follows. In Section 2 and 3, we provide backgrounds on TRPO and
related work. In Section 4, we introduce normalizing flows for control and analyze why KL constraint
may not impose a constraint on the sampled action space. On illustrative examples, we show that
normalizing flows policy can learn policies with correlated actions and multi-modal policies, which
allows for potentially more efficient exploration. In Section 5, we show by comprehensive experiment
results that normalizing flows significantly outperforms baseline policy classes when combined with
trust region policy search algorithms.

2 BACKGROUND

2.1 MARKOV DECISION PROCESS

In the standard formulation of Markov Decision Process (MDP), at time step t ≥ 0, an agent is in
state st ∈ S, takes an action at ∈ A, receives an instant reward rt = r(st, at) ∈ R and transitions
to a next state st+1 ∼ p(·|st, at) ∈ S. Let π : S 7→ P (A) be a policy, where P (A) is a set of
distribution over the action space A. The discounted cumulative reward under policy π is

J(π) = Eπ
[ ∞∑
t=0

γtrt
]
, (1)

where γ ∈ [0, 1) is a discount factor. The objective of RL is to search for a policy π that achieves the
maximum cumulative reward π∗ = arg maxπ J(π). For convenience, we define action value function
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Qπ(s, a) = Eπ
[
J(π)|s0 = s, a0 = a

]
and value function V π(s) = Eπ

[
J(π)|s0 = s, a0 ∼ π(·|s0)

]
.

We also define the advantage function Aπ(s, a) = Qπ(s, a)− V π(s).

2.2 POLICY OPTIMIZATION

One way to search for π∗ is through direct policy search within a given policy class πθ, θ ∈ Θ
where Θ is the parameter space for the policy parameter. We can update the paramter θ with policy
gradient ascent, by computing ∇θJ(πθ) = Eπθ

[∑∞
t=0A

πθ (st, at)∇θ log πθ(at|st)
]
, then updating

θnew ← θ + α∇θJ(πθ) for some learning rate α > 0. Alternatively, the update can be formulated as
trust region optimization problem

max
θnew

Eπθ
[πθnew(at|st)
πθ(at|st)

Aπθ (st, at)
]
,

||θnew − θ||2 ≤ ε, (2)

for some ε > 0. If we do a linear approximation of the objective in (2), Eπθ
[πθnew (at|st)
πθ(at|st) A

πθ (st, at)
]
≈

Eπθ
[
Aπθ (st, at)

]
+∇θJ(πθ)

T (θnew − θ), we recover the gradient update by properly choosing ε.

2.3 TRUST REGION POLICY OPTIMIZATION

Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) applies information theoretic
constraints instead of Euclidean constraints on θnew and θ to better capture the geometry on the
parameter space induced by the policy. In particular, consider the following trust region formulation

max
θnew

Eπθ
[πθnew(at|st)
πθ(at|st)

Aπθ (st, at)
]
,

Es
[
KL[πθ(·|s)||πθnew(·|s)]

]
≤ ε, (3)

where Es
[
·
]

is w.r.t. the state visit distribution induced by πθ. The trust region enforced by the
KL divergence entails that the update according to (3) optimizes a lower bound of J(πθ), so as
to avoid accidentally taking large steps that irreversibly degrade the policy performance during
training as in vanilla policy gradient (2) (Schulman et al., 2015). For a practical algorithm, the
trust region constraint is approximated by a second order expansion Es

[
KL[πθ(·|s)||πθnew(·|s)]

]
≈

(θnew − θ)T Ĥ(θnew − θ) ≤ ε where Ĥ = ∂2

∂θ2Eπθ
[
KL[πθ(·|s)||πθnew(·|s)]

]
is the expected Fisher

information matrix. If we also linearly approximate the objective, the trust region formulation turns
into a quadratic programming

max
θnew
∇θJ(πθ)

T (θnew − θ),

(θnew − θ)T Ĥ(θnew − θ) ≤ ε. (4)

The optimal solution to (4) is ∝ Ĥ−1∇θJ(πθ). In cases where πθ is parameterized by a neural
network with a large number of parameters, Ĥ−1 is formidable to compute. Instead, (Schulman et al.,
2015) proposes to approximate Ĥ−1∇θJ(πθ) by conjugate gradient (CG) descent (Wright & Nocedal,
1999) since it only requires relatively cheap Hessian-vector products. Given the approximated
gradient direction ĝ ≈ Ĥ−1∇θJ(πθ) obtained from CG, the KL constraint is enforced by setting
∆θ =

√
ε

ĝT Ĥĝ
ĝ. Finally a line search is carried out to determine a scaler s by enforcing the exact KL

constraint Eπθ
[
KL[πθ+s∆θ||πθ]

]
≤ ε and finally θnew ← θ + s∆θ.

ACKTR ACKTR (Wu et al.) proposes to replace the above CG descent of TRPO by Kronecker-
factored approximation (Martens & Grosse, 2015) when computing the inverse of Fisher information
matrix Ĥ−1. This approximation is more stable than CG descent and yields performance gain over
conventional TRPO.

3 RELATED WORK

Most on-policy optimization algorithms are based on policy gradient theorem for function approxima-
tion (Sutton et al., 2000). Vanilla policy gradient algorithms are typically more stable than off-policy
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learning due to their optimization based formulation, but can suffer from instability as a result of occa-
sionally large step sizes. In policy based algorithms, updating policies with very large step sizes can
be catastrophic to the learning process since the policy will collect bad samples and potentially never
recover (Schulman et al., 2015). Natural policy gradient (Kakade, 2002) applies natural gradient for
the policy updates, which accounts for the information geometry induced by the policy and makes the
update more stable. More recently, Trust region policy optimization (Schulman et al., 2015) derives a
tractable trust region policy search algorithm based on the lower bound formulation of (Kakade &
Langford, 2002) and achieves promising results on simulated locomotion tasks. The trust region is
approximated by the Fisher information matrix, whose inverse is further approximated by conjugate
gradient iterations (Wright & Nocedal, 1999). To further improve the scalability and numerical
performance of TRPO, ACKTR (Wu et al.) applies Kronecker-factored approximation (Martens &
Grosse, 2015) to invert the Fisher information matrix. Orthogonal to prior works, we aim to improve
TRPO with a more expressive policy representation, and we show significant improvements on both
TRPO and ACKTR. We limit our attention to (Dinh et al., 2014) while other normalizing flows
architectures might provide additional benefits (Kingma & Dhariwal, 2018).

A number of recent prior works have proposed to boost RL algorithms with expressive policy classes.
For off-policy learning, Soft Q-learning (SQL) (Haarnoja et al., 2017) takes an implicit generative
model as the policy and trains the policy by Stein variational gradient (Liu & Wang, 2016). Similarly,
(Tang & Agrawal, 2018) applies an implicit policy along with a discriminator to compute entropy
regularized gradient for the implicit distribution. Latent space policy (Haarnoja et al., 2018a) applies
normalizing flows as the policy and displays promising results on hierarchical tasks. Soft Actor Critic
(SAC) applies a mixture of Gaussian as the policy. So far, expressive policy classes have shown
improvement over baselines in the domain of off-policy learning. However, it is not clear whether
such benefits come from an enriched policy class or a novel algorithmic procedure. In this work, we
fix the trust region search algorithms and study the net effect of expressive policy classes.

By definition, normalizing flows stacks layers of invertible transformations to map a source noise into
target samples (Dinh et al., 2016; Rezende & Mohamed, 2015). Through invertible transformations,
normalizing flows retains tractable probability densities while being very expressive. Normalizing
flows is widely applied in probabilistic generative modeling, such as variational inference (Rezende
& Mohamed, 2015). Previous works have proposed to represent policies using normalizing flows in
the context of off-policy learning (Haarnoja et al., 2018a). Complement to prior works, we show that
normalizing flows can significantly boost the performance of on-policy optimization.

4 NORMALIZING FLOWS POLICY FOR ON-POLICY OPTIMIZATION

4.1 NORMALIZING FLOWS FOR CONTROL

We construct a stochastic policy with normalizing flows. Normalizing flows (Rezende & Mohamed,
2015; Dinh et al., 2016) have been applied in variational inference and probabilistic modeling to
represent complex distributions. In general, consider transforming a source noise ε ∼ ρ0(·) by a
series of invertible nonlinear functions gθi(·), 1 ≤ i ≤ K each with parameter θi, to output a target
sample x,

x = gθK ◦ gθK−1
◦ ... ◦ gθ2 ◦ gθ1(ε). (5)

Let Σi be the inverse of the Jacobian matrix of gθ(·), then the log density of x is computed by change
of variables formula,

log p(x) = log p(ε) +

K∑
i=1

log det(Σi). (6)

For a general invertible transformation gθi(·), computing det(Σi) is expensive. We follow the
architecture of (Dinh et al., 2014) to ensure that det(Σi) is computed in linear time. To combine state
information, we embed state s by another neural network Lθs(·) with parameter θs and output a state
vector Lθs(s) with the same dimension as ε. We can then insert the state vector between any two
layers of (5) to make the distribution conditional on state s. In our implementation, we insert the state
vector after the first transformation (we detail our architecture design in the Appendix B).

a = gθK ◦ gθK−1
◦ ... ◦ gθ2 ◦ (Lθs(s) + gθ1(ε)). (7)
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Though the additive form of Lθs(s) and gθ1(ε) may in theory limit the capacity of the model, in
experiments below we show that the resulting policy is still very expressive. For simplicity, we denote
the above transformation (7) as a = fθ(s, ε) with parameter θ = {θs, θi, 1 ≤ i ≤ K}. It is obvious
that the transformation a = fθ(s, ε) is still invertible between a and ε, which is critical for computing
log πθ(a|s) according to (6). Such representations build complex policy distributions with explicit
probability density πθ(·|s), and hence entail training using score function gradient estimators.

In on-policy optimizations, it is necessary to compute gradients of the entropy ∇θH
[
πθ(·|s)

]
,

either for computing Hessian vector product (Schulman et al., 2015) or for entropy regulariza-
tion (Schulman et al., 2015; 2017; Mnih et al., 2016). For normalizing flows there is no ana-
lytic form for entropy, we use samples to estimate entropy by re-parameterization, H

[
πθ(·|s)

]
=

Ea∼πθ(·|s)
[
− log πθ(a|s)

]
= Eε∼ρ0(·)

[
− log πθ(fθ(s, ε)|s)

]
. The gradient of the entropy can

be easily computed by a pathwise gradient and easily implemented using back-propagation
∇θH

[
πθ(·|s)

]
= Eε∼ρ0(·)

[
−∇θ log πθ(fθ(s, ε)|s)

]
.

4.2 NORMALIZING FLOWS POLICY VS. GAUSSIAN POLICY UNDER KL CONSTRAINT

We analyze the properties of normalizing flows policy vs. Gaussian policy under the KL constraints of
trust region policy search. As a low dimensional toy example, assume we have a factorized Gaussian
in R2 with zero mean and diagonal covariance I · σ2 where σ2 = 0.12. Let π̂o be the empirical
distribution formed by samples drawn from this Gaussian. We can define a KL ball centered on
π̂o as all distributions such that a KL constraint is satisfied B(π̂o, ε) = {π : KL[π̂o||π] ≤ ε}. We
study a typical normalizing flows distribution and factorized Gaussian distribution on the boundary
of such a KL ball (such that KL[π̂o||π] = ε). We find such distributions by randomly initializing
the distribution parameters then running gradient updates until KL[π̂o||π]} ≈ ε. In Figure 1 (a) we
show the log probability contour of such a factorized Gaussian vs. normalizing flows, and in (b)
we show their samples (blue are samples from the distributions on the boundary of the KL ball and
red are samples to generate π̂o). As seen from both the contour and the sample plot, though both
distributions have infinite support, normalizing flows distribution has much larger variance than the
factorized Gaussian, which also leads to a much larger effective support, even though both satisfy the
KL constraint to the origin distribution KL[π̂o||π] = ε.

In Figure 1 (c), we show the samples drawn from factorized Gaussian and normalizing flows
distribution with fixed levels of entropy H . To obtain distributions with fixed entropy, we randomly
initialize the distribution parameters with H[π] as the entropy then obtain the desired level of entropy
by minimizing (H[π] − H)2 until convergence. As seen from the sample plot (red for Gaussian
and blue for normalizing flows), under the same entropy level, normalizing flows distribution has
significantly larger spread than factorized Gaussian.

As analyzed above, under similar entropy level and KL constraint, normalizing flows tends to have a
probability density function that decays at a much slower rate than Gaussian from the ’center’, which
produces a much wider effective support on the sample space. In practice, this usually produces
much better exploration and helps the agent to bypass bad locally optimal solutions. For a factorized
Gaussian distribution, enforcing a KL constraint does not allow the new distribution to generate
samples that are too far from the ’center’ of the old distribution. On the other hand, for a normalizing
flows distribution, the KL constraint does not hinder the new distribution to have a very distinct
support from the reference distribution (as suggested in Figure 1), hence allowing for more efficient
exploration.

4.3 EXPRESSIVENESS OF NORMALIZING FLOWS POLICY

We illustrate two potential strengths of the normalizing flows policy: learning correlated actions
and learning multi-modal policy. First consider a 2D bandit problem where the action a ∈ [−1, 1]2

and r(a) = −aTΣ−1a for some positive semidefinite matrix Σ. In the context of conventional RL
objective J(π), the optimal policy is deterministic π∗ = [0, 0]T . However, in maximum entropy
RL (Haarnoja et al., 2017; 2018b) where the objective is J(π) + cH

[
π
]
, the optimal policy is

π∗ent ∝ exp( r(a)
c ), a Gaussian with Σ

c as the covariance matrix (red curves show the density contours).
In Figure 2 (a), we show the samples generated by various trained policies to see whether they manage
to learn the correlations between actions in the maximum entropy policy π∗ent. We find that factorized
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(a) KL ball: Contours (b) KL ball: Samples (c) Same entropy: Samples

Figure 1: Analyzing normalizing flows vs. Gaussian: (a)(b) Consider a 2D Gaussian distribution with zero
mean and factorized variance σ2 = 0.12. Samples from the Gaussian form an empirical distribution π̂o (red
dots in (b)) and define the KL ball B(π̂o, ε) = {π : KL[π̂o||π] ≤ ε} centered at π̂o. Find a typical normalizing
flows distribution and a Gaussian distribution at the boundary of B(π̂, 0.01) such that the constraint is tight.
(a) Contour of log probability of a normalizing flows distribution (right) vs. Gaussian distribution (left); (b)
Samples (blue dots) generated from normalizing flows distribution (right) and Gaussian distribution (left). (c)
Samples generated from a normalizing flows policy (blue) vs. Gaussian policy (red) with the same entropy H ,
left panel is H = −1.0 and right panel H = −4.0.

Gaussian cannot capture the correlations due to the factorized distribution. Though Gaussian mixtures
models (GMM) with K ≥ 2 components are more expressive than factorized Gaussian, all the modes
seem to collapse to the same location and suffer the same issue as factorized Gaussian. On the other
hand, normalizing flows policy is much more flexible and can fairly accurately capture the correlation
structure of π∗ent.

To illustrate multi-modality, consider again a 2D bandit problem (Figure 2 (b)) with reward r(a) =
maxi∈I{(a− µi)TΛ−i (a− µi)} where Λi, i ∈ I are diagonal matrices and µi, i ∈ I are modes of
the reward landscape. In our example we set |I| = 2 two modes and the reward contours are plotted
as red curves. Notice that GMM with varying K can still easily collapse to one of the two modes
while the normalizing flows policy generates samples that cover both modes.

To summarize the above two cases, since the maximum entropy objective J(π) + cH[π] =
−KL[π||π∗ent], the policy search problem is equivalent to a variational inference problem where
the variational distribution is π and the target distribution is π∗ent ∝ exp( r(a)

c ). Since normalizing
flows policy is a more expressive class of distribution than GMM and factorized Gaussian, we also
expect the approximation to the target distribution to be much better (Rezende & Mohamed, 2015).

The properties of normalizing flows illustrated in Section 4.2 and Section 4.3 potentially allow for
better exploration during training, and help bypass bad locally optimal solutions. For a more realistic
example, we illustrate such benefits with the locomotion task of Ant robot (Brockman et al., 2016).
In Figure 2 (c) we show the robot’s 2D center-of-mass trajectories generated by normalizing flows
policy (red) vs. Gaussian policy (blue) after training for 2 · 106 time steps. We observe that the
trajectories by normalizing flows policy are much more widespread, while trajectories of Gaussian
policy are quite concentrated at the initial position (the origin [0.0, 0.0]). Behaviorally, Gaussian
policy gets the robot to jump forward quickly, which achieves high immediate rewards but terminates
the episode prematurely (due to a termination condition of the task). On the other hand, normalizing
flows policy bypasses such locally optimal behavior by getting the robot to move forward in a fairly
slow but steady manner, even occasionally move in the opposite direction to what reward function
specifies (Details in the Appendix E).

5 EXPERIMENTS

In experiments we aim to address the following questions: (1) Do normalizing flows policies
outperform simple policies (e.g. factorized Gaussian baseline) with trust region search algorithms on
benchmark tasks? (2) How sensitive are normalizing flows policies to hyper-parameters compared to
Gaussian policies? To address (1), we compare normalizing flows policy against factorized Gaussian
and mixture of Gaussians policies on OpenAI gym MuJoCo (Brockman et al., 2016; Todorov, 2008),
rllab (Duan et al., 2016) and Roboschool Humanoid (Schulman et al., 2017) locomotion tasks as
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(a) Correlated Actions (b) Bimodal Rewards (c) Ant Trajectories

Figure 2: Expressiveness of normalizing flows policy: (a) Bandit problem with reward r(a) = −aT Σ−1a. The
maximum entropy optimal policy is a Gaussian distribution with Σ as its covariance (red contours). normalizing
flows policy (blue) can capture such covariance while Gaussian cannot (green). (b) Bandit problem with
multimodal reward (red contours the reward landscape). normalizing flows policy can capture the multimodality
(blue) while Gaussian cannot (green). (c) Trajectories of Ant robot. The trajectories of Gaussian policy center
at the initial position (the origin [0.0, 0.0]), while trajectories of normalizing flows policy are much more
widespread.

illustrated in Figure 8. We show that normalizing flows policy can fairly uniformly outperform
policies with simple distributions, especially on tasks with highly complex dynamics. We show
results for both TRPO and ACKTR. To address (2), we randomly sample hyper-parameters for both
normalizing flows policy and Gaussian policy, and compare their quantiles.

Implementation Details. As we aim to study the net effect of an expressive policy on trust region
policy search, we make minimal modification to the original TRPO/ACKTR algorithms during
implementations. For both algorithms, the policy entropy H

[
πθ(·|s)

]
is analytically computed when

πθ is factorized Gaussian, and is estimated by samples when πθ is GMM for K ≥ 2 or normalizing
flows. The KL divergence is approximated by samples instead of analytically computed in a similar
way. We leave all hyper-parameter settings in the Appendix A.

5.1 LOCOMOTION BENCHMARKS

TRPO In Figure 3 we show the results on benchmark control problems from MuJoCo. We compare
four policy classes under TRPO: factorized Gaussian (blue curves), GMM with K = 2 (yellow
curves), GMM with K = 5 (green curves) and normalizing flows (red curves). For GMM, each
cluster has the same probability weight and each cluster is a factorized Gaussian with independent
parameters. We train each policy for a fixed number of time steps and report both mean and standard
deviation of the performance averaged across 5 random seeds. We find that though GMM policies
with K ≥ 2 outperform factorized Gaussian on relatively hard tasks such as Ant and HalfCheetah,
they suffer from less stable learning for Humanoid tasks. However, normalizing flows consistently
outperforms GMM and factorized Gaussian policies on a wide range of tasks, especially tasks with
highly complex dynamics such as Humanoid.

In Table 1, we compare with recently proposed policy classes which aim at bounding the support of
policy distributions, such as Beta distribution (Chou et al., 2017) and Gaussian+tanh to bound the
distribution mean. We evaluate the policies on benchmark tasks with relatively complex dynamics
and show mean± std rewards and we highlight the top two policies. We find that normalizinng flows
policy consistently performs well across all complex tasks, while the performance of other policies
is not as uniformly good. Also we find that bounding the final outputs by applying tanh at the final
layer for normalizing flows does not perform as well, we omit the results here.

To further illustrate the strength of normalizing flows policy on Humanoid tasks, we evaluate
normalizing flows vs. factorized Gaussian on Roboschool Humanoid tasks shown in Figure 4. We
observe that ever since the early stage of learning (steps ≤ 107) normalizing flows policy (red curves)
already outperforms Gaussian (blue curves) by a large margin. In (a)(b), Gaussian is stuck in a locally
optimal gait and cannot progress, while normalizing flows can bypass such locally optimal gaits and
makes consistent improvement.

6



Under review as a conference paper at ICLR 2019

(a) Reacher (b) Swimmer (c) Inverted Pendulum (d) Double Pendulum

(e) Hopper (f) HalfCheetah (g) Ant (h) Walker

(i) Sim. Humanoid (L) (j) Humanoid (L) (k) Humanoid (l) HumanoidStandup

Figure 3: MuJoCo Benchmark: learning curves on MuJoCo locomotion tasks. Tasks with (L) are from rllab.
Each curve is averaged over 5 random seeds and shows mean± std performance. Each curve corresponds to a
different policy representation (Red: Normalizing flows (labelled as implicit), Green: GMM K = 5, Yellow:
GMM K = 2, Blue: Gaussian). Vertical axis is the cumulative rewards and horizontal axis is the number of
time steps.

Tasks Gaussian Gaussian+tanh Beta NF
Ant −76± 14 −89± 13 2362± 305 1982± 407

HalfCheetah 1576± 782 386± 78 1643± 819 2900± 554
Humanoid 3560± 288 6350± 486 3199± 2222 5222± 2436

Humanoid (L) 64.7± 7.6 38.2± 2.3 37.8± 3.4 87.2± 19.6
Sim. Humanoid (L) 6.5± 0.2 4.4± 0.1 4.2± 0.2 8.0± 1.8
Humanoid Standup 137955± 9238 133558± 9238 111497± 15031 142568± 9296

Table 1: A comparison of various policy classes on complex benchmark tasks. For each task, we show the
cumulative rewards (mean± std) after training for 107 steps across 5 seeds (for Humanoid (L) it is 7 · 106

steps). For each task, the top two results are highlighted in bold font.

(a) Humanoid (b) HumanoidFlagrun (c) HumanoidFlagrunHarder

Figure 4: Roboschool Humanoid Benchmark : learning curves on Roboschool Humanoid locomotion tasks.
Each curve corresponds to a separate random seed and we show two seeds per policy class. Each color
corresponds to a different policy representation (Red: Normalizing flows (labelled as implicit), Blue: Gaussian).
Vertical axis is the cumulative rewards and horizontal axis is the number of time steps.
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ACKTR We also evaluate different policy classes combined with ACKTR (Wu et al.). In Figure
5, we compare factorized Gaussian (red curves) against normalizing flows (blue curves) on a suite
of MuJoCo and Roboschool control tasks. We train each policy for a fixed number of time steps
and report both mean and standard deviation of the performance averaged across 3 random seeds.
Though ACKTR + normalizing flows does not uniformly outperform Gaussian on all tasks, we find
that for tasks with relatively complex dynamics (e.g. Ant and Humanoid), normalizing flows policy
achieves significant performance gains. We find that the effect of an expressive policy class is fairly
orthogonal to the additional training stability introduced by ACKTR over TRPO and the combined
algorithm achieves even better performance.

(a) Walker (b) Walker (R) (c) HalfCheetah (d) HalfCheetah (R)

(e) Ant (R) (f) Sim. Humanoid (L) (g) Humanoid (L) (h) Humanoid

Figure 5: MuJoCo and Roboschool Benchmarks : learning curves on locomotion tasks for ACKTR. Each curve
is averaged over 3 random seeds and shows mean ± std performance. Each curve corresponds to a different
policy representation (Red: Normalizing flows (labelled as implicit), Blue: Gaussian). Vertical axis is the
cumulative rewards and horizontal axis is the number of time steps. Tasks with (R) are from Roboschool.

5.2 SENSITIVITY TO HYPER-PARAMETERS AND ABLATION STUDY

We evaluate the policy classes’ sensitivities to hyper-parameters in Figure 6, where we compare
Gaussian vs. normalizing flows. Recall that ε is the constant for KL constraint. For each policy, we
uniformly random sample log10 ε ∈ [−3.0,−2.0] and one of five random seeds, and train policies
with TRPO for a fixed number of time steps. The final performance (cumulative rewards) is recorded
and Figure 6 in Appendix C shows the quantile plots of final rewards across multiple tasks. We see
that normalizing flows policy is generally much more robust to such hyper-parameters, importantly
to ε. We speculate that such additional robustness partially stems from the fact that for normalizing
flows policy, the KL constraint does not pose very stringent restriction on the sampled action space,
which allows the system to efficiently explore even when ε is small.

We carry out a small ablation study that addresses how hyper-parameters inherent to normalizing
flows can impact the results. Recall that normalizing flows for control (Section 3) consists of K
transformations, with the first transformation embedding the state s into a vector Lθs(s). Here we
implement Lθs(s) as a two-layer neural networks with l1 hidden units per layer. We evaluate on the
policy performance as we vary K ∈ {2, 4, 6} and l1 ∈ {3, 5, 7}. We find that the performance of
normalizing flows policies are fairly robust to such hyper-parameters (see Appendix C).

6 CONCLUSION

We propose normalizing flows as a novel on-policy architecture to boost the performance of trust re-
gion policy search. In particular, we observe that normalizing flows policy can generate samples away
from the old policy while enforcing the KL constraint, which entails potentially better exploration.
We evaluate performance of normalizing flows policy combined with trust region algorithms (TRPO,
ACKTR) and show that they outperform factorized Gaussian and GMM policies. We propose that
such policy classes be used as baselines for future benchmarking.
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A HYPER-PARAMETERS

Implementations. All implementations of algorithms (TRPO and ACKTR) are based on OpenAI
baselines (Dhariwal et al., 2017). We implement our own GMM policy and normalizing flows policy.
Environments are based on OpenAI gym (Brockman et al., 2016), rllab (Duan et al., 2016) and
Roboschool (Schulman et al., 2017).

Common Interface to the Algorithms. We remark that various policy classes have exactly the
same interface to TRPO and ACKTR. In particular, TRPO and ACKTR only requires the computation
of log πθ(a|s) (and its derivative). Different policy classes only differ in how they parameterize
πθ(a|s) and can be easily plugged into the algorithmic procedure originally designed for Gaussian
(Dhariwal et al., 2017).

factorized Gaussian Policy. A factorized Gaussian policy has the form πθ(·|s) = N(µθ(s),Σ),
where Σ is a diagonal matrix with Σii = σ2

i . We use the default hyper-parameters in baselines for
factorized Gaussian policy. The mean µθ(s) parameterized by a two-layer neural network with 64
hidden units per layer and tanh activation function. The standard deviation σ2

i is each a single variable
shared across all states.

factorized Gaussian+tanh Policy. The architecture is the same as above but the final layer is
added a tanh transformation to ensure that the mean µθ(s) ∈ [−1, 1].

GMM Policy. A GMM policy has the form πθ(·|s) =
∑K
i=1 piN(µ

(i)
θ (s),Σi), where the cluster

weight pi = 1
K is fixed and µ(i)

θ (s),Σi are Gaussian parameters for the ith cluster. Each Gaussian
has the same parameterization as the factorized Gaussian above.

Beta Policy. A Beta distribution policy has the form π(αθ(s), βθ(s)) where αθ(s) and βθ(s) are
shape/rate parameters parameterized by two-layer neural network fθ(s) with a softplus at the end,
i.e. αθ(s) = log(exp(fθ(s)) + 1) + 1, following (Chou et al., 2017). Actions sampled from this
distribution have a strictly finite support. We notice that this parameterization introduces potential
instability during optimization: for example, when we want to converge on policies that sample
actions at the boundary, we require αθ(s)→∞ or βθ(s)→∞, which might be very unstable. We
also observe such instability in practice.

normalizing flows Policy. A normalizing flows policy has a generative form: the sample a ∼
πθ(·|s) can be generated via a = fθ(s, ε) with ε ∼ ρ0(·). The detailed architecture of fθ(s, ε) is in
the appendix below.

Others. Value functions are all parameterized as two-layer neural networks with 64 hidden units
per layer and tanh activation function. Trust region sizes are enforced via a constraint parameter ε,
where ε ∈ {0.01, 0.001} for TRPO and ε ∈ {0.02, 0.002} for ACKTR. All other hyper-parameters
are default parameters from the baselines implementations.

B NORMALIZING FLOWS POLICY ARCHITECTURE

We design the neural network architecture following the idea of (Dinh et al., 2014; 2016). Recall that
normalizing flows (Rezende & Mohamed, 2015) consists of layers of transformation as follows ,

x = gθK ◦ gθK−1
◦ ... ◦ gθ2 ◦ gθ1(ε),

where each gθi(·) is an invertible transformation. We focus on how to design each atomic trans-
formation gθi(·). We overload the notations and let x, y be the input/output of a generic layer
gθ(·),

y = gθ(x).
We design a generic transformation gθ(·) as follows. Let xI be the components of x corresponding to
subset indices I ⊂ {1, 2...m}. Then we propose as in (Dinh et al., 2016),

y1:d = x1:d

yd+1:m = xd+1:m � exp(s(x1:d)) + t(x1:d), (8)
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where t(·), s(·) are two arbitrary functions t, s : Rd 7→ Rm−d. It can be shown that such transfor-
mation entails a simple Jacobien matrix | ∂y

∂xT
| = exp(

∑m−d
j=1 [s(x1:d)]j) where [s(x1:d)]j refers to

the jth component of s(x1:d) for 1 ≤ j ≤ m− d. For each layer, we can permute the input x before
apply the simple transformation (8) so as to couple different components across layers. Such coupling
entails a complex transformation when we stack multiple layers of (8). To define a policy, we need
to incorporate state information. We propose to preprocess the state s ∈ Rn by a neural network
Lθs(·) with parameter θs, to get a state vector Lθs(s) ∈ Rm. Then combine the state vector into (8)
as follows,

z1:d = x1:d

zd+1:m = xd+1:m � exp(s(x1:d)) + t(x1:d)

y = z + Lθs(s). (9)

It is obvious that x↔ y is still bijective regardless of the form of Lθs(·) and the Jacobien matrix is
easy to compute accordingly.

In locomotion benchmark experiments, we implement s, t both as 4-layers neural networks with
l1 = 3 units per hidden layer. We stack K = 4 transformations: we implement (9) to inject state
information only after the first transformation, and the rest is conventional coupling as in (8). Lθs(s)
is implemented as a feedforward neural network with 2 hidden layers each with 64 hidden units.
Value function critic is implemented as a feedforward neural network with 2 hidden layers each with
64 hidden units with rectified-linear between hidden layers.

C SENSITIVITY TO HYPER-PARAMETERS AND ABLATION STUDY

In Figure 7, we show the ablation study of normalizing flows policy. We evaluate how the training
curves change as we change the hyper-parameters of normalizing flows: number of transformation
K ∈ {2, 4, 6} and number of hidden units l1 ∈ {3, 5, 7} in the embedding function Lθs(·). We find
that the performance of normalizing flows policy is fairly robust to changes in K and l1. When K
varies, l1 is set to 3 by default. When l1 varies, K is set to 4 by default.

(a) Reacher (b) Hopper (c) HalfCheetah (d) Sim. Humanoid

Figure 6: Sensitivity to Hyper-parameters: quantile plots of policies’ performance on MuJoCo benchmark tasks
under various hyper-parameter settings. For each plot, we randomly generate 30 hyper-parameters for the policy
and train for a fixed number of time steps. Reacher for 106 steps, Hopper and HalfCheetah for 2 · 106 steps and
SimpleHumanoid for ≈ 5 · 106 steps. normalizing flows policy is in general more robust to Gaussian policy.

(a) Reacher: K (b) Hopper: K (c) Reacher: l1 (d) Hopper: l1

Figure 7: Sensitivity to normalizing flows Hyper-parameters: training curves of normalizing flows policy under
different hyper-parameter settings (number of hidden units l1 and number of transformation K, on Reacher and
Hopper task. Each training curve is averaged over 5 random seeds and we show the mean ± std performance.
Vertical axis is the cumulative rewards and horizontal axis is the number of time steps.)
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D ILLUSTRATION OF LOCOMOTION TASKS

Figure 8: Illustration of benchmark tasks in OpenAI MuJoCo (Brockman et al., 2016; Todorov, 2008), rllab
(top line) (Duan et al., 2016) and Roboschool (bottom line) (Schulman et al., 2017).

E REWARD STRUCTURE OF ANT LOCOMOTION TASK

For Ant locomotion task (Brockman et al., 2016), the state space S ⊂ R116 and action spaceA ⊂ R8.
The state space consists of all the joint positions and joint velocities of the Ant robot, while the action
space consists of the torques applied to joints. The reward function at time t is rt ∝ vx where vx is
the center-of-mass velocity of along the x-axis. In practice the reward function also includes terms
that discourage large torques and encourages the Ant robot to stay alive (as defined by not flipping
itself over).

Intuitively, the reward function encourages the robot to move along x-axis as fast as possible. This
is reflected in Figure 2 (c) as the trajectories (red) generated by the normalizing flows policy is
spreading along the x-axis. Occasionally, the robot also moves in the opposite direction.
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