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ABSTRACT

The process of reconstructing experiences from human brain activity offers a
unique lens into how the brain interprets and represents the world. In this paper,
we introduce a method for reconstructing music from brain activity, captured using
functional magnetic resonance imaging (fMRI). Our approach uses either music
retrieval or the MusicLM music generation model conditioned on embeddings
derived from fMRI data. The generated music resembles the musical stimuli
that human subjects experienced, with respect to semantic properties like genre,
instrumentation, and mood. We investigate the relationship between different com-
ponents of MusicLM and brain activity through a voxel-wise encoding modeling
analysis. Furthermore, we discuss which brain regions represent information de-
rived from purely textual descriptions of music stimuli. We provide supplementary
material including examples of the reconstructed music at f2mu.github.io

1 INTRODUCTION

Music holds universal significance, acting as a medium for expression and communication across
diverse cultures. The representation of music within our brains has been a significant topic of interest
in neuroscience. Previous studies have examined human brain activity, as captured by functional
magnetic resonance imaging (fMRI), while participants listened to music. These studies discovered
musical feature representations in the brain, such as rhythms (Alluri et al., 2012), timbres (Toiviainen
et al., 2014; Allen et al., 2018), emotions (Koelsch et al., 2006), and musical genres (Casey, 2017;
Nakai et al., 2021). This body of research provides valuable insights into how music-related features –
both objective and subjective, acoustic and semantic – are represented within the brain, illuminating
the complexity of our experiences with music.

With the advent of text-to-music models, conditional generation of high-fidelity music has become
feasible. This exciting development bridges the gap between our linguistic understanding of music
and the actual creation of musical compositions. Thus, new questions arise: How do the text and
music embeddings used by these music generation models correspond to representations in the human
brain? Furthermore, if a correspondence exists, is it possible to generate music directly from brain
activity?

In this paper, we explore the feasibility of reconstructing music from brain activity scans with
MusicLM (Agostinelli et al., 2023). We also compare some of the internal representations of
MusicLM, such as the high-level semantic embedding space of MuLan (Huang et al., 2022) and the
low-level, averaged embeddings from w2v-BERT, to activity in different brain regions, providing
novel insights.

2 RELATED WORK

Music generation models. Generating high-fidelity music has been challenging due to the need
to produce music with both high-quality audio and long-term consistency. An initial approach was
introduced by Jukebox (Dhariwal et al., 2020), which proposes a hierarchical structure at different
time resolutions, modeled autoregressively with Transformer-based models. While Jukebox generates
music with high temporal coherence, it contains perceptible artifacts. PerceiverAR (Hawthorne et al.,
2022) makes use of SoundStream, a neural audio codec which compresses audio at low bitrates, while
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maintaining a high-quality reconstruction (Zeghidour et al., 2021a). PerceiverAR models a sequence
of discrete SoundStream embeddings autoregressively, generating high quality audio but lacking in
temporal coherence.

Recently, auto-regressive and diffusion-based models have significantly advanced the quality of
synthesis in both music and broader audio generation. AudioLM (Borsos et al., 2022) suggests
autoregressively modeling a hierarchical tokenization scheme composed of both semantic and acoustic
discrete audio representations. MusicLM (Agostinelli et al., 2023) integrates the AudioLM framework
with the joint music/text embedding model MuLan (Huang et al., 2022), enabling the generation
of high-fidelity music conditioned on detailed text descriptions. Other Transformer-based methods
encompass Donahue et al. (2023), Lam et al. (2023a), and Copet et al. (2023), with the last of these
leveraging the EnCodec audio codec (Défossez et al., 2022). Additionally, diffusion model-based
strategies for music generation are used by Riffusion (Forsgren & Martiros, 2022), with the most
recent advancements proposed in (Huang et al., 2023; Liu et al., 2023; Ghosal et al., 2023; Lam et al.,
2023b).

Within the framework of our Brain2Music pipeline, we employ MusicLM and its constituent compo-
nents. However, our methodology is fundamentally adaptable to any music generator, provided the
generator can accommodate conditioning on a dense embedding. When this project began, MusicLM
was the only potent music generation model accessible to us.

fMRI audio decoding and fMRI encoding. One of the key goals in neuroscience is to understand
the representations that govern the relationship between brain activity and sensory and cognitive
experiences. To this end, researchers construct encoding models to quantitatively describe which
features of these experiences (e.g., color, motion, and phonemes) are encoded as brain activity. In
contrast, they also build decoding models to infer the experienced content from a specific pattern of
brain activity (for a review, see Naselaris et al. (2011)).

Particularly in recent years, researchers have discovered correspondences between the internal
representations of deep learning models and those of the brain across various sensory and cognitive
modalities (Yamins et al., 2014; Kell et al., 2018). These findings have advanced our understanding
of brain functions through (a) the development of encoding models mediated by the representations
(Güçlü & van Gerven, 2015), (b) interpretations of the representations based on their correspondence
with brain functions (Cross et al., 2021; Takagi & Nishimoto, 2022), and (c) reconstruction of
experienced content (such as visual images) from brain activity (Shen et al., 2019; Chen et al., 2023;
Takagi & Nishimoto, 2023). More specifically, in the context of investigating auditory brain functions,
researchers have developed encoding models using deep learning models that process auditory inputs
(Kell et al., 2018), and conducted studies to reconstruct perceived sounds from brain activity (Santoro
et al., 2017; Park et al., 2023). However, so far, these studies have largely targeted general sounds,
including voices and natural sounds. There are no instances of constructing encoding models using
the internal representations of text-to-music generative models, or reconstructing musical experiences
from brain activity with a focus on music and its unique features.

3 METHODS

3.1 MUSIC FMRI DATASET

We pre-process the music genre neuroimaging dataset1 from Nakai et al. (2022) in a same manner as
Nakai et al. (2021). We outline details of the collection and preprocessing protocol in Section A.1.1.
The dataset contains music stimuli from 10 genres (blues, classical, country, disco, hip-hop, jazz,
metal, pop, reggae, and rock) which were sampled randomly from the (music-only) dataset GTZAN
(Tzanetakis & Cook, 2002). A total of 54 music pieces (30s, 22.050kHz) were selected from each
genre, providing 540 music pieces. A 15s music clip was selected at random from each music piece.
The dataset contains 480 examples for training and 60 for reporting the final results.

In this work, we augment the original dataset (Nakai et al., 2022) by introducing English text captions
which we have made publicly available2. These captions, averaging approximately 46 words or 280

1Download link: openneuro.org/datasets/ds003720
2Download link: f2mu.github.io/caption-dataset.csv
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characters in length, typically describe the musical pieces in terms of genre, instrumentation, rhythm,
and mood. They often comprise fragmented or semi-complete sentences, with an average of about 4.5
sentences per caption. The style of writing is subjective, reflecting not only the technical components
of the music such as the instruments used, but also the emotional responses or atmospheres they might
evoke in listeners. Captions were written in Japanese and translated using DeepL. Several exemplar
captions and the instructions given to the raters are in Section A.4. In this paper, the captions are
used to study how purely semantic, text-derived embeddings relate to brain activity induced by the
corresponding music stimuli.

3.2 MULAN AND MUSICLM

MuLan (Huang et al., 2022) is a joint text/music embedding model consisting of two towers, one
for text (MuLantext) and one for music (MuLanmusic). The text tower is a BERT (Devlin et al., 2019)
model pre-trained on a large text corpus. For the audio tower we use the ResNet-50 (He et al., 2015)
variant. MuLan’s training objective is to minimize a contrastive loss between the 128-dimensional
embeddings produced by each tower for an example pair of aligned music and text. For example,
the embedding of a rock song’s waveform is supposed to be close to the embedding of the text rock
music and far from calming violin solo. In this paper, if we refer to a MuLan embedding we mean by
default the embedding of the music tower.

MusicLM (Agostinelli et al., 2023) is a conditional music generation model. Conditioning signals
include – but are not limited to – text, other music, and melody. In our decoding pipeline MusicLM
is conditioned on a MuLan embedding which we compute based on an fMRI response. In MusicLM,
music is generated in two consecutive stages. The first stage learns to map a MuLan embedding
to a sequence of w2v-BERT tokens. These tokens used in MusicLM are extracted from a w2v-
BERT (Chung et al., 2021) model’s activations in the 7th layer, by clustering them with k-means.
MusicLM’s second stage maps the w2v-BERT tokens from the first stage and the MuLan embedding
to acoustic tokens. These stem from a SoundStream (Zeghidour et al., 2021a) model’s residual vector
quantizer. The resulting tokens are converted back into audio using a SoundStream decoder. As in
AudioLM (Borsos et al., 2022), the second stage is split into a coarse and fine modeling stage. All
three stages are implemented as Transformer models. A visualization of MusicLM’s components is
in Figure A.1.

3.3 DECODING: RECONSTRUCTING MUSIC FROM FMRI

With decoding we refer to attempting the reconstruction of the original stimuli (to which a test
subject was exposed) based on their recorded brain activity. This process can be subdivided into
(1) predicting the music embedding based on fMRI data and (2) retrieving or generating music based
on that embedding.

Music embedding prediction from fMRI data. Let R ∈ Rn×s×dfmri denote the response tensor
(obtained via fMRI for each of the five participants), where n = 540 is the number of stimuli (i.e.,
15s music clips), s = 10 is the number of fMRI scans per stimulus (15s), and dfmri is the number of
voxels. dfmri varies slightly across subjects depending on the physical size of their brain. For subject 1
it is around 60k. Our prediction targets are the music embeddings of the stimulus (e.g., MuLan),
T ∈ Rn×r×demb , with r being the number of embeddings computed per 15s clip (which depends on
the embedding model’s window size and the constant step size of 1.5s by which we advance this
window). Table A.2 lists the embeddings, derived from models present in MusicLM, that we consider
as candidate music embeddings in the Brain2Music architecture.

To align R and T along the time dimension, we average entries in R in a sliding-window fashion to
match the time ranges for which feature vectors in T were computed. For example, to predict the
MuLan embedding ranging from 0s to 10s (due to MuLan’s window size being 10s) we rely on the
average of five fMRI scans (from 0-1.5s, 1.5-3s, ..., 9s-10.5). This leaves us with m := n× r pairs of
response and target, which we split following Nakai et al. (2022). We model the relationship between
music embeddings and responses with weight matrix W ∈ Rdfmri×demb :

T̂ = RW . (1)
We use an L2-regularized linear regression to estimate W on the training dataset. Note that there is
no generalization between different subjects, because of anatomical differences. For each subject and
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target dimension, the regression regularization hyperparameter is tuned with five-fold cross validation
on the training dataset, while a test split is held out for later evaluation. Details are in Section A.1.3.

The training is independently performed for each anatomically defined region of interest (ROI) from
the Destrieux atlas (Destrieux et al., 2010). An ROI is a group of voxels. From all 150 ROIs we select
the top nROIs = 6 with the highest correlation scores (as determined via cross-validation) and create
an ensemble model by averaging their predictions. Concretely that leaves us with ROIs varying in
size3. The median across all subjects is 138.5 voxels; the average is 258.6 voxels. Although the exact
location of the ROIs chosen for each subject vary, for all subjects, ROIs are chosen primarily from
the auditory cortex. For a given 15s music stimulus we predict r many embeddings (depending on
the chosen embedding type).

Music retrieval and music reconstruction. We explore two different approaches to derive the
original stimulus from the prediction T̂ namely retrieving similar music from an existing music corpus
and generating music with MusicLM.

For the retrieval we compute the MuLan embeddings for the first 15s of every music clip in the Free
Music Archive (FMA) (Defferrard et al., 2017). Unless stated otherwise, we use the large variant
which contains a wide range of diverse music; concretely, 106,574 music tracks from 161 unbalanced
genres. The retrieved music is the audio of the clip whose embeddings are the closest to the predicted
one as measured by the cosine similarity.

Alternatively, we can generate the music by conditioning the MusicLM model (a high-level overview
is in Section 3.2) on the predicted embeddings. The model can then be used to generate music
conditionally. To condition MusicLM we average the r = 4 predicted MuLan embeddings along the
time dimension. This is not strictly necessary, but we empirically found the generated outputs to be
more stable compared to a version in which we provided all four embeddings to the model.

The two methods, retrieval and generation, have different advantages and disadvantages. The retrieval
approach constrains the faithfulness by its limited size. The predicted embedding could potentially
contain rich information about the song which is partially lost by mapping it onto its nearest neighbor
in the dataset. The generative model, on the other hand, can in theory generate any kind of music
covered by its training distribution, making it conceptually more powerful. That includes tracks
which are not training examples (e.g., combinations of musical concepts). A disadvantage of this
method is that the generation model may not adhere precisely to the provided embedding.

Evaluation metrics. Following the decoding literature (Takagi & Nishimoto, 2022; Park et al.,
2023), we compute an identification accuracy of the predicted d-dimensional embeddings with
respect to their target embeddings. Details are spelled out in Section A.1.4. As a second metric we
also use top-n class agreement based on the LEAF (Zeghidour et al., 2021b) classifier operating on
AudioSet classes (Gemmeke et al., 2017). In this context, we compute the per-class probabilities
for original and reconstructed music. We then look at three groups of music-related classes, namely
genres, instruments, and moods. For each group we compute the top-n agreement measuring how
much overlap there is between the top-n most probable class labels computed for original and
reconstruction. The full list of AudioSet class names in each group is in Section A.1.6.

3.4 ENCODING: WHOLE-BRAIN VOXEL-WISE MODELING

To interpret the internal representations of MusicLM, we examine the correspondence between them
and recorded brain activity. More specifically, we build whole-brain voxel-wise encoding models
to predict fMRI signals using different music embeddings occurring in MusicLM: audio-derived
embeddings (MuLanmusic and w2v-BERT-avg), and text-derived embeddings (MuLantext).

We first build encoding models to predict voxel activity from the audio-derived embeddings:
MuLanmusic and w2v-BERT-avg. Next, we build encoding models using audio-derived MuLanmusic

and text-derived MuLantext embeddings to predict fMRI signals. This allows us to explore the
differences between these two types of embeddings. The text-derived embeddings are particularly
interesting to study, because they can – by definition – only represent the high-level information

3ROI sizes vary between subjects. The top six ROIs of subject 1, for example, which are the most predictive
of MuLan embeddings, have the dimensionalities 61, 70, 109, 218, 296, and 706.
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contained in the music caption they are computed from. The MuLantext embeddings we use have a
1:1 correspondence to GTZAN clips and are computed by inferring MuLan’s text tower (a fine-tuned
BERT model) for a given GTZAN clip’s text caption. Caption examples are in Section A.4.

We also compared prediction performance of MuLanmusic with other audio-derived features for five dif-
ferent anatomically defined auditory subregions: A1 to A5 (Glasser et al., 2016). Melspectrogram was
used as a low-level feature, while HuBERT (Hsu et al., 2021) and wav2vec2.0 (Baevski et al., 2020)
were used as high-level features. A key difference between MuLanmusic and HuBERT/wav2vec2.0 is
that MuLanmusic is trained on music, whereas the latter are trained on speech. Specific details of each
embedding are in Section A.1.9. In addition, to determine whether MuLanmusic encompasses more
than genre information, we compare the prediction performance of the MuLanmusic model versus
one-hot vectors of music genre for each GTZAN clip.

The training data preparation is done in the same manner as in the decoding (outlined in Section 3.3).
The modeling problem is inverse to Equation 1, i.e., fMRI responses are predicted based on different
embeddings. Model weights are estimated from training data using L2-regularized linear regression,
and subsequently applied to test data. We estimate weights of the model from training data, and
regularization parameters are explored during the training using five-fold cross-validation. For
evaluation, we use Pearson’s correlation coefficients between predicted and measured fMRI signals.
We compute statistical significance by comparing the estimated correlations to the null distribution
of correlations calculated from the shuffled data. We set the threshold for statistical significance at
P < 0.05, and corrected for multiple comparisons using the FDR procedure. For MuLantext and
one-hot music genre vectors, we perform up-sampling to match MuLanmusic’s sampling rate.

4 RESULTS

4.1 DECODING (FMRI TO MUSIC)

Music embedding prediction. Going from fMRI to music requires the prediction of an interme-
diate music representation, that is, selecting the music embedding to use. In our architecture, the
choice of the music embedding represents a bottleneck for the subsequent music generation: Only if
we can predict music embeddings close to music embeddings of the original stimulus heard by the
subject, will we be able to generate music that is similar to the original stimulus with MusicLM. The
reconstruction quality is further constrained by what the embedding can capture.

Results obtained when predicting different embedding types are reported in Table 1. We find that
MuLanmusic embeddings can be more accurately predicted from fMRI signals than MuLantext, w2v-
BERT-avg, or SoundStream-avg embeddings. When predicting MuLanmusic embeddings, we observe
the highest correlation as well as the highest identification accuracy. Three reasons may contribute to
this: (1) The MuLantext and MuLanmusic embeddings, may be more closely aligned to the high level
of abstraction represented in the fMRI data than the other embedding types. (2) The heuristics we
applied to align w2v-BERT and SoundStream embeddings to the fMRI data may not be optimal and
may require further analysis. (3) MuLanmusic embeddings have access to more musical information
than MuLantext embeddings because they are computed from the audio signal. Based on this finding,
in the remainder of this section, we use the fMRI data to predict MuLanmusic embeddings (for brevity
referred to as MuLan embeddings) and use them to reconstruct the original stimulus.

Quantitative reconstruction evaluation. Figure 1 shows the main quantitative results. We use
two quantitative measures to evaluate the similarity of reconstructed music and original stimulus:
identification accuracy (for two embeddings of different semantic level of abstraction) and AudioSet
top-n class agreement.

The quality limit imposed by retrieval from FMA is estimated via an oracle predictor. It simply
bypasses the linear regression and instead retrieves an FMA clip based on the original music stimulus’
MuLan embedding. It simulates the retrieval performance we would achieve if our fMRI to MuLan
prediction was perfect. Performance achieved by a model sampling randomly from FMA is indicated
by the chance result in the plots.

Overall we observe significant above-chance performance on all metrics, establishing strong support
for our ability to extract musical information from the fMRI scans. The identification accuracy
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Table 1: Comparison of different music embedding prediction targets (fMRI-to-embedding). The
reported error is the standard deviation across five test subjects. Identification accuracy and correlation
are computed between embeddings of GTZAN audio (computed with the embedding model listed in
the respective row) and the embeddings predicted by the regression model. The magnitude of the
correlation is strongly influenced by the expressiveness of the chosen embedding. The main takeaway
from it is to establish an ordering of the different possible regression targets. To further analyze the
behavior, we plot the predicted MuLan embeddings in Figure A.6 and observe a noisy clustering. An
analysis of the regression regularization hyperparameter tuning, which is critical to avoid overfitting,
can be found in Section A.1.3; more detailed properties of the embeddings in Table A.2.

Embedding Identification accuracy Correlation
Test Train Test Train

SoundStream-avg 0.674± 0.016 0.764± 0.029 0.184± 0.020 0.255± 0.009
w2v-BERT-avg 0.837± 0.005 0.941± 0.007 0.113± 0.003 0.167± 0.006
MuLantext 0.817± 0.014 0.877± 0.009 0.181± 0.012 0.245± 0.009
MuLanmusic 0.876± 0.015 0.992± 0.003 0.307± 0.016 0.538± 0.023

Figure 1: Main quantitative results of the decoding, i.e., music reconstruction. The dashed, horizontal
lines (chance) indicate the performance of a random music predictor (sampling from the FMA
dataset). The dotted lines (oracle) are the oracle performance, corresponding to the performance
achieved by a regressor which would predict exactly the ground truth MuLan embedding of GTZAN.
Error bars indicate standard error of the mean across five subjects. a Identification accuracy for
different evaluation embeddings. Identification accuracy computed between the embeddings of the
original stimulus (music) and the embeddings of the reconstructed music. The reconstructed music is
more similar to the stimulus it was derived from with respect to high-level embeddings (MuLan) than
the low-level w2v-BERT-avg. Differences between generation and retrieval on FMA large (about
106k clips) are marginal, whereas retrieving from FMA small (8k clips) is overall worse. b AudioSet
top-n class agreement for different groups of AudioSet classes. A list of the classes in each group
is in Section A.1.6. Generation is here significantly superior to retrieval from FMA (both small
and large). The worst performance – relative to chance and oracle – is attained on the instrument
agreement. c Identification accuracy (based on MuLan embeddings of original and generated music)
shown separately for each of the GTZAN genres. The model performance is consistent across all
genres.

comparison across different embedding types hints at our reconstruction to be most faithful to the
original stimulus with respect to high-level semantic features as captured by MuLan. While this
might seem unsurprising, given MuLan is the target embedding of our prediction, it is not necessarily
granted that high-level semantic information about perceived music is contained in the recorded brain
response in the first place.

Whether or not low-level information is contained in the reconstruction is measured by the identifica-
tion accuracy on w2v-BERT-avg. Note, however, that the results are confounded by the embedding
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Figure 2: a Prediction performance (measured using Pearson’s R) for the voxel-wise encoding
model applied to held-out test music on subject 1, projected onto the inflated (top, lateral and medial
views) and flattened cortical surface (bottom, occipital areas are at the center), for both left and
right hemispheres. Brain regions with significant accuracy are colored (all colored voxels P < 0.05,
FDR corrected). b Density plot of the MuLanmusic (x-axis) versus w2v-BERT-avg (y-axis) model
prediction accuracy. Darker colors indicate a higher number of voxels in the corresponding bin.

averaging we perform for w2v-BERT to align the temporal resolution of the embeddings with that of
the fMRI scans. However, the numbers are in-line with the qualitative observation we make, that is,
low-level, acoustic features are relatively not well aligned, whereas the overall music style is. Our
qualitative analysis is in Section A.2.

We further observe consistent prediction performance across different genres (as labeled in the
GTZAN dataset). The highest accuracy is achieved on classical music, which is likely due to its
distinctive musical style.

4.2 ENCODING (BRAIN ACTIVITY PREDICTION)

Figure 3: Prediction performance
by different models for different
ROIs within auditory cortex. Error
bars indicate standard error of the
mean across subjects.

Comparison between different audio-derived embeddings.
Figure 2a shows the prediction accuracy of the encoding mod-
els for different types of audio-derived embeddings of music
within MusicLM: MuLan and w2v-BERT-avg. MuLan em-
beddings tend to have higher prediction performance in the
lateral prefrontal cortex than w2v-BERT-avg, suggesting that
MuLan captures high-level music information processed in the
human brain. However, when we focus on the auditory cortex,
both of the embeddings have some degree of correspondence
with human brain activity in the auditory cortex. Given that
the text-music model used in this study was not brain-inspired
compared to the previous deep learning model such as convolu-
tional neural network, it is intriguing that this correspondence
with the brain emerged. In addition, although each embedding
represents different levels of audio-derived embeddings from
low (w2v-BERT-avg) to high (MuLan), they predicted fairly
similar brain regions within the auditory cortex. Figure 2b fur-
ther confirms that well predicted voxels are largely overlapping
between two embeddings. These results suggest that, unlike the visual cortex (Takagi & Nishimoto,
2022), there is not as strong of a hierarchical functional differentiation of audio-derived embeddings
in the auditory cortex as previously thought. Note, as we mentioned at 4.1, that the results are
confounded by the embedding averaging we perform for w2v-BERT. Please see also the limitations
in Section 5. We provide additional results for all subjects in Figure A.8.

Figure 3 shows MuLanmusic outperformed the other models overall. As expected, the prediction
accuracy of melspectrogram decreased with the increasing hierarchy of the auditory cortex. However,
strikingly, DNN features more accurately predicted Lbelt/Pbelt regions (also known as A2/A3) than
A1, yet demonstrated lower performance in A4/A5. This trend has not been observed in other auditory
studies, suggesting it might be unique to music.
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Figure 4: a Prediction performance on subject 1 for MuLantext model versus MuLanmusic model. All
colored voxels P < 0.05, FDR corrected. The area in the red rectangle corresponds to the auditory
cortex. b Density plot of the MuLanmusic (x-axis) versus MuLantext (y-axis) model prediction accuracy.
c Principal components analysis reveals gradient from medial to lateral axis within auditory cortex. d
Visualisation of the representational relationships between each music projected onto the PC space.
The colors represent the genre to which each sample belongs.

Comparison between audio- and text-derived MuLan embeddings. We next investigate how
much text-derived, abstract information about music is differently represented in the auditory cortex
compared to audio-derived embeddings.

Figure 5: a Comparison of identification accu-
racy between the model in Figure 1 (full) and
those models trained with one-genre-out ablation
data and tested on the ablated genre (ablation).
b Comparing prediction performance obtained by
MuLanmusic and genre model on subject 1. Only
the voxels with R > 0.4 are colored.

Figure 4a shows the prediction performance
of the encoding models for MuLantext versus
MuLanmusic. We provide additional results for
all subjects in Figure A.8. It shows that for some
subjects, the inner side of the sulcus represents
music stronger than outer side. However, there
still seems to be modest functional differentia-
tion in the brain. Although these two represen-
tations are trained to match (Huang et al., 2022),
due to the many-to-many nature of text and mu-
sic pairings the objective cannot be achieved per-
fectly. We show that, from a neuroscience per-
spective, MuLanmusic and MuLantext actually ac-
quired fairly similar representations. Figure 4b
further confirms that well-predicted voxels are
largely overlapping between two embeddings.
Finally, we investigated unique contributions of
MuLanmusic and MuLantext and confirmed that
MuLantext lacks unique explained variance pow-
erwhen compared to MuLanmusic (see A.1.8 for
the detail).

To further examine information representation in representative voxels, we perform principal compo-
nent analysis (PCA) on the weight matrix of encoding model of MuLanmusic (Figure 4c; see A.1.7
for details and Figure A.8 for all subjects results). The top three PC components explained 25.8,
11.0 and 5.4% of the total variance, respectively. We observed a gradient from PC1 to PC2 or PC3
from the medial to lateral axis within auditory cortex, which is not apparent from comparisons
between MuLanmusic and w2v-BERT. While we can observe this gradient consistently across subjects,
there is also notable individual differences regarding the distribution of PC2 and PC3. To interpret
the PCs, we also project each music onto a PC axes (Figure 4d). The music projected onto the
three-dimensional PC space is rather intricately distributed, although there are some coarse clusters
according to genres (e.g. Hiphop and Classical are at opposite ends of the spectrum).
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4.3 GENERALIZATION BEYOND MUSIC GENRE

We next investigate whether our model can generalize to the music genre that was not used during
training. To do so, we ablate one genre during training and determine the identification accuracy on
clips of the held-out genre (from the test set). Figure 5a shows that our model performs significantly
above chance on the unseen music genres. This suggests that our reconstruction method is generalizing
beyond the genres present in the training data.

We further compare the prediction performances of the MuLanmusic and genre models to test whether
our encoding model captures information beyond music genres. We find that, compared to the music
genres vectors, the MuLanmusic embeddings predict activity in the auditory cortex more broadly and
with higher accuracy (Figure 5b). This is another piece of evidence that our model might predict
beyond the music genre information. We provide additional results for all subjects in Figure A.9.

5 LIMITATIONS

The powerful music generation model we use converts a MuLan embedding into music. Information
that is not contained in the embedding, but required to produce a music clip, is added by the model. In
the retrieval case, it is even guaranteed that the reconstruction is musical, because it is directly pulled
from a dataset of music. While this leads to impressive, human-digestible results, it also suggests a
higher level of reconstruction quality than there may be.

The main three factors limiting the reconstruction quality are: (1) how much information we can
extract with linear regression from the fMRI data, (2) what the chosen music embedding – in our
case MuLan – can capture, and (3) the limitations of the music retrieval (dataset size and diversity) or
generation (generative model capabilities). In the encoding analysis in Section 4.2 we investigate
the limitations of (1 + 2) together by predicting brain activity for different embedding types. We
disentangle (2 + 3) from (1) by showing the maximum attainable performance as an oracle dashed-line
in Figure 1. It shows, for example, that top-1 class agreement on moods cannot exceed 78% given the
MuLan embedding and FMA retrieval dataset choice. To observe the variability of (3), we experiment
with three different reconstruction processes, i.e., two sizes of FMA for retrieval and a generative
model. Further investigation of (1), (2), and (3) remains an open challenge.

The coarse temporal sampling rate of fMRI (1.5s, in the present study) is a limitation of the present
study. However, it is noteworthy that even at the fMRI sampling rate of 2.5s, Santoro et al. (2017)
showed temporal specificity at 200ms by using multi-voxel patterns. Different voxels might have
information about different frequency bands, which may collectively contribute to this result. How
much information can actually be retrieved from fMRI is a subject for future research (see Nishimoto
et al. (2011) for reconstructing perceived natural movies from fMRI data using frequency-decomposed
voxel-wise representations). Similarly, the temporal averaging of SoundStream and w2v-BERT
embeddings likely worsens their expressiveness.

6 CONCLUSION

With Brain2Music we explored the exciting research direction of reconstructing music from recorded
human brain activity. By conditioning MusicLM on a dense music embedding predicted from fMRI
data, we were able to generate music which resembles the original music stimuli on a semantic
level. We also investigated the connection between a text-to-music model and the human brain in a
quantitative manner by constructing an encoding model. Specifically, we assessed where and to what
extent high-level semantic information and low-level acoustic features of music are represented in the
human brain. Although text-to-music models are rapidly developing, their internal processes are still
poorly understood. This study is the first to provide a quantitative interpretation from a biological
perspective.

Given the nascent stage of music generation models, this work is just a first step. Future work may
improve the temporal alignment between reconstruction and stimulus or explore the reconstruction of
music from pure imagination.
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ETHICS STATEMENT

Our work addresses the challenging task of reconstructing music from human brain activity. This
is exploratory in nature and has the sole goal of better understanding the human brain and how it
can be decoded. Accessing sensitive cognitive or emotional information is an ethically critical field.
Participants of the data collection, which was carried out by Nakai et al. (2022), have explicitly
consented to the data collection for research purposes. Experiments that contributed to this work
were approved by an Institutional Review Board (IRB).

Note that the decoding technology described in this paper is unlikely to become practical in the near
future. In particular, reading fMRI signals from the brain requires a volunteer to spend many hours
in a large MRI scanner. While there are no immediate privacy implications from the technology
as described here, as with this study, any such analysis must only be performed with the informed
consent of the studied individuals. With the amount of work required to obtain fMRI signals from the
brain, we do not have direct applications in products in mind.

REPRODUCIBILITY STATEMENT

We encourage researchers to reproduce our work and support them in several ways. The main dataset
we use is open-source Nakai et al. (2022). It contains pairs of music and fMRI scans and is at the heart
of what we explore. The additional caption data which we have collected is being shared as part of
this work4. The weights of the music generation model MusicLM and the joint text+music embedding
model MuLan are proprietary. However, we publish the source code used to run the experiments
predicting music embeddings from fMRI, which also contains the evaluation implementation.

4Download link: f2mu.github.io/caption-dataset.csv

10

https://f2mu.github.io/caption-dataset.csv


Under review as a conference paper at ICLR 2024

REFERENCES

Andrea Agostinelli, Timo I. Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, Matt Sharifi, Neil Zeghidour,
and Christian Frank. Musiclm: Generating music from text, 2023.

Emily J. Allen, Michelle Moerel, Agustı́n Lage-Castellanos, Federico De Martino, Elia Formisano,
and Andrew J. Oxenham. Encoding of natural timbre dimensions in human auditory cortex.
NeuroImage, 166:60–70, 2018. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.
2017.10.050. URL https://www.sciencedirect.com/science/article/pii/
S1053811917308844.
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A APPENDIX

A.1 METHOD DETAILS

A.1.1 FMRI DATA COLLECTION AND PREPROCESSING

Data collection details. During scanning, five participants were asked to focus on a fixation cross
at the center of the screen and to listen to the music clips through MRI-compatible insert earphones
(Model S14, Sensimetrics). Every subject heard the same music clips. This headphone model can
attenuate scanner noise and has been widely used in previous MRI studies with auditory stimuli
(Norman-Haignere et al., 2015). Scanning was performed using a 3.0T MRI scanner (TIM Trio;
Siemens, Erlangen, Germany) equipped with a 32-channel head coil. For functional scanning, we
scanned 68 interleaved axial slices with a thickness of 2.0mm without a gap using a T2∗-weighted
gradient echo multi-band echo-planar imaging (MB-EPI) sequence (Moeller et al., 2010) (repetition
time (TR, aka. sampling interval) = 1,500ms, echo time (TE) = 30ms, flip angle (FA) = 62◦, field
of view (FOV) = 192 × 192mm2, voxel size = 2 × 2 × 2mm3, multi-band factor = 4). A total of
410 volumes were obtained for each run.

Preprocessing details. We pre-process the music genre neuroimaging dataset5 from Nakai et al.
(2022) in a same fashion as Nakai et al. (2021), recited below. Motion correction is performed
for each run using the Statistical Parametric Mapping toolbox (SPM8; Wellcome Trust Centre for
Neuroimaging, London, UK; fil.ion.ucl.ac.uk/spm). All volumes are aligned to the first EPI image for
each participant. For each clip, 2s of fade-in and fade-out were applied and the overall intensity was
normalized. Low-frequency drift is removed using a median filter with a 240s window. To augment
model fitting accuracy, the response for each voxel is normalized by subtracting the mean response
and then scaling it to the unit variance. We use FreeSurfer (Dale et al., 1999) to identify the cortical
surfaces from the anatomical data and register them with the voxels of the functional data. We use
only cortical voxels as targets of the analysis for each participant. For each participant, we use the
voxels identified in the cerebral cortex in the analysis (53,421 to 64,700 voxels per participant).

A.1.2 MUSICLM

Codec (SoundStream)

Stage 1

Stage 2

Low-level (w2v-BERT)

High-level (MuLan)

Linear 
regression

Low-level (w2v-BERT)

fMRI response

SoundStream
decoder

Generated music

MusicLM

High-level (MuLan)

Figure A.1: Visual representation of MusicLM (Agostinelli et al., 2023) in the context for fMRI
decoding. Rounded-rectangle elements denote embeddings/tokens; sharp corners models with
parameters. The process begins with an fMRI response, captured from a test subject exposed to music.
It is subsequently mapped to a 128-dimensional MuLan embedding via linear regression. The first
stage of MusicLM then refines the MuLan embedding into low-level representation of w2v-BERT
tokens with temporal information. The subsequent stage, informed by both the output of the previous
stage and the MuLan embedding, generates tokens for the SoundStream audio codec. In the last step
these are transformed into a waveform through a SoundStream decoder.

5Download link: openneuro.org/datasets/ds003720
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Table A.2: Different embeddings and their properties: d denotes the embedding dimensionality. r
is the number of embeddings we compute per 15s music clip, when we advance the given window
with a step size of 1.5s. We also provide the original frequency of the embeddings as provided by the
models. After averaging across the given time window for SoundStream and w2v-BERT embeddings,
the frequency becomes 0.67 Hz for all models, given our step size of 1.5s. For a comparison, we
also include properties of the fMRI data of subject 1 (for which d are the dimensions of the top 6
most-correlated ROIs when predicting MuLanmusic embeddings).

Embedding d r Original freq. [Hz] Window size [s]

SoundStream-avg 128 10 50 1.5
w2v-BERT-avg 1024 7 25 5
MuLanmusic 128 4 0.67 10
MuLantext 128 1 - 15

fMRI (top-6 ROIs) 1460 10 0.67 1.5

A.1.3 HYPERPARAMETER TUNING

We use a ridge regression to estimate our model parameters. Citing the himalaya documentation6:
Let X ∈ Rn×p be a feature matrix with n samples and p features, y ∈ Rn a target vector, and α > 0
a fixed regularization hyperparameter. Ridge regression (Hoerl & Kennard, 1970) defines the weight
vector b∗ ∈ Rp as:

b∗ = argminb‖Xb− y‖22 + α‖b‖22 . (2)

The equation has a closed-form solution b∗ = My, where M = (X>X + αIp)
−1X> ∈ Rp×n.

To determine α we run 5-fold cross-validation on the training data. Note that there is one α parameter
per regression target, i.e., 128 in our case when predicting MuLan embeddings. We inspect the
performance on training and evaluation data around the chosen α vector “α (opt)” in Figure A.2.

Figure A.2: Performance of the regressor when trained with α values in the neighborhood of the α
that was determined to be optimal on the training split via cross-validation. The model starts to overfit
with lower values of α (to the left) and underfits in the opposite direction. The plot is computed for a
model predicting MuLan embeddings for subject 1.

A.1.4 IDENTIFICATION ACCURACY METRIC

Assume there is a matrix of predicted embeddings P ∈ Rn×d and a matrix (of equal size) containing
target embeddings T . Let C ∈ Rn×n be computed from P and T , specifically Ci,j is Pearson
correlation coefficient between i-th row of P and j-th row of T . The identification accuracy for the

6gallantlab.org/himalaya/models.html#ridge
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i-th prediction is defined as:

id acci =
1

n− 1

n∑
j=1

1 [Ci,i > Ci,j ] . (3)

The identification accuracy for all examples is simply the average:

id acc =
1

n

n∑
i=1

id acci . (4)

This score, ranging from 0 to 1 with 0.5 indicating performance equivalent to random chance, provides
a quantified measure of how well an embedding was predicted in relation to other embeddings in the
dataset.

An intuitive view on the identification accuracy is that a model with 86% such accuracy, on average,
14% of the candidates retrieved will score higher, i.e., have a higher correlation coefficient, than the
correct candidate. In a dataset with 60 examples, the average rank of the correct music clip would be
0.14× 60 ≈ 8.

A.1.5 TOP-n CLASS AGREEMENT METRIC

Below is the algorithm used to compute the top-n class agreement. It is the intersection-over-union
among the top-n classes (of a certain group; see Section A.1.6) predicted by the LEAF (Zeghidour
et al., 2021b) classifier operating on two music clips.

Algorithm 1 Calculate top-n class agreement

Require: classesA: ordered list of class labels for audio clip A
Require: classesB: ordered list of class labels for audio clip B
Require: n: number of top-n classes to compare

1: function TOPNCLASSAGREEMENT(classesA, classesB, n)
2: topA← first n elements of classesA
3: topB ← first n elements of classesB
4: intersection← set of common elements in topA and topB
5: union← set of all unique elements in topA and topB
6: return size of intersection

size of union
7: end function

A.1.6 AUDIOSET CLASS GROUPS

In our AudioSet evaluation metric we compute the overlap of the top-n most likely classes (between
reconstructed and original music) in three different groups. The groups and the n choice are genres
(top-2), instruments (top-2), and moods (top-1).

Below is a list of the AudioSet class names of each group:

Genres: Pop music, Hip hop music, Rock music, Rhythm and blues, Soul music, Reggae, Country, Funk,
Folk music, Middle Eastern music, Jazz, Disco, Classical music, Electronic music, Music of Latin America,
Blues, Music for children, New-age music, Vocal music, Music of Africa, Christian music, Music of Asia, Ska,
Traditional music, Independent music

Instruments: Plucked string instrument, Keyboard (musical), Percussion, Orchestra, Brass instrument, Bowed
string instrument, Wind instrument, woodwind instrument, Harp, Choir, Bell, Harmonica, Accordion, Bagpipes,
Didgeridoo, Shofar, Theremin, Singing bowl, Scratching (performance technique)

Moods: Happy music, Sad music, Tender music, Exciting music, Angry music, Scary music

A.1.7 PRINCIPAL COMPONENT ANALYSIS ON THE WEIGHT MATRIX OF THE ENCODING MODEL

To further examine information representation in each voxel, we perform PCA on the weight matrix of encoding
model of MuLanmusic. For each of the top 600 voxels of predictive power (approximately 1% of all voxels,
almost all in the auditory cortex), the weight matrix (voxels × 128) estimated by the MuLan encoding model
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was extracted. The weight matrices (voxels ∗ 5 × 128) of the five participants were concatenated to obtain
results for the whole group of participants. Dimensionality reduction of the weight matrices was performed
using PCA on the feature direction of the concatenated weight matrices.

A.1.8 VARIANCE PARTITIONING ANALYSIS

Although MuLanmusic and MuLantext predict similar voxels, they may represent different aspects of each voxel’s
activations. To explore this,, we combine MuLanmusic and MuLantext into a single model. We then examine
their distinct contributions by mapping the unique variance explained by each feature onto the cortex, utilizing
banded ridge regression (la Tour et al., 2022). Figure A.3 shows that MuLantext exhibits less unique explained
variance compared to MuLanmusic. This observation differs notably from trends in visual neuroscience (Takagi &
Nishimoto, 2022), where textual representations have distinct prediction performance. This discrepancy may
indicate a unique aspect of musical processing. . In summary, although MuLantext predicts many areas within the
auditory cortex, most of the information contributing to this prediction is contained in MuLanmusic.

Figure A.3: All subject results for comparing unique variance explained by MuLanmusic and MuLantext.

A.1.9 OTHER AUDIO-DERIVED EMBEDDINGS

In addition to MuLanmusic and w2v-BERT, we develop separate encoding models using three different approaches
- wav2vec 2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021), and melspectrogram. Both wav2vec 2.0 and
HuBERT are transformer-based encoders trained through self-supervised learning on 960 hours of LibriSpeech.
For our study, we utilized the hubert-large-ls960-ft and wav2vec2-large-960h models available on Huggingface.
We employ the outputs from the last hidden layer of both architectures. The melspectrogram was computed
using Librosa. All other settings remained consistent with those used in MuLanmusic.
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A.2 ADDITIONAL RESULTS OF THE DECODING

The two ways of reconstructing music which we compare are retrieval from FMA and generation with MusicLM.
Figure A.4 contains qualitative results for subject 1, comparing the original stimulus to music retrieved from
FMA based on a predicted MuLan embedding and the music clips sampled from MusicLM. Note that sampling
multiple clips and examining their differences is one way of qualitatively determining which information
MusicLM adds to what the MuLan embedding contains. We find that both retrieved and generated constructions
are semantically similar to the original stimulus, e.g., with respect to genre, vocal style, overall mood. The
temporal structure of the stimulus is often not preserved in the reconstruction. There are also failure cases in
which the reconstruction is from an entirely different genre.

Figure A.4: Spectrograms of different music clips: The left-most column contains the stimulus which
subjects were exposed to. To the right is the music retrieved from FMA and three clips sampled from
MusicLM. Both generation and retrieval are done via MuLan embeddings. It is visually perceptible
that spectrograms in the same row resemble similarities. Audio examples (randomly sampled, one
per genre) can be found at f2mu.github.io#ret-vs-gen

In Figure A.5 we perform a comparison of retrieval and generation across the five different subjects. The main
finding is that qualitatively, the reconstruction is overall of consistent quality across all five subjects. This is not
necessarily a given, when dealing with fMRI data, because of differences in subjective experiences, and suggests
our method is robust.

Figure A.5: The comparison shows the spectrograms of music retrieved or generated for different
test subjects, who were all exposed to the same stimuli. The predicted embedding is MuLan. Audio
examples (randomly sampled, one per genre) can be found at f2mu.github.io#all-subjects
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Figure A.6: Juxtaposition of PCA-dimensionality-reduced MuLan embeddings. Predicted embed-
dings are at the top and the ground truth at the bottom; all on the 60 evaluation data points with
10 genres. The resulting plot shows a non-random formation of clusters, for both ground truth and
prediction, most prominently observable for the genres Classical, Hiphop, as well as Jazz. Note that
the MuLan embedding space captures many more musical concepts than just genres and clusters of
other kinds may for, such as vocal intensity, mood, or even musical complexity.
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A.3 ADDITIONAL RESULTS OF ENCODING

We present additional results for all subjects in Figures A.7, A.8, and A.9 for Figures 2, 4, and 5. They show that
our results are robust across subjects.

Figure A.7: a All subject results for comparing prediction performances between different audio-
derived embeddings: MuLanmusic and w2v-BERT-avg. b Density plot of the MuLanmusic (x-axis)
versus w2v-BERT-avg (y-axis) model prediction accuracy. Darker colors indicate a higher number of
voxels in the corresponding bin.
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Figure A.8: a All subject results for comparing prediction performances between MuLanmusic and
MuLantext. b Density plot of the MuLanmusic (x-axis) versus MuLantext (y-axis) model prediction
accuracy. c Principal components analysis.
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Figure A.9: a All subject results for comparing prediction performances between MuLanmusic and
GTZAN genre label. b Density plot of the MuLanmusic (x-axis) versus genre (y-axis) model prediction
accuracy. Many voxels are better predicted by MuLanmusic than genre.
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A.4 TEXT CAPTION DATASET

We release a text caption dataset7 for the 540 GTZAN music clips (15s crop) for which fMRI data as recorded.
The captions were collected with the online freelance platform coconala.com by human raters, all of which are
music professionals (musician, teacher, composer). The instruction given to the raters is:

We have numerous 15-second clips for which we’d like you to provide a written description of about four
sentences in Japanese (or English). By written description, we mean something that includes an explanation
or impression of the music piece, as demonstrated in the following example: “This is a Drum & Bass track. It
features high-speed scratching from a turntable and includes sampled screams. You can hear a sinister tune
being played by the synthesizer. The rhythmic backdrop is composed of fast electronic drum beats. This track
seems like it could be used as a soundtrack for a car racing game.”

Below are ten example captions; one per genre. A table with audio and captions side by side is at
f2mu.github.io#gtzan-caps

blues.00017: It is lazy blues with a laid-back tempo and relaxed atmosphere. The band structure is simple, with
the background rhythm punctuated by bass and guitar cutting. The impressive phrasing of the lead guitar gives
the piece a nostalgic impression.

classical.00008: Several violins play the melody. The melody is simple and almost unison, but it moves between
minor and major keys and changes expression from one to the other.

country.00012: This is a classic country song. You can hear clear singing and crisp acoustic guitar cutting. The
wood bass provides a solid groove with a two-beat rhythm. This is country music at its best. Ideal for nature
scenes and homely atmospheres.

disco.00004: This music piece has a disco sound. Vocals and chorus create extended harmonies. The synthesiser
creates catchy melodies, while the drumming beats rhythmically. Effective tambourine sounds accentuate the
rhythms and add further dynamism. This music is perfect for dance parties, club floors and other scenes of
dancing and fun.

hiphop.00014: This is a rap-rock piece with a lot of energy. The distorted guitars are impressive and provide an
energetic sound. The bass is an eight beat, creating a dynamic groove. The drums provide the backbone of the
rhythm section with their powerful hi-hats. The vocal and chorus interaction conveys tension and passion and
draws the audience in.

jazz.00040: This is medium-tempo old jazz with female vocals. The band is a small band similar to a Dixie Jazz
formation, including clarinet, trumpet and trombone. The vocal harmonies are supported by a piano and brass
ensemble on a four beat with drums and bass.

metal.00026: This is a metal instrumental piece with technical guitar solos and distortion effects. The heavy,
powerful bass creates a sense of speed, and the snare, bass and guitar create a sense of unity in unison at the
end. It is full of over-the-top playing techniques and intense energy.

pop.00032: Passionate pops piece with clear sound and female vocals. The synth accompaniment spreads out
pleasantly and the tight bass grooves along. The beat-oriented drums drive the rhythm, creating a strong and
lively feeling. Can be used as background music in cafés and lounges to create a relaxed atmosphere.

reggae.00013: This reggae piece combines smooth, melodic vocals with a clear, high-pitched chorus. The bass
is swingy and supports the rhythm, while whistles and samplers of life sounds can be heard. It is perfect for
relaxing situations, such as reading in a laid-back café or strolling around town.

rock.00032: This rock piece is characterised by its extended vocals. The guitar plays scenically, while the bass
enhances the melody with rhythmic fills. The drums add dynamic rhythms to the whole piece. This music is ideal
for scenes with a sense of expansiveness and freedom, such as mountainous terrain with spectacular natural
scenery or driving scenes on the open road.

7f2mu.github.io/caption-dataset.csv
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