
Workshop track - ICLR 2018

DECODING DECODERS:
FINDING OPTIMAL REPRESENTATION SPACES
FOR UNSUPERVISED SIMILARITY TASKS

Vitalii Zhelezniak, Dan Busbridge, April Shen, Samuel L. Smith∗& Nils Y. Hammerla
babylon health, 60 Sloane Avenue, London, SW3 3DD, United Kingdom
{vitali.zhelezniak, dan.busbridge, april.shen,
nils.hammerla}@babylonhealth.com, slsmith@google.com

ABSTRACT

Experimental evidence indicates that simple models outperform complex deep
networks on many unsupervised similarity tasks. We provide a simple yet rig-
orous explanation for this behaviour by introducing the concept of an optimal
representation space, in which semantically close symbols are mapped to repre-
sentations that are close under a similarity measure induced by the model’s ob-
jective function. In addition, we present a straightforward procedure that, without
any retraining or architectural modifications, allows deep recurrent models to per-
form equally well (and sometimes better) when compared to shallow models. To
validate our analysis, we conduct a set of consistent empirical evaluations and in-
troduce several new sentence embedding models in the process. Even though this
work is presented within the context of natural language processing, the insights
are readily applicable to other domains that rely on distributed representations for
transfer tasks.

1 INTRODUCTION

Distributed representations have played a pivotal role in the current success of machine learning.
In contrast with the symbolic representations of classical AI, distributed representation spaces can
encode rich notions of semantic similarity in their distance measures, allowing systems to generalise
to novel inputs. Methods to learn these representations have gained significant traction, in particular
for modelling words (Mikolov et al., 2013). They have since been successfully applied to many other
domains, including images (Girod et al., 2011; Razavian et al., 2014) and graphs (Kipf & Welling,
2016; Grover & Leskovec, 2016; Narayanan et al., 2017).

Using unlabelled data to learn effective representations is at the forefront of modern machine learn-
ing research. The Natural Language Processing (NLP) community in particular has invested signif-
icant efforts in the construction (Mikolov et al., 2013; Pennington et al., 2014; Bojanowski et al.,
2016; Joulin et al., 2017), evaluation (Baroni et al., 2014) and theoretical analysis (Levy & Goldberg,
2014) of distributed representations for words.

Recently, attention has shifted towards the unsupervised learning of representations for larger pieces
of text, such as phrases (Yin & Schütze, 2015; Zhang et al., 2017), sentences (Kalchbrenner et al.,
2014; Kiros et al., 2015; Tai et al., 2015; Hill et al., 2016; Arora et al., 2017), and entire paragraphs
(Le & Mikolov, 2014). Some of this work simply sums or averages constituent word vectors to
obtain a sentence representation (Mitchell & Lapata, 2010; Milajevs et al., 2014; Wieting et al.,
2015; Arora et al., 2017), which is surprisingly effective.

Another line of research has relied on a sentence-level distributional hypothesis (Polajnar et al.,
2015), originally applied to words (Harris, 1954), which is an assumption that sentences which occur
in similar contexts have a similar meaning. Such models often use an encoder-decoder architecture
(Cho et al., 2014) to predict the adjacent sentences of any given sentence. Examples of such models
include SkipThought (Kiros et al., 2015), which uses Recurrent Neural Networks (RNNs) for its

∗Now at Google Brain.

1

Workshop track - ICLR 2018

encoder and decoders, and FastSent (Hill et al., 2016), which replaces the RNNs with simpler bag-
of-words (BOW) versions.

Models trained in an unsupervised manner on large text corpora are usually applied to supervised
transfer tasks, where the representation for a sentence forms the input to a supervised classification
problem, or to unsupervised similarity tasks, where the similarity (typically taken to be the cosine
similarity) of two inputs is compared with corresponding human judgements of semantic similarity
in order to inform some downstream process, such as information retrieval.

Interestingly, some researchers have observed that deep complex models like SkipThought tend to do
well on supervised transfer tasks but relatively poorly on unsupervised similarity tasks, whereas for
shallow log-linear models like FastSent the opposite is true (Hill et al., 2016; Conneau et al., 2017).
It has been highlighted that this should be addressed by analysing the geometry of the representation
space (Almahairi et al., 2015; Schnabel et al., 2015; Hill et al., 2016; Wieting & Gimpel, 2017),
however, to the best of our knowledge it has not been systematically attempted.

In this work we attempt to address the observed performance gap on unsupervised similarity tasks
between representations produced by simple models and those produced by deep complex models.
Our main contributions are as follows:

• We introduce the concept of a model’s optimal representation space, in which semantic
similarity between symbols is mapped to a similarity measure between their corresponding
representations, and that measure is induced by that model’s objective function.

• We show that models with log-linear decoders are usually evaluated in their optimal space,
while recurrent models are not. This effectively explains the performance gap on unsuper-
vised similarity tasks.

• We show that, when evaluated in their optimal space, recurrent models close that gap. We
also provide a procedure for extracting this optimal space using the decoder hidden states.

• We validate our findings with a series of consistent empirical evaluations utilising a single
publicly available codebase. 1

2 OPTIMAL REPRESENTATION SPACE

We begin by considering a general problem of learning a conditional probability distribution
Pmodel(y |x) over the output symbols y ∈ Y given the input symbols x ∈ X .

Definition 1. A space H combined with a similarity measure ρ : H × H 7→ R in which seman-
tically close symbols xi, xj ∈ X have representations hxi ,hxj ∈ H that are close in ρ is called a
distributed representation space (Goodfellow et al., 2016).

In general, a distributed representation of a symbol x is obtained via some function hx = f(x; θf),
parametrised by weights θf . Distributed representations of the input symbols are typically found
as the layer activations of a Deep Neural Network (DNN). One can imagine running all possible
x ∈ X through a DNN and using the activations hx of the nth layer as vectors inHx:

Hx =
{
hx = Activation(n)(x) | x ∈ X

}
.

The distributed representation space of the output symbols Hy can be obtained via some function
hy = g(y; θg) that does not depend on the input symbol x, e.g. a row of the softmax projection
matrix that corresponds to the output y.

In practice, although H obtained in such a manner with a reasonable vector similarity ρ (such as
cosine or Euclidean distance) forms a distributed representation space, there is no a priori reason
why an arbitrary choice of a similarity function would be appropriate given H and the model’s
objective. There is no analytic guarantee, for arbitrarily chosen H and ρ, that small changes in
semantic similarity of symbols correspond to small changes in similarity ρ between their vector
representations inH and vice versa, unless such a requirement is induced by optimising the objective
function. This motivates Definition 2.

1 Code available at github.com/Babylonpartners/decoding-decoders.

2

https://www.github.com/Babylonpartners/decoding-decoders

Workshop track - ICLR 2018

Definition 2. A space H equipped with a similarity measure ρ such that logPmodel(y |x) ∝
ρ (hy,hx) is called an optimal representation space.

In words, if a model has an optimal representation space, the conditional log-probability of an out-
put symbol y given an input symbol x is proportional to the similarity ρ(hy,hx) between their
corresponding vector representations hy,hx ∈ H.

For example, consider the following standard classification model

Pmodel(y |x) =
exp (uy · DNN(x))∑
y′ exp (uy′ · DNN(x))

(1)

where uy is the yth row of the output projection matrix U.

If Hx = {DNN(x) | x ∈ X} and Hy = {uy | y ∈ Y}, then H = Hx ∪ Hy equipped with the
standard dot product ρ(h1,h2) = h1 · h2 is an optimal representation space. Note that if the
exponents of Equation 1 contained Euclidean distance, then we would find logPmodel(y |x) ∝ ||uy−
DNN(x)||2. The optimal representation space would then be equipped with Euclidean distance as
its optimal distance measure ρ. This easily extends to any other distance measures desired to be
induced on the optimal representation space.

Let us elaborate on why Definition 2 is a reasonable definition of an optimal space. Let x1, x2 ∈ X
be the input symbols and y1, y2 ∈ Y their corresponding outputs. Using

a
ρ∼ b

to denote that a and b are close under ρ, a reasonable model trained on a subset of (X ,Y) will ensure
that hx1

ρ∼ hy1 and hx2

ρ∼ hy2 . If x1 and x2 are semantically close and assuming semantically
close input symbols have similar outputs, we also have that hx1

ρ∼ hy2 and hx2

ρ∼ hy1 . Therefore
it follows that hx1

ρ∼ hx2 (and hy1
ρ∼ hy2). Putting it differently, semantic similarity of input and

output symbols translates into closeness of their distributed representations under ρ, in a way that is
consistent with the model.

Note that any model Pmodel(y |x) parametrised by a continuous function can be approximated by a
function in the form of Equation 1. It follows that any model that produces a probability distribution
has an optimal representation space. Also note that the optimal space for the inputs does not neces-
sarily have to come from the final layer before the softmax projection but instead can be constructed
from any layer, as we now demonstrate.

Let n be the index of the final activation before the softmax projection and let k ∈ {1, . . . , n}. We
split the network into three parts:

softmax (UFn (Gk(x))) (2)

where Gk contains first k layers, Fn contains the remaining n − k layers and U is the softmax
projection matrix. Let the space for inputsHx be defined as

Hx = {Gk(x) | x ∈ X}

and the space for outputsHy defined as

Hy = {uy | y ∈ Y} .

Their unionH = Hx ∪Hy equipped with ρ(h1,h2) = J(h1) · J (h2) where

J(h) =

{
Fn(h) if h ∈ Hx
h otherwise

is again an optimal representation space.

3 OPTIMAL SENTENCE REPRESENTATION SPACE

For the remainder of this paper, we focus on unsupervised models for learning distributed represen-
tations of sentences, an area of particular interest in NLP.

3

Workshop track - ICLR 2018

3.1 BACKGROUND

Let S = (s1, s2, . . . , sN) be a corpus of contiguous sentences where each sentence si =

w1
siw

2
si . . . w

τsi
si consists of words from a pre-defined vocabulary V of size |V |.

We transform the corpus into a set of pairs D = {(si, ci)}Ni=1, where si ∈ S and ci is a context of
si. The context usually (but not necessarily) contains some number of surrounding sentences of si,
e.g. ci = (si−1, si+1).

We are interested in modelling the probability of a context c given a sentence s. In general

Pmodel(c | s; θ) =
τc∏
t=1

Pmodel(w
t
c | wt−1c , . . . , w1

c , s; θ). (3)

One popular way to model P (c | s) for sentence-level data is suggested by the encoder-decoder
framework. The encoder E produces a fixed-length vector representation hEs = E(s) for a sentence
s and the decoder gives a context prediction ĉ = D(hEs) from that representation.

Due to a clear architectural separation between E andD, it is common to take hEs as a representation
of a sentence s in the downstream tasks. Furthermore, since hEs is usually encoded as a vector, such
representations are often compared via simple similarity measures, such as dot product or cosine
similarity.

3.2 LOG-LINEAR DECODERS

We first consider encoder-decoder architectures with a log-linear BOW decoder for the context. Let
hi = E(si) be a sentence representation of si produced by some encoder E . The nature of E is not
important for our analysis; for concreteness, the reader can consider a model such as FastSent (Hill
et al., 2016), where E is a BOW (sum) encoder.

In the case of the log-linear BOW decoder, words are conditionally independent of the previously
occurring sequence, thus Equation 3 becomes

Pmodel(ci|si; θ) =
∏
w∈ci

Pmodel(w|si; θ) =
∏
w∈ci

exp (uw · hi)∑
w′∈V exp (uw′ · hi)

. (4)

where uw ∈ Rd is the output word embedding for a word w and hi is the encoder output. (Biases
are omitted for brevity.)

The objective is to maximise the model probability of contexts ci given sentences si across the
corpusD, which corresponds to finding the Maximum Likelihood Estimator (MLE) for the trainable
parameters θ:

θMLE = argmax
θ

∏
(si,ci)∈D

Pmodel(ci|si; θ). (5)

By switching to the negative log-likelihood and inserting the above expression, we arrive at the
following optimisation problem:

θMLE = argmin
θ

− ∑
(si,ci)∈D

(∑
w∈ci

uw · hi + |ci| log
∑
w′∈V

exp (uw′ · hi)

) . (6)

Noticing that ∑
w∈ci

uw · hi =

(∑
w∈ci

uw

)
· hi = ci · hi, (7)

we see that the objective in Equation 6 forces the sentence representation hi to be similar under dot
product to its context representation ci, which is simply the sum of the output embeddings of the
context words. Simultaneously, output embeddings of words that do not appear in the context of a
sentence are forced to be dissimilar to its representation.

4

Workshop track - ICLR 2018

Figure 1: Unrolling an RNN decoder at inference time. The initial hidden state for the decoder is typically
the encoder output, either the recurrent cell final state for an RNN encoder, or the sum of the input word
embeddings for a BOW encoder. At the first time step, a learned <GO> token is presented as the input. In
subsequent time steps, a probability-weighted sum over word vectors is used. The decoder is then unrolled for
a fixed number of steps. The hidden states are then concatenated to produce the unrolled decoder embedding.
In the models evaluated in section 4, this process is performed for the RNN corresponding to the previous and
next sentences. The sentence representation is then taken as the concatenation across both RNNs.

Using dot∼ to denote close under dot product, we find that if two sentences si and sj have similar

contexts, then hi
dot∼ cj and hj

dot∼ ci. The objective function in Equation 6 ensures that hi
dot∼ ci and

hj
dot∼ cj . Therefore, it follows that hi

dot∼ hj .

Putting it differently, sentences that occur in related contexts are assigned representations that are
similar under the dot product. Hence we see that the encoder output equipped with the dot product
constitutes an optimal representation space as defined in section 2.

3.3 RECURRENT SEQUENCE DECODERS

Another common choice for the context decoder is an RNN decoder

ht = RNNCell
(
vt,ht−1

)
, h0 = hi (8)

where hi = E(si) is the encoder output. The specific structure of E is again not important for our
analysis. (When E is also an RNN, this is similar to SkipThought (Kiros et al., 2015).)

The time unrolled states of decoder are converted to probability distributions over the vocabulary,
conditional on the sentence si and all the previously occurring words. Equation 3 becomes

Pmodel(ci|si; θ) =
τci∏
t=1

Pmodel(w
t|wt−1, . . . , w1, si; θ) =

τci∏
t=1

exp (uwt · ht)∑
w′∈V exp (uw′ · ht)

(9)

Similarly to Equation 6, MLE for the model parameters θ can be found as

θMLE = argmin
θ

− ∑
(si,ci)∈D

τci∑
t=1

(
uwt · ht + log

∑
w′∈V

exp (uw′ · ht)

) . (10)

Using ⊕ to denote vector concatenation, we note that
τci∑
t=1

uwt · ht =

(τci⊕
t=1

uwt

)
·

(τci⊕
t=1

ht

)
= ci · hDi , (11)

where the sentence representation hDi is now an ordered concatenation of the hidden states of the
decoder and the context representation ci is an ordered concatenation of the output embeddings of

5

Workshop track - ICLR 2018

0.30

0.35

0.40

STS12 STS13 STS14 STS15 STS16 Average

1 2 3 4 5 6 7 8 9 10

0.35

0.40

0.45

0.50

0.55

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of unroll steps

S
p

ea
rm

an
co

rr
el

at
io

n
co

effi
ci

en
t

Figure 2: Performance on the STS tasks depending on the number of unrolled hidden states of the decoders,
using dot product as the similarity measure. The top row presents results for the RNN encoder and the bottom
row for the BOW encoder. Red: Raw encoder output with BOW decoder. Green: Raw encoder output with
RNN decoder. Blue: Unrolled RNN decoder output. Independent of the encoder architecture, unrolling even
a single state of the decoder always outperforms the raw encoder output with RNN decoder, and almost always
outperforms the raw encoder output with BOW decoder for some number of unrolls.

the context words. Hence we come to the same conclusion as in the log-linear case, except we have
order-sensitive representations as opposed to unordered ones. As before, hDi is forced to be similar
to the context ci under dot product, and is made dissimilar to sequences of uw′ that do not appear in
the context.

The “transitivity” argument from subsection 3.2 remains intact, except the length of decoder hidden
state sequences might differ from sentence to sentence. To avoid this problem, we can formally treat
them as infinite-dimensional vectors in `2 with only a finite number of initial components occupied
by the sequence and the rest set to zero. Alternatively, we can agree on the maximum sequence
length, which in practice can be determined from the training corpus.

Regardless, the above space of unrolled concatenated decoder states, equipped with dot product, is
the optimal representation space for models with recurrent decoders. Consequently, this space could
be a much better candidate for unsupervised similarity tasks.

We refer to the method of accessing the decoder states at every time step as unrolling the decoder,
illustrated in Figure 1. Note that accessing the decoder output does not require re-architecting or
retraining the model, yet gives a potential performance boost on unsupervised similarity tasks almost
for free. We will demonstrate the effectiveness of this technique empirically in section 5.

4 EXPERIMENTAL SETUP

We have seen in section 2 that the optimal representation space for a given model depends on the
choice of decoder architecture. To support this theory, we train several encoder-decoder architec-
tures for sentences with the decoder types analysed in section 3, and evaluate them on downstream
tasks using both their optimal space and the standard space of the encoder output as the sentence
representations.

Models and training. Each model has an encoder for the current sentence, and decoders for the
previous and next sentences. As our analysis is independent of encoder type, we train and evaluate
models with BOW and RNN encoders, two common choices in the literature for sentence represen-
tation learners (Hill et al., 2016; Kiros et al., 2015). The BOW encoder is the sum of word vectors
(Hill et al., 2016). The RNN encoder and decoders are Gated Recurrent Units (GRUs) (Cho et al.,
2014).

6

Workshop track - ICLR 2018

Table 1: Performance of different architectures and sentence representations on unsupervised similarity tasks
using dot product as the similarity measure. On each task, the highest performing setup for each encoder
type is highlighted in bold and the highest performing setup overall is underlined. All reported values indi-
cate Pearson/Spearman correlation coefficients for the task. In the case of both encoder types, unrolling the
RNN decoder using the concatenation of the decoder hidden states (*-RNN-concat) dramatically improves the
performance across all tasks compared to using the raw encoder output (*-RNN), validating the theoretical
justification presented in subsection 3.3.

Encoder Decoder STS12 STS13 STS14 STS15 STS16
BOW 0.286/0.384 0.381/0.426 0.365/0.406 0.262/0.392 0.260/0.328

RNN RNN 0.267/0.286 0.371/0.365 0.357/0.348 0.379/0.379 0.313/0.303
RNN-concat 0.335/0.359 0.411/0.415 0.413/0.403 0.414/0.419 0.326/0.347

BOW 0.351/0.390 0.418/0.478 0.442/0.488 0.455/0.535 0.370/0.461
BOW RNN 0.310/0.342 0.365/0.422 0.396/0.440 0.412/0.469 0.281/0.330

RNN-concat 0.422/0.438 0.478/0.498 0.498/0.506 0.512/0.544 0.402/0.460

Using the notation ENC-DEC, we train RNN-RNN, RNN-BOW, BOW-BOW, and BOW-RNN mod-
els. For each encoder-decoder combination, we test several methods of extracting sentence repre-
sentations to be used in the downstream tasks. First, we use the standard choice of the final output of
the encoder as the sentence representation. In addition, for models that have RNN decoders, we un-
roll between 1 and 10 decoder hidden states. Specifically, when we unroll n decoder hidden states,
we take the first n hidden states from each of the decoders and concatenate them in order to get the
resulting sentence representation. We refer to these representations as *-RNN-concat.

All models are trained on the Toronto Books Corpus (Zhu et al., 2015), a dataset of 70 million
ordered sentences from over 7,000 books. The sentences are pre-processed such that tokens are
lower case and splittable by space.
Evaluation tasks. We use the SentEval tool (Conneau et al., 2017) to benchmark sentence embed-
dings on both supervised and unsupervised transfer tasks. The supervised tasks in SentEval include
paraphrase identification (MSRP) (Dolan et al., 2004), movie review sentiment (MR) (Pang & Lee,
2005), product review sentiment (CR), (Hu & Liu, 2004)), subjectivity (SUBJ) (Pang & Lee, 2004),
opinion polarity (MPQA) (Wiebe et al., 2005), and question type (TREC) (Voorhees, 2002; Roth &
Li, 2003). In addition, there are two supervised tasks on the SICK dataset, entailment and related-
ness (denoted SICK-E and SICK-R) (Marelli et al., 2014). For the supervised tasks, SentEval trains
a logistic regression model with 10-fold cross-validation using the model’s embeddings as features.

The unsupervised Semantic Textual Similarity (STS) tasks are STS12-16 (Cer et al., 2017; Agirre
et al., 2012; 2013; 2014; Agirre, 2015; Agirre et al., 2016), which are scored without training a new
supervised model; in other words, the embeddings are used to directly compute similarity, which is
compared to human judgements of semantic similarity. We use dot product to compute similarity as
indicated by our analysis; results and discussion using cosine similarity, which is canonical in the
literature, are presented in Appendix B. For more details on all tasks and the evaluation strategy, see
Conneau et al. (2017).
Implementation and hyperparameters. Our goal is to study how different decoder types affect
the performance of sentence embeddings on various tasks. To this end, we use identical hyperpa-
rameters and architecture for each model (except encoder and decoder types), allowing for a fair
head-to-head comparison. Specifically, for RNN encoders and decoders we use a single layer GRU
with layer normalisation (Ba et al., 2016). All the weights (including word embeddings) are ini-
tialised uniformly over [−0.1, 0.1] and trained with Adam (Kingma & Ba, 2014) without weight
decay or dropout. Sentence length is clipped or zero-padded to 30 tokens and end-of-sentence to-
kens are used throughout training and evaluation. Following Kiros et al. (2015), we use a vocabulary
size of 20k with vocabulary expansion, 620-dimensional word embeddings, and 2400 hidden units
in all RNNs.

5 RESULTS

Performance of the unrolled models on the STS tasks is presented in Figure 2. We note that unrolling
even a single state of the RNN decoder always improves the performance over the raw encoder
output. In addition, the unrolled RNN representation is often able to outperform raw encoder output
with BOW decoder for some number of hidden states, providing further evidence of the efficacy of
this method.

7

Workshop track - ICLR 2018

Table 2: Performance of different architectures and sentence representations on supervised transfer tasks. On
each task, the highest performing setup for each encoder type is highlighted in bold and the highest performing
setup overall is underlined. All reported values indicate test accuracy on the task, except for SICK-R where we
report the Pearson correlation with human-provided scores. Note that the analysis in section 3 is not readily
applicable here, as instead of using a similarity measure in the representation space directly, the supervised
transfer tasks train an entirely new model on top of the chosen representation. However, the results do indicate
that unrolling RNN decoders could be a reasonable choice even for supervised tasks.

Encoder Decoder MR CR MPQA SUBJ SST TREC MRPC SICK-R SICK-E
BOW 75.78 79.34 86.25 90.77 81.99 84.60 70.55 0.80 78.81

RNN RNN 77.06 81.77 88.59 92.56 82.65 86.60 71.94 0.83 81.10
RNN-concat 76.20 82.07 85.96 91.80 80.83 87.20 71.59 0.82 80.35

BOW 76.16 81.14 87.03 92.77 81.66 84.20 71.07 0.84 80.58
BOW RNN 76.05 82.07 85.80 92.13 80.83 87.20 72.99 0.82 78.87

RNN-concat 77.27 82.04 88.74 92.88 81.82 89.60 73.68 0.85 82.26

We observe that the performance tends to peak around 2-3 hidden states and fall off afterwards.
In principle, one might expect the peak to be around the average sentence length of the corpus.
A possible explanation of this behaviour is the “softmax drifting effect”. As there is no context
available at inference time, we generate the word embedding for the next time step using the softmax
output from the previous time step (see Figure 1). Given that for any sentence, there is no single
correct context, the probability distribution over the next words in that context will be potentially
multi-modal. This will produce inputs for the decoder that diverge from the inputs it expects (i.e.
word vectors for the vocabulary). Further work is needed to understand this and other possible
causes in detail.

Performance across unsupervised similarity tasks is presented in Table 1 and performance across
supervised transfer tasks is presented in Table 2. For the unrolled architectures, in these tables we
report on the one that performs best on the STS tasks. In addition, see Appendix A for a comparison
with the original SkipThought results from the literature, and Appendix B for results using cosine
similarity rather than dot product as the similarity measure in STS tasks.

In the case of the unsupervised similarity tasks (Table 1), note that architectures evaluated in their
optimal space, including unrolled RNN and BOW decoders, consistently outperform those evalu-
ated in a sub-optimal space, as our analysis in section 3 predicts.

When we look at the performance on supervised transfer tasks in Table 2, combined with the sim-
ilarity results in Table 1, we see that the notion that models cannot be good at both supervised
transfer and unsupervised similarity tasks needs refining; for example, RNN-RNN achieves strong
performance on supervised transfer, while RNN-RNN-concat achieves strong performance on un-
supervised similarity. In general, our results indicate that a single model may be able to perform
well on different downstream tasks, provided that the representation spaces chosen for each task are
allowed to differ.

Curiously, the unusual combination of a BOW encoder and concatenation of the RNN decoders
leads to the best performance on most benchmarks, even slightly exceeding that of some supervised
models on some tasks (Conneau et al., 2017). This architecture may be worth investigating.

6 CONCLUSION

In this work, we introduced the concept of an optimal representation space, where semantic simi-
larity directly corresponds to distance in that space, in order to shed light on the performance gap
between simple and complex architectures on downstream tasks. In particular, we studied encoder-
decoder architectures and how the representation space induced by the encoder outputs relates to the
training objective of the model.

Although the space of encoder outputs, equipped with dot product as the similarity function, has
been typically taken as the representation space regardless of what type of decoder is used, it turns
out that this is only optimal in the case of BOW decoders but not RNN decoders. This yields a
simple explanation for the observed performance gap between these architectures, namely that the
former has been evaluated in its optimal representation space, whereas the latter has not.

8

Workshop track - ICLR 2018

Furthermore, we showed that any neural network that outputs a probability distribution has an op-
timal representation space. Since an RNN does produce a probability distribution, we analysed its
objective function which motivated a procedure of unrolling the decoder. This simple method al-
lowed us to extract representations that are provably optimal under dot product, without needing to
retrain the model.

We then validated our claims by comparing the empirical performance of different architectures
across transfer tasks. In general, we observed that unrolling even a single state of the RNN decoder
always outperforms the raw encoder output with RNN decoder, and almost always outperforms the
raw encoder output with BOW decoder for some number of unrolls. This indicates different vector
embeddings can be used for different downstream tasks depending on what type of representation
space is most suitable, potentially yielding high performance on a variety of tasks from a single
trained model.

Although our analysis of encoder-decoder architectures only considered BOW and RNN compo-
nents, others such as convolutional (Xu et al., 2016) and graph-based (Kipf & Welling, 2016) ones
are more appropriate for some tasks. Additionally, although we focus on Euclidean spaces, it has
been shown that hyperbolic spaces (Nickel & Kiela, 2017), complex-valued vector spaces (Trouillon
et al., 2016) and spinor spaces (Kanjamapornkul et al., 2017) all have beneficial modelling proper-
ties. In each case, it is not necessarily true that evaluations are currently leveraging an optimal
representation space for each model. However, as we showed with the RNN decoder, analysing the
network itself can reveal a transformation from the intuitive choice of space to an optimal one. Eval-
uating in this space should further improve performance of these models. We leave this for future
work.

Ultimately, a good representation is one that makes a subsequent learning task easier. For unsu-
pervised similarity tasks, this essentially reduces to how well the model separates objects in the
chosen representation space, and how appropriately the similarity measure compares objects in that
space. Our findings lead us to the following practical advice: i) Use a simple model architecture
where the optimal representation space is clear by construction, or ii) use an arbitrarily complex
model architecture and analyse the objective function to reveal, for a chosen vector representation,
an appropriate similarity metric.

We hope that future work will utilise a careful understanding of what similarity means and how it is
linked to the objective function, and that our analysis can be applied to help boost the performance
of other complex models.

REFERENCES

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. Fine Grained
Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks. ICLR, 44(3):1–12,
mar 2017. URL http://stroke.ahajournals.org/cgi/doi/10.1161/STR.
0b013e318284056a.

Eneko Agirre. SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and Pilot on
Interpretability. SemEval2015, (SemEval):252–263, 2015.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. SemEval-2012 Task 6: A Pilot
on Semantic Textual Similarity. Proc. 6th Int. Work. Semant. Eval. (SemEval 2012), conjunction
with First Jt. Conf. Lex. Comput. Semant. (* SEM 2012), (3):385–393, 2012.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. SEM 2013 shared
task : Semantic Textual Similarity. Second Jt. Conf. Lex. Comput. Semant. (*SEM 2013), 1:
32–43, 2013.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Wei-
wei Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe. SemEval-2014 Task 10: Multilin-
gual Semantic Textual Similarity. Proc. 8th Int. Work. Semant. Eval. (SemEval 2014), (SemEval):
81–91, 2014.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, Ger-
man Rigau, and Janyce Wiebe. SemEval-2016 Task 1: Semantic Textual Similarity, Monolingual

9

http://stroke.ahajournals.org/cgi/doi/10.1161/STR.0b013e318284056a
http://stroke.ahajournals.org/cgi/doi/10.1161/STR.0b013e318284056a

Workshop track - ICLR 2018

and Cross-Lingual Evaluation. Proc. 10th Int. Work. Semant. Eval., pp. 497–511, 2016. URL
http://aclweb.org/anthology/S16-1081.

Amjad Almahairi, Kyle Kastner, Kyunghyun Cho, and Aaron Courville. Learning Distributed Rep-
resentations from Reviews for Collaborative Filtering. In Proc. 9th ACM Conf. Recomm. Syst. -
RecSys ’15, pp. 147–154, New York, New York, USA, 2015. ACM Press.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A Simple but Tough-to-Beat Baseline for Sentence
Embeddings. Int. Conf. Learn. Represent., pp. 1–14, 2017.

Jimmy Lei Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. jul 2016. ISSN
1607.06450. URL http://arxiv.org/abs/1607.06450.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! A systematic
comparison of context-counting vs. context-predicting semantic vectors. In Proc. 52nd Annu.
Meet. Assoc. Comput. Linguist. (Volume 1 Long Pap., pp. 238–247, Stroudsburg, PA, USA, 2014.
Association for Computational Linguistics. URL http://aclweb.org/anthology/
P14-1023.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching Word Vectors
with Subword Information. jul 2016. URL http://arxiv.org/abs/1607.04606.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 Task
1: Semantic Textual Similarity - Multilingual and Cross-lingual Focused Evaluation. Proc. 11th
Int. Work. Semant. Eval., pp. 1–14, jul 2017.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN EncoderDecoder
for Statistical Machine Translation. In Proc. 2014 Conf. Empir. Methods Nat. Lang. Process.,
pp. 1724–1734, Stroudsburg, PA, USA, 2014. Association for Computational Linguistics. URL
http://arxiv.org/abs/1406.1078.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Supervised
Learning of Universal Sentence Representations from Natural Language Inference Data. may
2017. URL http://arxiv.org/abs/1705.02364.

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large paraphrase corpora.
In Proc. 20th Int. Conf. Comput. Linguist. - COLING ’04, pp. 350–es, Morristown, NJ, USA,
2004. Association for Computational Linguistics.

Bernd Girod, Vijay Chandrasekhar, David Chen, Ngai-Man Cheung, Radek Grzeszczuk, Yuriy
Reznik, Gabriel Takacs, Sam Tsai, and Ramakrishna Vedantham. Mobile Visual Search. IEEE
Signal Process. Mag., 28(4):61–76, jul 2011. URL http://arxiv.org/abs/1112.6209.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, 2016. ISSN 1548-7091.
URL https://mitpress.mit.edu/books/deep-learning.

Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. jul 2016.
doi: 10.1145/2939672.2939754. URL http://arxiv.org/abs/1607.00653.

Zellig S. Harris. Distributional Structure. WORD, 10(2-3):146–162, aug 1954.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning Distributed Representations of Sen-
tences from Unlabelled Data. feb 2016. URL http://arxiv.org/abs/1602.03483.

Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proc. 2004 ACM
SIGKDD Int. Conf. Knowl. Discov. data Min. - KDD ’04, pp. 168, New York, New York, USA,
2004. ACM Press.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of Tricks for Efficient
Text Classification. In Proc. 15th Conf. Eur. Chapter Assoc. Comput. Linguist. Vol. 2, Short Pap.,
pp. 427–431, Stroudsburg, PA, USA, jul 2017. Association for Computational Linguistics. URL
http://arxiv.org/abs/1607.01759.

10

http://aclweb.org/anthology/S16-1081
http://arxiv.org/abs/1607.06450
http://aclweb.org/anthology/P14-1023
http://aclweb.org/anthology/P14-1023
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1112.6209
https://mitpress.mit.edu/books/deep-learning
http://arxiv.org/abs/1607.00653
http://arxiv.org/abs/1602.03483
http://arxiv.org/abs/1607.01759

Workshop track - ICLR 2018

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A Convolutional Neural Network for
Modelling Sentences. In Proc. 52nd Annu. Meet. Assoc. Comput. Linguist. (Volume 1 Long Pap.,
pp. 655–665, Stroudsburg, PA, USA, apr 2014. Association for Computational Linguistics. URL
http://arxiv.org/abs/1404.2188.

Kabin Kanjamapornkul, Richard Pinčák, Sanphet Chunithpaisan, and Erik Bartoš. Support Spinor
Machine. Digit. Signal Process. A Rev. J., 70:59–72, sep 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. pp. 1–15, dec
2014. URL http://arxiv.org/abs/1412.6980.

Thomas N Kipf and Max Welling. Variational Graph Auto-Encoders. Nipsw, (2):1–3, nov 2016.
URL http://arxiv.org/abs/1611.07308.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Ur-
tasun, and Sanja Fidler. Skip-Thought Vectors. jun 2015. URL http://arxiv.org/abs/
1506.06726.

Quoc V. Le and Tomas Mikolov. Distributed Representations of Sentences and Documents. 32,
2014. URL http://arxiv.org/abs/1405.4053.

Omer Levy and Yoav Goldberg. Neural Word Embedding as Implicit Matrix Factorization. In
Z Ghahramani, M Welling, C Cortes, N D Lawrence, and K Q Weinberger (eds.), Adv. Neural Inf.
Process. Syst. 27, pp. 2177–2185. Curran Associates, Inc., 2014.

M Marelli, S Menini, Marco Baroni, L Bentivogli, R Bernardi, and R Zamparelli. A SICK cure for
the evaluation of compositional distributional semantic models. Lrec, (May):216–223, 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Represen-
tations in Vector Space. pp. 1–12, jan 2013. URL http://arxiv.org/abs/1301.3781.

Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Matthew Purver. Evaluating Neu-
ral Word Representations in Tensor-Based Compositional Settings. pp. 708–719, aug 2014. URL
http://arxiv.org/abs/1408.6179.

Jeff Mitchell and Mirella Lapata. Composition in Distributional Models of Semantics. Cogn. Sci.,
34(8):1388–1429, nov 2010.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning Distributed Representations of Graphs. jul 2017.
URL http://arxiv.org/abs/1708.04357.

Maximilian Nickel and Douwe Kiela. Poincar\’e Embeddings for Learning Hierarchical Represen-
tations. may 2017.

Bo Pang and Lillian Lee. A sentimental education: sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proc. 42nd Annu. Meet. Assoc. Comput. Linguist. - ACL
’04, pp. 271–es, Morristown, NJ, USA, 2004. Association for Computational Linguistics. URL
http://arxiv.org/abs/cs/0409058.

Bo Pang and Lillian Lee. Seeing stars: exploiting class relationships for sentiment categorization
with respect to rating scales. In Proc. 43rd Annu. Meet. Assoc. Comput. Linguist. - ACL ’05, num-
ber June, pp. 115–124, Morristown, NJ, USA, 2005. Association for Computational Linguistics.
URL http://arxiv.org/abs/cs/0506075.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global Vectors for Word
Representation. In Proc. 2014 Conf. Empir. Methods Nat. Lang. Process., pp. 1532–1543,
Stroudsburg, PA, USA, 2014. Association for Computational Linguistics.

Tamara Polajnar, Laura Rimell, and Stephen Clark. An Exploration of Discourse-Based Sentence
Spaces for Compositional Distributional Semantics. In Proc. First Work. Link. Comput. Model.
Lexical, Sentential Discourse-level Semant., pp. 1–11, Stroudsburg, PA, USA, 2015. Association
for Computational Linguistics.

11

http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1506.06726
http://arxiv.org/abs/1506.06726
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1408.6179
http://arxiv.org/abs/1708.04357
http://arxiv.org/abs/cs/0409058
http://arxiv.org/abs/cs/0506075

Workshop track - ICLR 2018

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN Features Off-
the-Shelf: An Astounding Baseline for Recognition. In 2014 IEEE Conf. Comput. Vis. Pattern
Recognit. Work., pp. 512–519. IEEE, jun 2014.

Dan Roth and Xin Li. Learning Question Classifiers. pp. 1–7, 2003.

Adriaan M. J. Schakel and Benjamin J Wilson. Measuring Word Significance using Distributed
Representations of Words. aug 2015. URL http://arxiv.org/abs/1508.02297.

Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. Evaluation methods for un-
supervised word embeddings. In Proc. 2015 Conf. Empir. Methods Nat. Lang. Process., number
September, pp. 298–307, Stroudsburg, PA, USA, 2015. Association for Computational Linguis-
tics.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved Semantic Representations
From Tree-Structured Long Short-Term Memory Networks. feb 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex Embeddings for Simple Link Prediction. 48, jun 2016. URL http://arxiv.org/abs/
1606.06357.

Ellen M Voorhees. Overview of the TREC 2001 question answering track. NIST Spec. Publ., (0):
42–51, 2002.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating Expressions of Opinions and Emo-
tions in Language. Lang. Resour. Eval., 39(2-3):165–210, may 2005.

John Wieting and Kevin Gimpel. Revisiting Recurrent Networks for Paraphrastic Sentence Em-
beddings. In Proc. 55th Annu. Meet. Assoc. Comput. Linguist. (Volume 1 Long Pap., pp. 2078–
2088, Stroudsburg, PA, USA, 2017. Association for Computational Linguistics. URL http:
//arxiv.org/abs/1705.00364http://aclweb.org/anthology/P17-1190.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards Universal Paraphrastic
Sentence Embeddings. pp. 1–17, nov 2015. URL http://arxiv.org/abs/1511.08198.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang, and Dongyan Zhao. Question Answering on
Freebase via Relation Extraction and Textual Evidence. In Proc. 54th Annu. Meet. Assoc. Comput.
Linguist. (Volume 1 Long Pap., pp. 2326–2336, Stroudsburg, PA, USA, may 2016. Association
for Computational Linguistics.

Wenpeng Yin and Hinrich Schütze. Discriminative Phrase Embedding for Paraphrase Identifica-
tion. In Proc. 2015 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol.,
volume 21, pp. 1368–1373, Stroudsburg, PA, USA, sep 2015. Association for Computational
Linguistics.

Yizhe Zhang, Dinghan Shen, Guoyin Wang, Zhe Gan, Ricardo Henao, and Lawrence Carin. Decon-
volutional Paragraph Representation Learning. aug 2017. URL http://arxiv.org/abs/
1708.04729.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning Books and Movies: Towards Story-like Visual Explanations by Watch-
ing Movies and Reading Books. Proc. IEEE Int. Conf. Comput. Vis., 2015 Inter:19–27, jun 2015.
URL http://arxiv.org/abs/1506.06724.

12

http://arxiv.org/abs/1508.02297
http://arxiv.org/abs/1606.06357
http://arxiv.org/abs/1606.06357
http://arxiv.org/abs/1705.00364 http://aclweb.org/anthology/P17-1190
http://arxiv.org/abs/1705.00364 http://aclweb.org/anthology/P17-1190
http://arxiv.org/abs/1511.08198
http://arxiv.org/abs/1708.04729
http://arxiv.org/abs/1708.04729
http://arxiv.org/abs/1506.06724

Workshop track - ICLR 2018

Table 3: Performance of the SkipThought model, with and without layer normalisation (Kiros et al., 2015;
Ba et al., 2016), compared against the RNN-RNN model used in our experimental setup. On each task,
the highest performing model is highlighted in bold. For SICK-R, we report the Pearson correlation, and
for STS14 we report the Pearson/Spearman correlation with human-provided scores. For all other tasks, re-
ported values indicate test accuracy. † indicates results taken from Conneau et al. (2017). ‡ indicates our
results from running SentEval on the model downloaded from Ba et al. (2016)’s publicly available codebase
(https://github.com/ryankiros/layer-norm). We attribute the discrepancies in performance to
differences in experimental setup or implementation. However, we expect our unrolling procedure to also boost
SkipThought’s performance on unsupervised similarity tasks, as we show for RNN-RNN in our fair single-
codebase comparisons in the main text.

Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
SkipThought † 76.5 80.1 93.6 87.1 82.0 92.2 73.0 0.86 82.3 0.29/0.35

SkipThought-LN † 79.4 83.1 93.7 89.3 82.9 88.4 - 0.86 79.5 0.44/0.45
SkipThought-LN ‡ 78.6 82.2 92.9 89.1 83.8 87.0 73.2 0.86 81.2 0.41/0.40

RNN-RNN 77.1 81.8 92.6 88.6 82.7 86.6 71.9 0.83 81.1 0.35/0.35

Table 4: Performance of different architectures and sentence representations on unsupervised similarity tasks
using the cosine similarity between two vectors as the measure of their similarity. On each task, the highest
performing setup for each encoder type is highlighted in bold and the highest performing setup overall is
underlined. All reported values indicate Pearson/Spearman correlation coefficients for the task. RNN encoder:
Using the raw encoder output (RNN-RNN) achieves the lowest performance across all tasks. Unrolling the
RNN decoders dramatically improves the performance across all tasks compared to using the raw encoder
RNN output, validating the theoretical justification presented in subsection 3.3. BOW encoder: We do not
observe the same uplift in performance from unrolling the RNN encoder compared to the encoder output; fully
understanding this behaviour is left for future work.

Encoder Decoder STS12 STS13 STS14 STS15 STS16
BOW 0.466/0.496 0.376/0.414 0.478/0.482 0.424/0.454 0.552/0.586

RNN RNN 0.323/0.357 0.320/0.319 0.345/0.345 0.402/0.409 0.373/0.408
RNN-concat 0.419/0.445 0.426/0.414 0.466/0.452 0.497/0.503 0.511/0.529

BOW 0.497/0.517 0.526/0.520 0.576/0.561 0.604/0.605 0.592/0.592
BOW RNN 0.508/0.526 0.483/0.489 0.575/0.562 0.644/0.641 0.585/0.585

RNN-concat 0.521/0.540 0.491/0.498 0.561/0.554 0.627/0.625 0.584/0.581

A COMPARISON WITH SKIPTHOUGHT

See Table 3 for a comparison of our RNN-RNN results with results of SkipThought from the liter-
ature.

B COSINE SIMILARITY ON STS TASKS

As discussed in section 3, the objective function is maximising the dot product between the context
and our stated optimal representations (encoder output in the case of the BOW decoder, and unrolled
RNN representation in the case of the RNN decoder). However, as other researchers in the field
frequently use cosine similarity for the STS tasks, we present the results using cosine similarity in
Table 4 and the results for different numbers of unrolled hidden decoder states in Figure 3.

Although the results in Table 4 are mostly consistent with the dot product results in Table 1, the
overall performance across STS tasks is noticeably lower when dot product is used instead of cosine
similarity to determine semantic similarity. Switching from using cosine similarity to dot product
transitions from considering only angle between two vectors, to also considering their length. Em-
pirical studies have indicated that the length of a word vector corresponds to how sure of its context
the model that produces it is. This is related to how often the model has seen the word, and how
many different contexts it appears in (for example, the word vectors for “January” and “February”
have similar norms, however, the word vector for “May” is noticeably smaller) (Schakel & Wilson,
2015).

A corollary is that longer sentences on average have shorter norms, since they contain more words
which, in turn, have appeared in more contexts (Adi et al., 2017). During training, the corpus
can induce differences in norms in a way that strongly penalises sentences potentially containing
multiple contexts, and consequently will disfavour these sentences as similar to other sentences

13

Workshop track - ICLR 2018

0.30

0.35

0.40

0.45

0.50

0.55

0.60
STS12 STS13 STS14 STS15 STS16 Average

1 2 3 4 5 6 7 8 9 10
0.40

0.45

0.50

0.55

0.60

0.65

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of unroll steps

S
p

ea
rm

an
co

rr
el

at
io

n
co

effi
ci

en
t

Figure 3: Performance on the STS tasks depending on the number of unrolled hidden states of the decoders,
using cosine similarity as the similarity measure. The top row presents results for the RNN encoder and the
bottom row for the BOW encoder. Red: Raw encoder output with BOW decoder. Green: Raw encoder output
with RNN decoder. Blue: Unrolled RNN decoder output. For both RNN and BOW encoders, unrolling the
decoder strictly outperforms *-RNN for almost every number of unroll steps, and perform nearly as well as or
better than *-BOW.
Table 5: Performance of different architectures and sentence representations on unsupervised similarity tasks
using dot product as the similarity measure. On each task, the highest performing setup for each encoder type
is highlighted in bold and the highest performing setup overall is underlined. All reported values indicate
Pearson/Spearman correlation coefficients for the task.

Encoder Decoder STS12 STS13 STS14 STS15 STS16
BOW 0.286/0.384 0.381/0.426 0.365/0.406 0.262/0.392 0.260/0.328

RNN RNN 0.267/0.286 0.371/0.365 0.357/0.348 0.379/0.379 0.313/0.303
RNN-mean 0.330/0.361 0.420/0.427 0.438/0.428 0.419/0.426 0.324/0.342
RNN-concat 0.335/0.359 0.411/0.415 0.413/0.403 0.414/0.419 0.326/0.347

BOW 0.351/0.390 0.418/0.478 0.442/0.488 0.455/0.535 0.370/0.461
BOW RNN 0.310/0.342 0.365/0.422 0.396/0.440 0.412/0.469 0.281/0.330

RNN-mean 0.394/0.414 0.469/0.495 0.490/0.498 0.495/0.530 0.381/0.439
RNN-concat 0.422/0.438 0.478/0.498 0.498/0.506 0.512/0.544 0.402/0.460

under the dot product. This potentially renders the dot product a less useful metric to choose for
STS tasks than cosine similarity, which is unaffected by this issue.

C UNROLLING RNN DECODERS BY TAKING THE MEAN

A practical downside of the unrolling procedure described in subsection 3.3 is that concatenating
hidden states of the decoder leads to very high dimensional vectors, which might be undesirable
due to memory or other practical constraints. An alternative is to instead average the hidden states,
which also corresponds to a representation space in which the training objective optimises the dot
product as a measure of similarity between a sentence and its context. We refer to this model choice
as *-RNN-mean.

Results on similarity and transfer tasks for BOW-RNN-mean and RNN-RNN-mean are presented
in Table 5 and 6 respectively, with results for the other models from section 5 included for complete-
ness. While the strong performance of RNN-RNN-mean relative to RNN-RNN is consistent with
our theory, exploring why it is able to outperform RNN-concat experimentally on STS tasks is left
to future work.

14

Workshop track - ICLR 2018

Table 6: Performance of different architectures and sentence representations on supervised transfer tasks. On
each task, the highest performing setup for each encoder type is highlighted in bold and the highest performing
setup overall is underlined. All reported values indicate test accuracy on the task, except for SICK-R where we
report the Pearson correlation with human-provided scores.

Encoder Decoder MR CR MPQA SUBJ SST TREC MRPC SICK-R SICK-E
BOW 75.78 79.34 86.25 90.77 81.99 84.60 70.55 0.80 78.81

RNN RNN 77.06 81.77 88.59 92.56 82.65 86.60 71.94 0.83 81.10
RNN-mean 76.55 81.03 87.35 92.29 81.11 84.80 73.51 0.84 78.22
RNN-concat 76.20 82.07 85.96 91.80 80.83 87.20 71.59 0.82 80.35

BOW 76.16 81.14 87.03 92.77 81.66 84.20 71.07 0.84 80.58
BOW RNN 76.05 82.07 85.80 92.13 80.83 87.20 72.99 0.82 78.87

RNN-mean 75.85 81.30 85.54 90.80 80.12 84.00 71.13 0.81 77.76
RNN-concat 77.27 82.04 88.74 92.88 81.82 89.60 73.68 0.85 82.26

15

	Introduction
	Optimal Representation Space
	Optimal Sentence Representation Space
	Background
	Log-Linear Decoders
	Recurrent Sequence Decoders

	Experimental setup
	Results
	Conclusion
	Comparison with SkipThought
	Cosine similarity on sts tasks
	Unrolling RNN decoders by taking the mean

