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ABSTRACT

Deep neural networks have recently demonstrated excellent performance on vari-
ous tasks. Despite recent advances, our understanding of these learning models is
still incomplete, at least, as their unexpected vulnerability to imperceptibly small,
non-random perturbations revealed. The existence of these so-called adversar-
ial examples presents a serious problem of the application of vulnerable machine
learning models. In this paper, we introduce the layerwise origin-target synthesis
(LOTS) that can serve multiple purposes. First, we can use it as a visualization
technique that gives us insights into the function of any intermediate feature layer
by showing the notion of a particular input in deep neural networks. Second, our
approach can be applied to assess the invariance of the learned features captured
at any layer with respect to the class of the particular input. Third, we can also
utilize LOTS as a general way of producing a vast amount of diverse adversar-
ial examples that can be used for training to further improve the robustness and
performance of machine learning models. However, we show that the improve-
ment with respect to adversarial robustness to different adversarial types varies
and highly depends on the type used for training – some adversarial generation
techniques can be almost completely immune to adversarial training.

1 INTRODUCTION

Due to tremendous progress over the last several years, the most advanced deep neural networks
(DNNs) have managed to approach and even surpass human level performance on a wide range of
challenging machine learning tasks (Parkhi et al., 2015; Schroff et al., 2015; Szegedy et al., 2015;
He et al., 2016). Despite the fact that we are able to design and train learning models that perform
well, our understanding of these complex networks is still incomplete. This was highlighted by the
discovery of the intriguing properties of machine learning models by Szegedy et al. (2014).

Gaining intuitive insights and, thus, building a better understanding of how these models work has
a long history in the literature. For visual recognition tasks, various techniques have been proposed
to address the problem of understanding which kind of features are captured and used by learning
models (Erhan et al., 2009; Mahendran & Vedaldi, 2016) and how the different internal represen-
tations of object classes or input images can be better visualized (Zeiler & Fergus, 2014; Yosinski
et al., 2015; Simonyan et al., 2014; Mahendran & Vedaldi, 2016).

While exploring the internal details of DNNs in order to further advance their performance via
visualization is particularly relevant and the subject of this paper, recent research has also been
focusing on the unpleasant properties revealed by Szegedy et al. (2014). Namely, machine learning
models, including the best performing DNNs, suffer from a highly unexpected instability as they can
confidently misclassify adversarial examples that are formed by adding imperceptible, non-random
perturbations to otherwise correctly classified inputs. As DNNs are expected to be robust to small
perturbations to their inputs due to their excellent generalization capabilities, the existence of such
adversarial perturbations challenges our understanding of DNNs and questions the utility of such
vulnerable learning models in real-world applications. Researchers proposed various techniques to
reliably find adversarial perturbations (Szegedy et al., 2014; Goodfellow et al., 2015; Sabour et al.,
2016; Rozsa et al., 2016), and demonstrated that adversarial examples can serve a good purpose as
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well, as they can be successfully used for training to improve both the overall performance and the
robustness of machine learning models (Goodfellow et al., 2015; Rozsa et al., 2016).

In this paper, we introduce the layerwise origin-target synthesis (LOTS) that can be efficiently used
for multiple purposes. First, it can be applied to visualize the internal representation of an input
captured by the learning model at any particular layer. Second, LOTS is capable of forming a vast
amount of diverse adversarial examples for each input and we demonstrate that such diversity can be
beneficial for adversarial training. We show that the improvement achieved by adversarial training
is limited to certain types of adversarial generation techniques. Finally, derived from the previous
utilization, LOTS can be used to explore and assess how stable a particular internal representation of
an input is with respect to the class of the input. This paper introduces our novel approach, compares
it to related work, and highlights its benefits and possible directions of future work.

2 RELATED WORK

While deep neural networks (DNNs) have achieved excellent performance on various tasks, there is
an increasing interest to alleviate their vulnerability to adversarial examples. To better understand
the sometimes unexpected behavior of learning models, visualizing the learned features is a com-
mon practice for gaining intuitive insights. As our work is related to the visualization of feature
representations and adversarial instability, this section discusses the relationships to both areas.

2.1 VISUALIZATION

In order to design and train better performing machine learning models, it is useful to have a clearer
understanding about the internal operations and behaviors of these complex models. Otherwise,
research aiming to develop more advanced learning models remains restricted to trial-and-error.

Visualization of DNNs was pioneered by Erhan et al. (2009) who displayed high level features
learned by various models at the unit level by finding the optimal stimulus in the image space that
maximizes the activation of each particular unit. While their approach requires careful initializa-
tion, it cannot provide information about the invariance of the inspected units. To address this
short-coming, Simonyan et al. (2014) demonstrated how image-specific class saliency maps can be
obtained from the last fully connected layers of DNNs, showing areas of the image that are discrim-
inative with respect to a given class. The authors also introduced a technique – image inverting – to
generate artificial images that maximize the selected class score. Related to saliency maps, Girshick
et al. (2014) showed that identifying regions of images yielding high activations at higher layers can
be successfully used for object detection. Zeiler & Fergus (2014) extended visualization to convo-
lutional features. Furthermore, their approach not only finds patches of input images that stimulate
a particular feature map, but is also capable of revealing structures within those patches by using a
top-down projection.

Although these visualization techniques helped to gain insights into how and why DNNs might
work, researchers proposed various approaches to enhance the produced representations commonly
called pre-images. Yosinski et al. (2015) visualized activations on each layer for an image or video,
and introduced methods to produce qualitatively clearer and more interpretable visual representa-
tions. Similarly, Mahendran & Vedaldi (2016) presented regularized visualizations for maximized
activations and inverted images in order to obtain natural looking pre-images.

Using LOTS we explore how the extracted features of an image at any given layer translate back to
the input space, and how invariant those features are with respect to the class of a particular input.

2.2 ADVERSARIAL REPRESENTATIONS

Szegedy et al. (2014) revealed that machine learning models, including state-of-the-art DNNs, are
vulnerable to adversarial examples – formed by applying imperceptibly small, non-random pertur-
bations to otherwise correctly recognized inputs – which lead to misclassifications. This discovery
fundamentally challenged our understanding of DNNs, namely, the excellent performance achieved
by these complex models was believed to be due to their capability of learning features from the
training set that generalize well. The existence of adversarial examples highlights that machine
learning models are in fact not robust, and adversarial instability needs to be addressed.
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Since Szegedy et al. (2014) presented the problem and introduced the first method that is able to reli-
ably find adversarial perturbations, various approaches were proposed in the literature. Compared to
the computationally expensive box-constrained optimization technique (L-BFGS) of Szegedy et al.
(2014), a more lightweight, yet effective technique was introduced by Goodfellow et al. (2015). The
proposed fast gradient sign (FGS) method relies on the sign of the gradient of loss which needs to be
calculated only once in order to form an adversarial perturbation. The authors also demonstrated that
by using FGS examples implicitly in an enhanced objective function, both the overall performance
and the robustness of the trained models can be improved. Later, Rozsa et al. (2016) demonstrated
that by not using the sign, the formalized fast gradient value (FGV) approach produces significantly
different adversarial samples compared to FGS.

All of the aforementioned adversarial example generation techniques rely on ascending the gradient
of loss used for training the network, namely, the formed perturbation causes misclassification by
increasing the loss until the particular original class does not have the highest prediction probability.
Methods that do not rely on the use of the gradient of loss used for training were also proposed by
researchers. The approach of Sabour et al. (2016) produces adversarial images that not only cause
misclassifications but mimic the internal representations of the targeted original inputs. Again, their
technique uses the computationally expensive L-BFGS algorithm. Rozsa et al. (2016) introduced the
hot/cold approach which causes recognition errors by not only reducing the prediction probability
of the original class of the input, but by aiming to magnify the probability of a specific target class.
To do so, the hot/cold approach defines a Euclidean loss on the penultimate layer, and uses its gra-
dients with varying target classes as directions for finding adversarial perturbations. Therefore, this
approach is capable of producing multiple diverse adversarial examples for each input. The authors
demonstrated that using a diverse set of such adversarial examples formed with perturbations with
higher magnitude than the sufficient minimum necessary to cause misclassifications can outperform
regular adversarial training. Finally, Rozsa et al. (2016) proposed a new psychometric called per-
ceptual adversarial similarity score (PASS) to better measure adversarial quality, in other words, the
distinguishability or similarity of original and adversarial image pairs in terms of human perception.

Our novel LOTS method can be considered as a general extension of the hot/cold approach to deeper
layers, and it also shows similarities to the technique of Sabour et al. (2016) in terms of directly
adjusting internal feature representations – without requiring the use of the L-BFGS algorithm.

3 APPROACH

One way of gaining insights into the operation of a deep neural network is by letting the network
process a given image and – after modifying the output of the network – projecting this modification
back to the input level, e.g., via backpropagation. While changing the output appears to be straight-
forward due to our clear(er) understanding of its meaning, e.g., the hot/cold approach (Rozsa et al.,
2016) modifying logits, theoretically, the modification can happen at any layer or any neuron of the
network. However, the interpretation of such modifications might be more difficult as the output of
a given layer or neuron per se is not guaranteed to have a semantic meaning.

Formally, let us consider a network f with weights w in a layered structure, i.e., having layers
y(l), l = {1, . . . , L}, with their respective weights w(l). For a given input x, the output of the
network can be formalized as:

f(x) = y(L)
(
y(L−1)

(
. . .
(
y(1)(x)

)
. . .
))

, (1)

while the internal representation of the given input x at layer l is:

f (l)(x) = y(l)
(
y(l−1)

(
. . .
(
y(1)(x)

)
. . .
))

. (2)

Our layerwise origin-target synthesis (LOTS) approach aims to adjust the internal representation of
an input xo, the origin, to get closer to the internal representation associated with input xt, the target.
To do so, we use a Euclidean loss defined on the captured internal representations of the origin and
target at layer l, and apply its gradient with respect to the origin to manipulate the internal features
of the origin, formally:

η(l)(xo, xt) = ∇xo

[
1

2

∑
i

(
f
(l)
i (xt)− f (l)i (xo)

)2]
. (3)
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We can use the direction defined by this gradient and form adversarial perturbations using a line-
search – similar to the fast gradient sign (FGS) method (Goodfellow et al., 2015) and the hot/cold
approach (Rozsa et al., 2016). Compared to previous techniques, LOTS has the potential to form
dramatically more, and more diverse perturbations for each input due to the large amount of possible
targets and the number of layers it can be used on.

Alternatively, LOTS can be used on the origin itself in order to magnify or reduce the internal
representation of input xo at layer l. This can be formalized as:

η̂(l)(xo) = ∇xo

[
±1

2

∑
i

(
f
(l)
i (xo)

)2]
. (4)

While the directions defined by these gradients can be utilized to form adversarial perturbations,
they can also be used to visualize the captured internal representations of the input at layer l.

4 VISUALIZATION VIA LOTS

First, we focus on demonstrating the visualization capabilities of LOTS, exploring the captured
internal representations of inputs on different DNNs. We investigate two publicly available deep
neural networks: the 4-layer LeNet network from LeCun et al. (1995) trained on the MNIST dataset
(LeCun et al., 1998), and the 16-layer VGG face recognition network from Parkhi et al. (2015).

To quantify the perturbed images, we use three metrics: L2 and L∞ norms of the perturbations, as
well as the perceptual adversarial similarity score (PASS) (Rozsa et al., 2016) between origin xo and
the perturbed image x±o . While L2 and L∞ norms focus strictly on the perturbations regardless of
how visible or hidden those are on the distorted images, PASS was designed to quantify the similarity
of original and perturbed image pairs with respect to human perception. The calculation of PASS
takes two steps: alignment by maximizing the enhanced correlation coefficient (ECC) (Evangelidis
& Psarakis, 2008) of the image pair with homography transform Ψ(x±o , xo), followed by quantifying
similarity between the aligned adversarial and original images using the structural similarity index
(SSIM) (Wang et al., 2004). Consequently, PASS can be formalized as follows:

PASS
(
x±o , xo

)
= SSIM

(
Ψ
(
x±o , xo

)
, xo

)
, (5)

where PASS(x±o , xo) = 1 indicates perfect similarity. Note that throughout our experiments, we
form perturbed images that have discrete pixel values in [0, 255].

4.1 INTERNAL REPRESENTATION OF HANDWRITTEN DIGITS

To visualize the captured internal representations of an input at a given layer of the LeNet network,
we apply Equation (4) on each layer. When we use the positive sign to form a perturbed image
x+o , the captured internal representation is magnified and the classification of the modified digit
will usually not change. On the other hand, by using the negative sign in Equation (4) for forming
a perturbed image x−o , we can display which kind of modifications would be required to inhibit
the internal representation of origin xo at that particular layer. Consequently, by increasing the
magnitude of the perturbation, the network is more likely to classify x−o differently than the origin
xo as feature representations of the original class are fading away.

Figure 1 displays the visualized internal representations of an exemplary MNIST image with label
4, shown in Figure 1(a), captured by the LeNet network. The x+o samples are displayed in Fig-
ures 1(b) - (e). Please note that magnifying the captured internal feature representations does not
lead to altered classifications, therefore, these examples are optimized for visualization purposes.
The perturbations shown in Figures 1(b) and 1(c) demonstrate that those convolutional layers have
learned structural characteristics of the input, and increasing the captured internal representations
of the origin gracefully translates to a thicker digit. Contrarily, the perturbations formed on the
fully-connected layers displayed in Figures 1(d) and 1(e) seem to have slightly lost spatial focus by
considering several locations in the image that appear to be unrelated for the classification of this
particular digit. The x−o examples are presented in Figures 1(f) - (i), where perturbations have the
sufficient minimal magnitude leading to a class label different than the origin’s. As demonstrated
by the perturbed images shown in Figures 1(h) and 1(i), inhibiting the captured internal representa-
tions of this particular digit yields plausible adversarial examples as those perturbations are hardly
noticeable to us.
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(a) Origin
4

(b) CONV1 (1): 4
0.9821 | 383 | 76

(c) CONV2 (2): 4
0.8854 | 280 | 77

(d) IP1 (3): 4
0.7494 | 373 | 90

(e) IP2 (4): 4
0.6441 | 467 | 100

(f) CONV1 (1): 9
0.1482 | 1840 | 254

(g) CONV2 (2): 8
0.7194 | 861 | 183

(h) IP1 (3): 9
0.7807 | 361 | 57

(i) IP2 (4): 9
0.8166 | 306 | 59

Figure 1: VISUALIZATION VIA LOTS ON LENET. This figure shows perturbed images generated using
LOTS by modifying the internal representations of an MNIST image xo, shown in (a), captured at various
layers in a trained LeNet model. Each subfigure shows the formed image x±o and the perturbation, while
the sub-captions show the name of the layer followed by an index in parenthesis indicating its position in the
network architecture, the classification of x±o , the PASS score between origin and the perturbed image, and
the L2 and L∞ norms of the perturbation. (b)–(e) show x+

o images having magnified internal representations
with perturbations scaled such that L∞ = 128. Note that as pixels are constrained to [0, 255], actual L∞
norms can be smaller. (f)–(i) contain reduced internal representations x−o formed by perturbations having the
smallest magnitude that changes the class label.

4.2 INTERNAL REPRESENTATION OF FACES

LOTS is capable of displaying more difficult objects, and can be used to visualize more complex
classes than the digits of MNIST. To demonstrate this, we generate x−o and x+o images for vari-
ous layers of the VGG Face network (Parkhi et al., 2015). Figure 2 shows some distorted samples
with the corresponding perturbations generated by modifying the internal representations captured
at various layers of the VGG Face network, for an exemplar image taken from the VGG Face
Dataset (Parkhi et al., 2015) shown in Figure 2(a). Figures 2(b) - (f) contain x−o samples, while
Figures 2(g) - (i) show x+o representations.

We can observe that due to the large number of identities (classes) present in the VGG Face Dataset,
perturbations lead to various class labels. Also, in opposition to the previously described MNIST
samples, both x−o and x+o representations can yield altered classifications, which means that over-
emphasizing the captured features of a given identity also changes the classification of the network,
however, these types of samples require perturbations with higher magnitudes.

In summary, the visualized internal feature representations of the origin suggest that lower convo-
lutional layers of the VGG Face model have managed to learn and capture features that provide
semantically meaningful and interpretable representations to human observers. Although we can
still recognize facial features and parts on visualized feature representations captured at higher lay-
ers, closer to the top layer those become harder to interpret. This can be due to the fact that closer
to the last layer the model needs features that allow for differentiating identities from one another,
hence, those features can be small for visualization, and even semantically meaningless for us.

5 LOTS OF ADVERSARIAL EXAMPLES

Now, let us exploit the instability of DNNs and show how LOTS can be applied to generate adver-
sarial examples. For a given origin image xo, we aim to form an imperceptibly small perturbation
which makes the DNN classify the perturbed image differently than the origin. In order to do so, we
can exploit Equation (3) to compute the gradient of the Euclidean loss using the feature difference
of the origin and target captured at any particular layer, and use that direction to form the adversarial
image such that the perturbation has the lowest magnitude necessary for altering the classification
or, if desired, reaching the targeted class.

For adversarial example generation, we use the same networks as before: we commence our experi-
ments forming adversarial perturbations for MNIST digits that exploit the vulnerability of the LeNet
model, we compare LOTS with other adversarial example generation techniques including the use
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(a) Origin
Olivia Wilde

(b) CONV2 1 (3): A. Breckenridge
0.6604 | 8873 | 130

(c) CONV3 2 (6): Alexa Davalos
0.8127 | 3545 | 140

(d) CONV4 3 (10): Lindsay Price
0.9242 | 1809 | 58

(e) CONV5 3 (13): Cherie Lunghi
0.9630 | 1387 | 87

(f) FC7 (15): Maria G. Cucinotta
0.9673 | 1083 | 37

(g) CONV1 1 (1): Olivia Wilde
0.9550 | 11635 | 64

(h) CONV1 1 (1): Sarah Bolger
0.6091 | 34904 | 197

(i) CONV5 1 (11): Serinda Swan
0.8037 | 3956 | 169

Figure 2: VISUALIZATION VIA LOTS ON VGG FACE. This figure shows perturbed images generated
using LOTS by modifying the internal representations of a face image xo shown in (a), captured at various
layers of the trained VGG Face model. Each subfigure shows a distorted image x±o and its perturbation. The
sub-captions list the name of the layer followed by an index in parenthesis indicating its position in the network
architecture, the classification of x±o , the PASS score between origin and the distorted image, and the L2 and
L∞ norms of the perturbation. (b)–(f) contain reduced internal representations x−o with perturbations having
the sufficient minimal magnitudes to change the classification. (g) serves purely visualization purposes as its
corresponding perturbation is scaled to L∞ = 64. (h) and (i) show x+

o images that magnify the captured
internal representations with sufficiently large perturbations that result in altered classifications by the model.

for adversarial training, and then we turn to the more challenging task of manipulating internal
representations of faces to cause misclassifications on the VGG Face model.

5.1 ADVERSARIAL EXAMPLES OF HANDWRITTEN DIGITS

Let us consider an image of digit 4 as the origin that we would like to turn to a 9 – at least, its LeNet
classification. After selecting an applicable image of 9 for being the target, we can use the extracted
feature representations of the target and the origin to form the adversarial perturbation utilizing the
direction specified by Equation (3). As shown in Figure 3, we use the same origin image as in
Figure 1(a) and a selected target image (cf. Figure 3(b)) that looks relatively similar to the origin,
but is clearly from another class.

When generating the adversarial example xto by manipulating the internal feature representations
captured at the first convolution layer (CONV1), we can clearly see that the perturbation focuses
on the difference between the origin 4 and the target 9, as shown in Figure 3(c). Moving to higher
layers (CONV2, IP1 and IP2), we can observe that perturbations lose the focus more and more on
the global structure, i.e., they are not focusing on the digit. Interestingly, the perturbations for this
particular origin-target pair at higher layers have smaller L2 and L∞ norms, but also lower PASS
scores, which indicates that the perturbed images generated at lower layers are less distinguishable
from the origin, in other words, they are better in terms of adversarial quality. This might be due to
the fact that the origin-target pair is indeed very similar with respect to the shapes of those digits – in
other words, they are gracefully aligned – even though they perfectly represent their distinct classes.
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(a) Origin
4

(b) Target
9

(c) CONV1 (1): 9
0.9514 | 283 | 59

(d) CONV2 (2): 9
0.9301 | 289 | 56

(e) IP1 (3): 9
0.8942 | 173 | 40

(f) IP2 (4): 9
0.8750 | 158 | 31

Figure 3: ADVERSARIAL PERTURBATIONS VIA LOTS ON LENET. This figure shows adversarial
images and their corresponding perturbations of handwritten digits generated with LOTS using the origin from
(a) and target from (b). Each subfigure shows the adversarial image xt

o and the perturbation, while the sub-
captions show the name of layer followed by an index in parenthesis indicating its position in the network
architecture, the classification of xt

o, the PASS score between origin and the adversarial image, and the L2 and
L∞ norms of the perturbation.

5.2 COMPARISON OF ADVERSARIAL TYPES

In order to compare LOTS with previous adversarial generation techniques, we have conducted
experiments on LeNet to measure the quantity and the adversarial quality of the produced samples.
Furthermore, we have analyzed the effects of various adversarial types on error rates and adversarial
robustness by using these samples for adversarial training.

First, we have trained a LeNet model on the MNIST Training dataset (60k digits), and we have also
generated 2M images with InfiMNIST (Loosli et al., 2007) and trained a network for 100k iterations
with the same hyperparameters distributed with Caffe (Jia et al., 2014). The former network is
denoted as the Basic LeNet and the latter is listed as InfiMNIST in Table 1.

To compare LOTS with previously introduced adversarial generation techniques with respect to
adversarial quality, we have formed perturbed images using the fast gradient sign (FGS) (Goodfellow
et al., 2015) and the fast gradient value (FGV) (Rozsa et al., 2016) methods – both utilizing the
gradient of loss used for optimization – the hot/cold (HC) approach (Rozsa et al., 2016) and our novel
LOTS method on the MNIST Test dataset (10k digits). On the generated samples we have collected
four metrics for each adversarial type, respectively: the success rate showing the percentage of all
attempts the particular technique can produce a perturbation which changes the classification, PASS
quantifying the adversarial quality in terms of imperceptibility with respect to human perception,
and L2 and L∞ norms of the perturbations.

Using FGS, FGV, and HC, we have generated all possible perturbations having the smallest mag-
nitudes that yield misclassifications. This translates into 1 possible perturbation with both FGS
and FGV methods, and 9 possible HC samples for each image of the MNIST Test dataset. For
LOTS, we have limited the targets by selecting one image per class – resulting in “only” 36 possi-
ble perturbations for each input. Utilizing all possible target images is impractical, even on a small
dataset like MNIST. Considering the collected metrics on the two baseline networks – Basic LeNet
and InfiMNIST in Table 1 – we can observe that LOTS maintains high success rates (99.56% and
99.07%) comparable to other adversarial generation methods, while the achieved mean adversarial
quality (0.6561 and 0.6667) is better than obtained with FGS (0.4303 and 0.4553), and is worse than
FGV (0.7753 and 0.7819) and HC (0.7269 and 0.7417) samples have. Interestingly, we have found
that LOTS utilizing FGV or HC samples as targets can produce perturbed images with adversarial
quality surpassing the originating adversarial images – indicated by higher PASS scores – but these
“improved” samples do not provide any further improvements over their ancestors when used for
adversarial training.

To analyze the performances of adversarial generation techniques when the formed samples are used
for training, we have generated perturbed images for the MNIST Training dataset on our Basic LeNet
model and then used those images for fine-tuning it. Since we have various numbers of perturbed
images for each adversarial type, we have fine-tuned Basic LeNet using the regular hyperparameters
for different number of iterations: 20k iterations for FGS (app. 52k images) and FGV (app. 51k
images) samples, 50k iterations for HC (app. 538k images), and 100k iterations for LOTS (app.
2.1M images) samples generated on the 4 layers of LeNet. For LOTS, we have selected one image
per class and used the same 10 images as targets. Considering all possible targets, the overall number
of perturbed images would be beyond 10 billion samples.
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Table 1: ADVERSARIAL TRAINING ON LENET. This table contains collected metrics of adversarial
images generated on the MNIST Test dataset using FGS, FGV, HC, and LOTS on corresponding models. The
table contains metrics for a Basic LeNet model trained regularly, and for InfiMNIST, a LeNet model trained with
2M digits. Other models were obtained by generating adversarial examples for the MNIST Training dataset
on Basic LeNet and using those samples to fine-tune Basic LeNet with the adversarial type listed as the model
name. For each adversarial type success rate, PASS, and, below, L2 and L∞ norms are listed.

Model Error FGS FGV HC LOTS

Basic LeNet 0.91% 85.37% | 0.4303± 0.1098
718.8± 281.2 | 34.6± 13.2

85.37% | 0.7753± 0.1050
435.3± 187.9 | 94.4± 38.7

99.92% | 0.7269± 0.1102
596.0± 275.5 | 117.5± 47.2

99.56% | 0.6561± 0.1245
1004.0± 456.8 | 170.0± 52.4

InfiMNIST 0.53% 92.89% | 0.4553± 0.1069
729.6± 260.6 | 35.2± 12.5

92.88% | 0.7819± 0.0921
450.5± 181.7 | 94.6± 36.2

99.71% | 0.7417± 0.0944
566.0± 224.9 | 107.6± 40.4

99.07% | 0.6667± 0.1236
986.8± 473.7 | 163.6± 54.1

FGS 0.77% 80.69% | 0.4835± 0.1019
650.9± 255.8 | 33.6± 13.8

80.69% | 0.7576± 0.0997
427.7± 186.2 | 91.0± 39.7

100.00% | 0.7200± 0.0912
594.3± 249.0 | 116.8± 49.8

91.05% | 0.6457± 0.1138
1032.0± 393.4 | 179.6± 51.5

FGV 0.82% 60.52% | 0.4240± 0.1161
701.3± 256.0 | 35.2± 13.2

60.52% | 0.7722± 0.1083
434.5± 189.8 | 96.1± 39.1

99.95% | 0.7140± 0.1079
684.8± 311.2 | 135.9± 52.4

99.69% | 0.6361± 0.1242
1094.3± 431.3 | 188.8± 50.8

HC 0.78% 71.92% | 0.4527± 0.1116
683.3± 263.8 | 34.5± 13.7

71.92% | 0.7669± 0.1105
449.8± 231.7 | 95.0± 42.7

99.99% | 0.7140± 0.1064
653.1± 320.5 | 126.6± 53.2

99.89% | 0.6401± 0.1213
1074.0± 414.0 | 183.8± 51.9

LOTS 0.65% 30.89% | 0.4506± 0.1250
597.5± 220.1 | 29.4± 10.9

30.88% | 0.8208± 0.1044
341.1± 132.9 | 83.6± 32.7

97.26% | 0.7004± 0.1127
686.1± 271.8 | 143.1± 50.3

97.61% | 0.6285± 0.1239
1119.6± 422.9 | 194.0± 48.2

LOTS CONV1 1.02% 47.58% | 0.4783± 0.1316
486.7± 185.4 | 23.9± 9.1

47.58% | 0.8144± 0.1030
295.3± 117.5 | 66.2± 26.7

100.00% | 0.7374± 0.1025
538.5± 231.5 | 106.4± 41.7

90.03% | 0.6471± 0.1357
1036.8± 538.8 | 171.6± 55.0

LOTS CONV2 0.90% 54.86% | 0.4679± 0.1263
533.6± 192.5 | 26.4± 9.5

54.85% | 0.8169± 0.1047
317.6± 120.1 | 73.3± 28.4

99.92% | 0.7468± 0.1046
535.9± 216.1 | 110.2± 41.6

98.26% | 0.6518± 0.1328
1044.2± 500.6 | 177.9± 53.5

LOTS IP1 0.74% 46.16% | 0.4456± 0.1257
659.1± 238.9 | 32.5± 11.9

46.16% | 0.8049± 0.1131
386.5± 159.5 | 90.9± 36.2

99.33% | 0.7137± 0.1204
662.2± 256.8 | 136.2± 50.0

98.72% | 0.6319± 0.1261
1099.4± 416.2 | 189.7± 48.9

LOTS IP2 0.78% 46.43% | 0.4263± 0.1275
717.8± 266.8 | 35.6± 13.6

46.42% | 0.7724± 0.1209
427.5± 172.1 | 96.3± 37.5

99.39% | 0.6869± 0.1155
727.8± 292.7 | 144.7± 53.5

99.17% | 0.6239± 0.1215
1110.7± 387.2 | 191.8± 48.9

By looking at the results listed in Table 1, we can see that fine-tuning with LOTS samples achieves
the lowest error rate (0.65%) on the MNIST Test dataset among models trained with adversarial
examples – slightly worse than InfiMNIST (0.53%) – and this network is the most robust considering
the collected metrics of all four adversarial types as well. Furthermore, we have compared the effects
of LOTS samples formed by manipulating the captured feature representations at various layers. We
have found that, in general, fine-tuning with LOTS samples originating from higher layers requires
adversarial generation techniques to form stronger, more visible perturbations as indicated by the
decreasing PASS scores and increasing L2 and L∞ norms on models denoted as LOTS CONV1,
LOTS CONV2, LOTS IP1, and LOTS IP2, respectively.

Finally, we can observe that various adversarial types have significantly different effects on adver-
sarial robustness against samples of other adversarial generation techniques. As highlighted by the
collected metrics, the HC technique is completely immune to fine-tuning with perturbed images pro-
duced using FGS. Compared to the baseline networks (Basic LeNet and InfiMNIST in Table 1), on
the network fine-tuned with FGS samples (FGS in Table 1) we have managed to generate quantita-
tively and qualitatively very similar samples via the HC approach. In summary, our results demon-
strate that the achieved adversarial robustness to different adversarial types can vary and can also
heavily depend on the particular adversarial type used for training.

5.3 ADVERSARIAL EXAMPLES OF FACES

A greater threat to automatic face recognition systems is presented by the possibility of generating
adversarial examples for face images. In DNN-based face recognition systems, usually the last layer
of the network (containing the identities) is disregarded, and the output of the penultimate layer (e.g.,
FC7 of the VGG Face model) is stored as a representation of the face. When an adversary steals this
representation of a target (without requiring the possession of the target image) and also has access
to the original network, he can generate an image that looks like himself to a human operator, but is
identified as the target identity by the network.

Given the internal representation of a target image xt representing identity t (Sean Bean in Fig-
ure 4(b)) at a given layer l of the network, and an origin image xo including its internal representa-
tion of identity o (Hugh Laurie in Figure 4(a)), we can use Equation (3), and form the adversarial
image xto classified as identity t. As shown in Figure 4, the adversarial images can be basically in-
distinguishable from the original images as indicated by the very high PASS scores, yet the network
classifies them incorrectly as the target.

8



Workshop track - ICLR 2017

(a) Origin
Hugh Laurie

(b) Target
Sean Bean

(c) FC6 (14): Sean Bean
0.9838 | 976 | 41

(d) FC7 (15): Sean Bean
0.9785 | 1136 | 48

Figure 4: ADVERSARIAL PERTURBATIONS VIA LOTS ON VGG FACE. This figure shows adversarial
images and their corresponding perturbations of face images generated with LOTS using the origin from (a)
and target from (b). Each subfigure shows the adversarial image xt

o and the perturbation, while the sub-
captions show the name of the layer followed by an index in parenthesis indicating its position in the network
architecture, the classification of xt

o, the PASS score between origin and the adversarial example, and the L2

and L∞ norms of the perturbation.

We would like to note that LOTS can be modified to perform better, however, it would be compu-
tationally more expensive. Namely, instead of calculating the gradient of the introduced Euclidean
loss with respect to the origin once and using it throughout the whole line-search, we can consider
recalculating and adjusting that direction multiple times. This “step-and-adjust” optimization could
potentially further improve both the quality of the produced adversarial examples and the capability
of LOTS to reach the target more frequently.

6 CONCLUSION

In this paper, we have presented our novel layerwise origin-target synthesis (LOTS) algorithm which
can be efficiently used for multiple purposes as we have demonstrated on two well-known deep
neural networks (DNNs): the hand-written digit recognition network LeNet (LeCun et al., 1995)
and the face recognition network from VGG (Parkhi et al., 2015).

First, we can visualize the captured internal structure of an input at any layer of DNNs and we
can also gain intuitive insights into the interpretation of a given input by DNNs by magnifying
or inhibiting what the network at a particular layer “thinks” is or is not a good representation of
the object. Second, the stability of the captured internal feature representations can be assessed
with respect to the class of the input by exploring how robust they are to perturbations aiming at
magnifying or reducing them. Third, we have demonstrated that LOTS is capable of producing a
large number of diverse adversarial examples for each input by modifying the internal structure of
the original input to mimic the particular target. This application of LOTS can help us get a deeper
understanding about the intrinsic features that differentiate classes in various layers of DNNs.

We have conducted large-scale experiments to compare our novel LOTS approach with other adver-
sarial generation techniques and have concluded that using the large number of diverse perturbed
examples produced via LOTS for adversarial training outperforms previous methods with respect
to both the achieved performance and the improved adversarial robustness. We have found that
the overall performance of adversarial training with respect to improving adversarial robustness to
different adversarial types varies depending on the chosen adversarial generation technique used to
produce samples for training. Our results suggest that adversarial training might not be considered
as a general solution to improve adversarial stability.
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