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ABSTRACT

Recently the wide usage of machine learning models for high-stake decision-
making raises the concerns about the fairness and discrimination issue. Existing
works found that sensitive information1 of a sample could be leaked completely
by sensitive attributes or partially by non-sensitive attributes, thus removing the
sensitive attributes directly from the original features can not achieve fairness.
The current fairness practice is to leverage the explicit sensitive attributes (i.e., as
regularization) to debias the prediction, based on a strong assumption that non-
sensitive attributes of all samples leak the sensitive information totally. However,
we investigate the distribution of leaked sensitive information from non-sensitive
attributes and make interesting findings that 1) the sensitive information distinctly
varies across different samples. 2) the violation of demographic parity for sam-
ples prone to leak sensitive information (high-sensitive) are worse than that for
low-sensitive samples, indicating the failure of current demographic parity mea-
surements. To this end, we propose a new group fairness (α-Demographic Parity)
to measure the demographic parity for samples with different levels of sensitive
information leakage. Furthermore, we move one step forward and propose to
achieve α-demographic parity by encouraging the independence of the distribu-
tion of the sensitive information in non-sensitive attributes and that of downstream
task prediction, which is formulated as a cross-task knowledge distillation frame-
work. Specifically, the sensitive teacher models the distribution of the sensitive
information and the fair student models the distribution of the downstream task
prediction. Then we encourage the independence between them by minimizing
the Hilbert-Schmidt Independence Criterion. Our model can naturally tackle the
limited sensitive attribution scenario since the teacher models can be trained with
partial samples with sensitive attributes. Extensive experiments show the superior
performance of our proposed method on the α-demographic parity and performs
well on limited sensitive attribute scenarios.

1 INTRODUCTION

Deep neural networks (DNNs) have been increasingly applied to high-stake decision making such
as credit scoring (Petrasic et al., 2017; Avery et al., 2012), criminal justice (Berk et al., 2021; Grgic-
Hlaca et al., 2018), and healthcare (Rajkomar et al., 2018; Ahmad et al., 2020). Nevertheless, recent
literature has exposed the prevalence of undesirable biases in deep neural networks. Despite the
rising concerns, research on how to accurately evaluate the bias is still need more exploration.

Existing works found that sensitive information of an data sample could be leaked completely by
sensitive attributes or partially by non-sensitive attributes 2, thus solely removing the sensitive at-
tributes can not guarantee the achievement of fairness since the non-sensitive attributes (x) can still
leak the sensitive information partially Kamishima et al. (2012) The current fair machine learning
models aim to remove the sensitive information hidden in non-sensitive attributes (x) by leverag-
ing the explicit sensitive attributes (s) to debias x. Thus it implicitly assumes that non-sensitive
attributes in all samples can leak the sensitive information totally and equally. However, the amount
of sensitive information in non-sensitive attributes may be different, raising the following question:

1sensitive information is different form sensitive attribute, which means the amount of sensitive attribute.
2e.g., race information could be leaked completely by “race”attribute or partially by “zipcode” attribute
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Figure 1: Left: t-SNE of high-sensitive samples. Middle: t-SNE of low-sensitive samples. Right:
the distribution of the sensitive information in non-sensitive attributes. The apparent clustering of
high-sensitive samples shows high-sensitive samples leak more sensitive information while high-
sensitive samples even do not leak any sensitive information.

What happens if non-sensitive attributes leak different levels of sensitive information? And how
should we consider it in the training and evaluation phase for fairness?

To answer this question, we conduct a preliminary experiment to investigate the fairness measure-
ment on different samples with different levels of sensitive information. As the results shown in
Figure 1, leakage of sensitive information of different samples are distinctly different. The left
subfigure are the samples where more sensitive information is leaked by non-sensitive attributes.
The middle subfigure shows the two-dimensional representation of the samples where less sensitive
information leaked by the non-sensitive attributes. We also leverage a machine learning model to
learn the P(s|x) and plot its distribution in the right subfigure in Figure 1, which show the P(s|x)
are quite different over different samples. In summary, the results in Figure 1 show that the sensitive
information in non-sensitive attributes could be various.

To this end, we first propose a new group fairness (α-Demographic Parity) to measure the demo-
graphic parity for different levels of leaked sensitive information. The proposed metric ensure each
subgroup whose samples have the same level of sensitive information leakage to satisfy the demo-
graphic parity. Thus if all the subgroup satisfy the demographic parity, we achieve α-Demographic
Parity across all α, indicating that we achieve demographic parity at a finer granularity.

To achieve α-demographic parity, we propose to directly encourage the independence of the distri-
bution of the leaked sensitive information in non-sensitive attributes and prediction to gurantee the
achievement of fairness. We formulate it as a cross-task knowledge distillation framework. Specif-
ically, the sensitive teacher models the distribution of the sensitive information and the fair student
models the distribution of the downstream task prediction. Then we encourage the independence
between them by enforcing the Hilbert-Schmidt Independence Criterion to be 0. In addition, our
model can naturally tackle the limited sensitive attribution scenario since the teacher models can be
trained with partial samples with sensitive attributes. We highlight main contributions as follows:

• We investigate the distribution (P(s|x)) of the sensitive information hidden in non-sensitive at-
tributes and found the leakage of sensitive information from non-sensitive attributes are distinctly
various over all samples. We also make an interesting finding that the violation of demographic
parity for the high-sensitive-leak samples is worse than low-sensitive-leak samples, concluding
that current fairness practice can not guarantee demographic parity for high-sensitive samples.

• We propose to leverage the distribution of the sensitive attributes to constrain the prediction for
fairness via a cross-task 3 knowledge distillation framework, which includes a sensitive teacher
and a fair student (STFS). Specifically, the sensitive teacher is designed to extract the sensi-
tive information from non-sensitive attributes while the fair student makes fair predictions for
downstream tasks. We guarantee the independence between distribution of the prediction and
the sensitive information by enforcing the Hilbert-Schmidt Independence Criterion to be 0.

• We experimented on various datasets to validate the effectiveness of the proposed STFS. Since
we can train the teacher model with partial samples, our proposed method is applicable to lim-
ited sensitive attributes scenarios. The experimental results show that our method can achieve
comparable fairness performance with less than 20% training samples.

3By cross-task, we mean the teacher and student learn different tasks.
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Adult ACS-Income KDD-Census

Figure 2: The distribution of P(s|x). The probability of P(s|x) is predicted by x, which can be
regarded as amount of sensitive information. The distribution shows that leakage of sensitive infor-
mation in non-sensitive attributes are various over different samples. The sensitive attribute is sex.

2 MOTIVATION

In this section, we present the preliminary experiments to motivate our work. We first verify that the
leakage of sensitive information for non-sensitive attributes are various over different samples and
also found that the bias mainly stems from data samples with high sensitive information.

2.1 NOTATIONS AND DEMOGRAPHIC PARITY

For ease of exposition, we consider the binary classification and binary sensitive attribute.

Notations. The dataset is represented as {(xi, si, yi)
N
i=1}, where x ∈ Rd is the non-sensitive at-

tributes, si ∈ {0, 1} is sensitive attribute, and yi ∈ {0, 1} is the label of downstream task. We
use ŷ to denote the prediction probability of downstream task, which is obtained from the machine
learning model f(x, θ) : Rd → [0, 1] with trainable parameter θ.

Demographic Parity. and achieve demographic parity (DP). DP requires the predictions ŷ to be
independent of the sensitive attribute s, that is, P (ŷ|s = 0) = P (ŷ|s = 1). The current practice to
achieve algorithmic fairness is to leverage the explicit sensitive attributes (s) to debias the machine
learning models with non-sensitive attributes (x) as input. Given the difficulty of optimizing the
independency constraints, Madras et al. (2018); Agarwal et al. (2018;?); Wei et al. (2019); Taskesen
et al. (2020) propose the relaxed regulization ∆DP(f) = |Ex∼P0

f(x)− Ex∼P1
f(x)| to penalize

the cross entropy loss for downstream task, where P0/1 = P (·|s = 0/1).

2.2 PROBLEMS OF THE CURRENT PRACTICE FOR FAIRNESS

The current practice of fairness has a strong assumption that the non-sensitive attributes leak the
sensitive information, however we argue that the sensitive information in the non-sensitive attributes
could be various. To support our argument, we investigate the sensitive information in non-sensitive
attributes. Specifically, we build a model to probe the sensitive information in the non-sensitive
attributes, which take the non-sensitive attribute as input and the output of the model is P(s|x).
The distribution of P(s|x) is presented in Figure 2. From the result, we observed: Observation 1:
leakage of sensitive information in non-sensitive attributes are various over different samples.

We also conduct experiments to investigate the violation of demographic parity for data samples with
different values of P(s|x) and the results are presented in Figure 3. We first split the data samples
to high-sensitive samples and low-sensitive samples. We select the data samples which P(s|x) <
0.25 or > 0.75 and plot the distribution of the prediction probability of different demographic
groups. From the results in Figure 3, in both the unfair and fair model, the violation of demographic
parity for high-sensitive samples is more severe than low-sensitive attributes. Observation 2: the
overall bias mainly stems from data samples with high-sensitive information.

From the results in Figure 3, in the fair model, the violation of demographic parity for high-sensitive
samples is todo while the the violation of demographic parity for high-sensitive samples for high-
sensitive samples is todo. the violation of demographic parity for high-sensitive samples Thus we
have the following observation, Observation 3: the common fairness practice can not solve the
current problem, the sample with high-sensitive information is still biased.
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(a) Original Model (b) Fair Model
Distribution of Sensitive Information All Samples

Samples that 0.5<P(s|x)<0.75Samples that P(s|x)<0.25 or >0.75 Samples that 0.5<P(s|x)<0.75Samples that P(s|x)<0.25 or >0.75

Distribution of Sensitive Information All Samples

∆𝐷𝑃 = 0.085

∆𝐷𝑃 = 0.187 ∆𝐷𝑃 = 0.008

∆𝐷𝑃 = 0.025

∆𝐷𝑃 = 0.064 ∆𝐷𝑃 = 0.003

Figure 3: The ∆DP on subgroup with different levels of leaked sensitive attributes. The sensitive
attribute is sex. The results show that ∆DP of high-sensitive samples is much larger than that of and
low-sensitive samples. Especially, for low-sensitive samples, there even no fairness issue.

The reason is that violation of demographic parity does not take the level of the sensitive information
leakage. To consider such information, we propose a new kind of fairness as well as the associated
metric in the next section.

2.3 α-DEMOGRAPHIC PARITY

From the preliminary experiments, we conclude that (i) if there is no leakage of sensitive informa-
tion, the prediction is not biased at all. (ii) current fairness methods do not achieve demographic
parity for different levels of sensitive information leakage. However, the current demographic par-
ity metric can not accurately measure the violation of the demographic parity when considering
the levels of the sensitive information leakages. To further measure the fairness for different levels
of sensitive information leakage, we first define α-Sensitive Information Leakage Group and then
based on this group definition we define α-Demographic Parity.

Definition 1 (α-Sensitive Information Leakage Group) An individual sample belong to α-
sensitive information leakage group if PS|Z(s|x) ∈ [0, α] ∪ [1− α, 1].

Lower α means a higher sensitive information For example, if α = 0.1, the samples in α-Sensitive
Information Leakage Group is PS|Z(s|x) ∈ [0, 0.1] ∪ [0.9, 1] and they tend to leak more sensitive
information.

Definition 2 (α-Demographic Parity) A machine learning model satisfies α-Demographic Par-
ity if ∀α ∈ [0, 0.5], α-Sensitive Information Leakage Group satisfy PŶ ,S|Z(ŷ, s|x) =

PŶ |X(ŷ|x)PS|X(s|x).

The basic idea behind this definition is that we split individuals into different groups based on differ-
ent levels of sensitive information leakage, and then we guarantee the achievement of demographic
party for each group. It is worthy to note that α-Demographic Parity is degraded to demographic
parity when α = 0.5, since all the samples will be considered the same if α = 0.5. To measure
the α-Demographic Parity, we propose α-∆DP to evaluate the violation of α-Demographic Parity
as follow:

α-∆DP =

∣∣∣∣∣
∑N0

i=1 P (ŷi|si = 0)

N0
−

∑N1

i=1 P (ŷi|si = 1)

N1

∣∣∣∣∣
if PS|Z(si|xi) ∈ [0, α] ∪ [1− α, 1]

(1)

Where N0/N1 is the number of samples with the sensitive attribute 0/1 while the smaple is in α-
Sensitive Information Leakage Group.
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In addition, we define the expectation of α-∆DP (Eαα-∆DP ) over α ∈ (0, 0.5] as a more strict ver-
sion to measure the violation of α-Demographic Parity. And in the experiment, we use Eαα-∆DP
as our fairness metric. Specifically, we use compute α-∆DP for a series of αs and compute the
average of them as the approximation of Eαα-∆DP .

3 METHODOLOGY

In this section, we introduce our proposed method STFS. In addition, we present the theoreti-
cal analysis for fairness guarantee, including the Hilbert-Schmidt Independence Criterion (HSIC),
which is used to guarantee the independence between the distribution of the leaked sensitive infor-
mation and downstream task prediction.

3.1 THE PROPOSED METHOD - STFS

P(s"|𝐱)

P(y"|𝐱)

𝐱

Sensitive Teacher

Fair Student

Figure 4: Overview of STFS.

Main Idea. As the results of preliminary experiments
show that leaked sensitive information varies over differ-
ent samples, these observations motivate us to seek more
remedies. Thus we propose to directly encourage the dis-
tributions of leaked sensitive information and prediction
to be independent.

The proposed STFS. We formalize this problem to
a cross-task knowledge distillation, which includes a
Sensitive Teacher model and a Fair Student model. Since
the distribution of the leaked sensitive information is un-
seen form the dataset explicitly, we use a teacher model to
predict the sensitive information (i.e., sensitive teacher).
The sensitive teacher learns the distribution of leaked sensitive information from non-sensitive at-
tributes and the fair student learns the distribution of the downstream task prediction. Then we
encourage the independence between the outcome of sensitive teacher and fair student by enforc-
ing the Hilbert-Schmidt Independence Criterion to be 0. Next, we elaborate our proposed method
STFS as illustrated in Figure 4. Our goal is to achieve α-Demographic parity, which requires
PŶ ,S|Z(ŷ, s|x) = PŶ |X(ŷ|x)PS|X(s|x). To achieve this goal, the sensitive teacher model (red
model in Figure 4) are utilized to model the distribution PS|X(s|x) of sensitive information in the
non-sensitive attributes, which is ŝ = ft(x, θt) = PS|X(s|x) where the trainable parameters is
θs. The fair student are used to model the distribution of PŶ |X(ŷ|x) of downstream task, which is
fs(x, θs) = PS|X(s|x) where the trainable parameters is θs.

Training procedure We pre-train the sensitive teacher ŝ = ft(x, θt) with the Cross-Entropy loss
function LCE(ft(x, θt), s), then we infer the leaked sensitive information ŝ for all samples and use
ŝ to debias the fair student model. Next, we use the following objective function to optimize the fair
student model:

Loss = LCE(fs(x, θs), y) + λ · Lfair(ft(x, θt), fs(x, θs))

= LCE(fs(x, θs), y) + λ · HSIC(ŝ, fs(x, θs))
(2)

where fs(x, θs) = PS|X(s|x) and ft(x, θt) = PS|X(s|x). The loss function LCE will optimize the
downstream task prediction and the HSIC(·) will encourage the distribution of sensitive information
and prediction to be independent. The hyper-parameter λ is the balance parameters to balance
between the performance and the fairness.

Independence Guarantee. Hereby we present the analysis of the independence guarantee of the
distributions of leaked sensitive information and prediction. In our method, we minimize the HSIC
to ensure the independence between the distributions of leaked sensitive information and prediction.
Hilbert-Schmidt Independence Criterion (HSIC) is proposed to test if two random variables are
independent only with the data samples from the random variables, and was introduced by Gretton
et al. (2005b; 2008); Vepakomma et al. (2019). Consider two random variables X and Y , HSIC
(Gretton et al., 2005b) is defined as Hilbert-Schmidt norm of the cross-covariance operator between
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the distributions X and Y in Reproducing Kernel Hilbert Space (RKHS):

HSIC(PXY ,H,G) = ∥CXY ∥2

= EXYX′Y ′ [kX(X,X ′)kY ′(Y, Y ′)]

+ EXX′ [kX(X,X ′)]EY ′ [kY (Y, Y
′)]

− 2EXY [EX′ [kX(X,X ′)]EY ′ [kY (Y, Y
′)]],

(3)

where kX and kY are kernel functions, H and G are the Hilbert spaces, and EXY is the expectation
over X and Y . In practice, we can only observe the data samples while the exact distribution is
unknown. Let D := {(x1,y1), · · · , (xm,ym)} contain m i.i.d. samples drawn from PXY , where
xi ∈ Rdx and yi ∈ Rdy . Then equation 3 leads to the following empirical expression (Gretton et al.,
2005a):

HSIC(D,H,G) = (m− 1)−2 tr(KXHKY H) (4)

where KX ∈ Rm×m and KY ∈ Rm×m have entries KXij = k(xi,xj) and KY ij = k(yi,yj), and
H ∈ Rm×m is the centering matrix H = Im − 1

m1m1T
m. With an appropriate kernel choice such as

the Gaussian k(x,y) ∼ exp(− 1
2∥x− y∥2/σ2). HSIC is zero if and only if the random variables X

and Y are independent, i.e., PXY = PXPY (Sriperumbudur et al., 2010).

Theorem 1 (Independence Guarantee) If STFS satisfies that HSCI(ŝ, ŷ) = 0, then
PŶ ,S|Z(ŷ, s|x) = PŶ |X(ŷ|x)PS|X(s|x)

Since we have HSIC is zero if and only if the random variables X and Y are independent, i.e.,
PXY = PXPY (Sriperumbudur et al., 2010). The above theorem is easy to derive. This theorem
suggests that if we minimize the HSIC regularization term to 0, the independence between the
distributions of leaked sensitive information and prediction will be guaranteed.

3.2 DISCUSSION

In this section, we provide discussions on the advantages of our proposed method STFS. we also
discuss its potential limitations as well.

Achieve Fairness with Limited Sensitive Attributes In real-word scenarios, the sensitive attributes
are typically very hard to collect, thus achieving fairness with limited sensitive attributes is urgently
needed. Since our proposed method is formulated as a cross-task knowledge distillation framework,
the sensitive teacher can be trained with partial training samples. This feature make our proposed
method naturally applicable to limited sensitive attributes scenarios. We explore this more via an
experiment with limited sensitive attributes in Section 4.4. The result shows that method enjoys the
advantage that it can work well with a limited number of sensitive attributes.

Relation to Demographic Parity Our proposed α-Demographic Parity is closely related to the
definition of demographic parity, thus we discuss the relation between our proposed method and
demographic parity. Demographic Parity is a special case of α-Demographic Parity. The reason is
straightforward that if we regard the whole sample as one group, the α-Demographic Parity will be
degraded to regular Demographic Parity. Since our proposed α-Demographic Parity is a more strict
fairness, we propose the following:

Proposition 1 If a machine learning model satisfies the α-Demographic Parity, then it satisfies
regular Demographic Parity.

Proof Sketch. The binary sensitive attribute s can be decided by the distribution PS|X(s|x), thus s
is a function of ŝ, i.e., s = f(ŝ). If a machine learning model satisfies α-Demographic Parity, i.e.,
PŶ ,S|Z(ŷ, s|x) = PŶ |X(ŷ|x)PS|X(s|x).

Limitations A possible limitation of our work is that model performance can be affected by the
expressiveness of sensitive teacher models. Since the sensitive teacher is trained with the sensitive
attributes as supervision, it could not be accurate to learn the distribution of sensitive information
leaked from non-sensitive attributes. The results show that our proposed method performs well in
the case of limited sensitive attributes (sensitive teacher models may be considered as undertrained).
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4 EXPERIMENTS

We evaluate the performance of the proposed method in this section. First, we state the experi-
mental setup, including the datasets, baselines and implementation details in Section 4.1. Then, we
evaluate the accuracy-fairness trade off in Section 4.2. We also present the experimental results to
demonstrate the applicability to limited sensitive attributes scenario. The major observations from
the experimental results are highlighted with boldface.

4.1 EXPERIMENTAL SETUP

Datasets In the experiment, we consider the following datasets as our benchmark dataset,

• UCI Adult (Dua & Graff, 2017) contains clean information about 45, 222 individuals from
the 1994 US Census. One instance is described with 15 attributes. The downstream task is to
predict whether the income of a person is greater than $50k, which is shown to bias to sex and
race. We considered sex and race as sensitive attributes.

• ACS-Income (Ding et al., 2021) derives from the American Community Survey (ACS) Public
Use Microdata Sample (PUMS). Like UCI Adult, the downstream task of this dataset is to
predict whether an individual’s income is above $50k. The dataset contains 1, 664, 500 data
points. We choose sex and race as the sensitive attribute.

• KDD Census (Dua & Graff, 2017) contains 284, 556 clean instances with 41 attributes. The
task on this dataset is also to predict whether the individual’s income is above $50k. The
sensitive attributes are sex and race.

Baselines In our experiment, we use the following objective function Lce + λLfair to achieve
fairness, where Lce is the cross-entropy loss for downstream task and Lfair is demographic parity.
We adopt three different regularizers as our baselines. The details of them are as follows:

• DP-Gap (Dua & Graff, 2017) is a kind of in-process method that adds the violation of de-
mographic parity regularization term to the objective function Chuang & Mroueh (2020);
Kamishima et al. (2012). This kind of method improves the fairness of the model with the
regularization term simultaneously optimized during training. In our experiments, REG takes
∆DPc as the regularization term.

• Prejudice Remover (Kamishima et al., 2012) This method is a prejudice remover regularizer,
which enforces the independence between the prediction and sensitive attribute. Prejudice Re-
mover leverages the mutual information to quantify the relation between the sensitive attribute
and the prediction and minimize it.

• HSIC (Pérez-Suay et al., 2017; Quadrianto et al., 2019) used a HSIC are a regularization term
to enforce the independence between model prediction and the sensitive attributes. Once HSIC
equals zero, the mode prediction will be independent to sensitive attributes.

Implementation Details We run our experiments on the machine with NVIDIA RTX3090Ti GPU
(24GB memory) and 256GB DDR4 memory to train the models. The code is implemented based on
PyTorch (Paszke et al., 2019). The sensitive teacher and the fair student are both a two-layer MLP.
The optimizer is Adam (Kingma & Ba, 2015) to train all the models.

Evaluation The evaluation of the performance of the downstream task performance is accuracy
since we consider the binary classification in the experiments. We use the proposed fairness metric
for α-Demographic Parity to evaluate the fairness.

4.2 WILL STFS ACHIEVE α-DEMOGRAPHIC PARITY?

In this section, we conducted experiments on various datasets to investigate the effectiveness of our
proposed method to mitigate the bias and we present the results in Figure 5. We set the different
λ in Equation (2) and plot the Pareto front for accuracy and fairness. From the results, we can see
that our method obtain as better Pareto front than other baselines since Pareto front of STFS is at
the outermost edge in most cases. Thus we have Observation 4: our proposed STFS achieves the
best trade off between prediction accuracy and α-Demographic Parity.
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Adult ACS-Income KDD-Census
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Figure 5: Pareto front for accuracy-fairness trade off. The fairness metric of the x-axis is the α-∆DP.
The results are based on 5 runs with different seeds.

Adult ACS-Income KDD-Census

Figure 6: The performance of α-Demographic Parity with different αs. The sensitive attribute in the
experiment is sex. A smaller α indicates a high level of leaked sensitive information. The results
show that our proposed method generally achieves lower α-∆DP over different αs.

4.3 WILL STFS PERFORM WITH DIFFERENT ALPHA?

In this experiment, we conduct experiments to investigate the performance of our proposed model
with different values of α and present the result in Figure 6. The baseline used in this experi-
ment is using HSIC to enforce the independence between model prediction and sensitive attributes,
which is the most similar method to ours. The results show that STFS generally obtains a lower
δ-∆DP than baseline HSIC. Thus we have Observation 5: our proposed STFS achieves better
α-Demographic Parity across various αs.

4.4 HOW STFS PERFORMS WITH LIMITED SENSITIVE ATTRIBUTE?

In this section, we perform experiments to validate the applicability to limited sensitive attribute
scenarios. Concretely, we leverage partial training samples (from 20% to 100%) to train the sensi-
tive teacher and use the sensitive teacher to predict the leaked sensitive information for all training
samples. Then we use predicted sensitive information to debias the fair student and reported the
results in Figure 7.

From the results in Figure 7, we can see that on Adult and KDD-Census datasets, our method
performs well with limited sensitive attributes. The Pareto fronts of model trained with partial
training samples (from 20% to 100%) are nearly the same line, demonstrating that sensitive teachers
in STFS can be trained by partial training samples. Observation 6: Our proposed STFS can
achieve fairness wiht limited sensitive attributes.
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Adult ACS-Income KDD-Census

Figure 7: The Pareto front for accuracy-fairness trade off in limited sensitive attributes scenarios.
Models are trained with partial training samples, from 20% to 100%. The sensitive attribute is sex.

5 RELATED WORK

Fairness. Recently, lots of works from both academic and industrial have been proposed to address
fairness issues. In this paper, we focus on in-processing fairness algorithms Agarwal et al. (2018);
Elkan (2001); Jiang & Nachum (2020); Kamishima et al. (2012); Zafar et al. (2017); Zhang et al.
(2018), which leverage the fairness constraint to enforce the fairness when training a model. Among
the fairness constraint method, statistical independence between the model’s outputs and groups
(Kamishima et al., 2012; Zafar et al., 2017) are a major approach. Besides, adversarial learning
technique is used to debias the model (Zhang et al., 2018), which make the sensitive attribute is
unpredictable form the model by an adversary. In the computer vision domain, the discrimination
problem has usually been tackled in facial analysis, such as face recognition Wang & Deng (2020);
Wang et al. (2019). Wang et al. Wang et al. (2019) mitigated racial bias using the domain adaptation
technique. Wang and Deng Wang & Deng (2020) utilized reinforcement learning. Their algorithms,
however, have been specific only to the face recognition tasks.

Knowledge distillation. Knowledge distillation has been proposed to distill helpful information
from teacher model to student model. Following the pioneer work (Hinton et al., 2015), where the
teacher model distill the softmax output distribution to the student, various extensions have focused
on how to exploit the learned features. The work of Romero et al. Romero et al. (2015) (FitNet)
made the student mimic the features of the teacher through linear regression. Zagoruyko et al.
Zagoruyko & Komodakis (2017) proposed attention transfer (AT) which transfers the knowledge
using the attention map. Further, Yim et al. Yim et al. (2017) and Park et al. Park et al. (2019)
studied approaches using the gram matrix and relation map respectively. Unlike the previous meth-
ods, In particular, Passalis et al. Passalis & Tefas (2018) suggested methods to reduce the distance
between the teacher and the student feature distributions measured via Kullback-Liebler divergence.

HSIC (Hilbert-Schmidt Independence Criterion) is widely used as a independence measurement and
is used for robustness learning (Greenfeld & Shalit, 2020). Recently HSIC are used to solve fairness
issue. (Pérez-Suay et al., 2017; Quadrianto et al., 2019). For example, Wu et al. (2018) investigated
the generalization properties of autoencoders using HSIC, while Lopez et al. (2018) uses HSIC to
restrict the latent space search to constrain the aggregate variational posterior. Vepakomma et al.
(2019) use distance correlation (an alternate formulation of HSIC) to remove unnecessary private
information from medical training data.

6 CONCLUSION

In this paper, we focus on investigating the violation of demographic parity. We observes from
preliminary experiments that the different samples have different sensitive information leakage and
diverse levels of violation of demographic parity. Based on this interesting observation, we propose
α-Demographic Parity to measure the violation for specific sensitive information leakage group. Ad-
ditionally, we formulate a cross-task knowledge distillation framework to achieve α-Demographic
Parity via chasing the independence of the distribution of the sensitive information in non-sensitive
attributes and that of downstream task prediction. Naturally, the proposed framework can also tackle
the situation with limited sensitive attribute.
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A MORE PRELIMINARY EXPERIMENTS

In this appendix, we present more result to show the distribution of the leaked sensitive attribution.
The results are consistent to the results discussed in Section 2 that the distribution shows that leakage
of sensitive information in non-sensitive attributes are various over different samples.

Adult ACS-Income KDD-Census

Figure 8: The distribution of P(s|x). The probability of P(s|x) is predicted by x. The sensitive
attribute is race. The distribution shows that leakage of sensitive information in non-sensitive at-
tributes varies over different samples. More results are presented in Appendix A.
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