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ABSTRACT

We study the problem of explaining a rich class of behavioral properties of deep
neural networks. Our influence-directed explanations approach this problem by
peering inside the network to identify neurons with high influence on the property
of interest using an axiomatically justified influence measure, and then provid-
ing an interpretation for the concepts these neurons represent. We evaluate our
approach by training convolutional neural networks on Pubfig, ImageNet, and
Diabetic Retinopathy datasets. Our evaluation demonstrates that influence-directed
explanations (1) localize features used by the network, (2) isolate features distin-
guishing related instances, (3) help extract the essence of what the network learned
about the class, and (4) assist in debugging misclassifications.

1 INTRODUCTION

We study the problem of explaining a class of behavioral properties of deep neural networks, with
a focus on convolutional neural networks. Examples of such properties include explaining why a
network classified an input instance a particular way, why it misclassified an input, and what the
essence of a class is for the network. This problem has received significant attention in recent years
with the rise of deep networks and associated concerns about their opacity (Knight, 2017).

This paper introduces influence-directed explanations for deep networks. It involves peering inside
the network to identify neurons with high influence and then providing an interpretation for the
concepts they represent. This approach enables us to interpret the inner workings of the network by
drawing attention to concepts learned by the network that had a significant effect on the property that
we seek to explain. In contrast to raw inputs, neurons in higher layers represent general concepts.
Thus, they form a useful substrate to explain properties of interest involving many input instances,
such as the essence of a class. Once influential neurons have been identified, they can be interpeted
using existing techniques (e.g., visualization) to reveal the concepts they represent. Alternatively,
influences can be examined directly to diagnose undesirable properties of the network.

A key contribution of this paper is distributional influence, a measure for internal neurons that
is axiomatically justified. Distributional influence is parameterized by a quantity of interest, a
distribution of interest, and a slice of the network that allows us to reference some internal neurons
in a network. It is simply the average partial derivative with respect to a neuron in a slice over the
distribution of interest. This parametric measure can be appropriately instantiated to explain different
properties of interest with respect to different parts of a network.

Our influence measure is designed to achieve three natural desiderata: causality, distributional
faithfulness, and flexibility. Capturing causality helps us identify parts of the network that when
changed have the most effect on outcomes. Distributional faithfulness ensures that we evaluate the
network only on points in the input distribution. This property is important since models operating on
high dimensional spaces, such as neural networks, are not expected to behave reliably on instances
outside the input distribution. Finally, by flexibility, we mean that the influence measure should
support explanations for various properties of interest.

We evaluate our approach by training convolutional neural networks on ImageNet (Russakovsky et al.,
2015), PubFig (Kumar et al., 2009), and a Diabetic Retinopathy datasets. Our evaluation demonstrates
that influence-directed explanations enable us to (1) characterize why inputs were classified a
particular way in terms of high-level concepts represented by influential neurons (Section 3.1),
(2) explain why an input was classified into a one class (e.g., sports car) rather than another (e.g.,

1



Under review as a conference paper at ICLR 2018

convertible) (Section 3.2), (3) demonstrate that influences localize the actual reasons used for
classification better than simply examining activations (Section 3.3.1), (4) help extract the essence of
what the network learned about the class (Section 3.3), and (5) assist in debugging misclassifications
of a Diabetic Retinopathy classifier (Pratt et al., 2016) (Section 3.4).

1.1 RELATED WORK

Prior work on interpreting CNNs has focused on answering two questions: (i) given an input image,
what part of the instance is relevant to a particular neuron? (Simonyan et al., 2014; Zeiler &
Fergus, 2014; Springenberg et al., 2015; Ribeiro et al., 2016; Sundararajan et al., 2017), and (ii) what
maximizes the activation of a particular neuron? (Simonyan et al., 2014; Girshick et al., 2014).

Localizing relevance One approach to interpreting predictions for convolutional networks is to
map activations of neurons back to regions in the input image that are the most relevant to the
outcomes of the neurons. Possible approaches for localizing relevance are to (i) visualize gradi-
ents (Simonyan et al., 2014; Sundararajan et al., 2017; Bach et al., 2015) (ii) propagate activations
back using gradients (Zeiler & Fergus, 2014; Springenberg et al., 2015; Bach et al., 2015), (iii)
learning interpretable models predicting the effect of the presence of regions in an image (Ribeiro
et al., 2016).

Maximizing activation An orthogonal approach is to visualize features learnt by networks by
identifying input instances that maximally activate a neuron, achieved by either optimizing the
activation in the input space (Simonyan et al., 2014), or searching for instances in a dataset (Girshick
et al., 2014).

Our approach differs from prior work along several axes. First, examining causal influence of neurons
rather than their activations (Simonyan et al., 2014; Girshick et al., 2014) better identifies neurons used
by a network for classification. Experiments in Section 3.3.1 demonstrate why examining activations
fails to identify important neurons. Second, our explanations are parametric in a distribution of
interest, allowing us to explain the network behavior at different levels of granularity (e.g., an instance
or a particular class). Examining the influence of internal neurons plays an important role here
because they capture more general concepts, and we demonstrate it is possible to identify “expert”
neurons for certain distributions (Section 3.3.1). In contrast, influences of inputs (pixels) considered
in prior work do not generalize well across instances of a population. Third, our explanations are
parametric in a quantity of interest that allow us to provide explanations for different behaviors of a
system, as opposed to instance outcomes. Finally, our choice of influence measures are guided by
axiomatic choices different from those in prior work (Sundararajan et al., 2017). A notable difference
stems from our distributional faithfulness criteria, which imposes a weaker distribution marginality
principle than the marginality principle imposed by Integrated Gradients. A practical consequence of
this choice is that it constrains acceptable baseline images that can be used with Integrated Gradients.
In contrast, the prior work does not provide formal guidance on the choice of the baseline (see
Appendix D for details).

2 INFLUENCE

In this section, we propose distributional influence, an axiomatically justified family of measures of
influence. Distributional influence is parameterized by a quantity of interest, and a distribution of
interest, and is simply the average partial derivative over the distribution of interest. In Section 2.2,
we show that this is the only measure that satisfies some natural properties. In Section 2.3, we show
how this influence measure can be extended to measure the influence of internal neurons.

2.1 A FAMILY OF INFLUENCE MEASURES

We represent quantities of interest of networks as continuous and differentiable functions f from
X → R, where X ⊆ Rn, and n is the number of inputs to f . A distributional influence measure,
denoted by χi(f, P ), measures the influence of an input i for a quantity of interest f , and a distribution
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of interest P , where P is a distribution over X :

χi(f, P ) =

∫
X

∂f

∂xi

∣∣∣∣
x

P (x)dx. (1)

Our measures are parameterized along two dimensions: a quantity of interest f , and a distribution of
interest P . Examples of quantities of interest are: outcome towards the ‘cat’ class (fcat), or outcome
towards ‘cat’ versus ‘dog’ (fcat − fdog). The first quantity of interest answers the question of why a
particular input was classified as a cat, whereas the second can be helpful in debugging why a ‘dog’
instance was classified as a ‘cat’.

Examples of distributions of interest are: (i) a single instance (influence measure just reduces to the
gradient at the point) (ii) the distribution of ‘cat’ images, or (iii) the overall distribution of images.
While the first distribution of interest focuses on why a single instance was classified a particular
way, the second explains the essence of a class, and the third identifies generally influential neurons
over the entire population. A fourth instance is the uniform distribution on the line segment of scaled
instances between an instance and a baseline, which yields a measure described in Sundararajan et al.
(2017) called Integrated Gradients.

2.2 AXIOMATIC TREATMENT

We narrow the space of influence measures using three axioms that characterize desirable properties
of influence measures for machine learning models with respect to a quantity and distribution of
interest, and then prove that these axioms uniquely define the above measure.

The first axiom, linear agreement states that for linear systems, the coefficient of an input is its
influence. Measuring influence in linear models is straightforward since a unit change in an input
corresponds to a change in the output given by the coefficient.
Axiom 1 (Linear Agreement). For linear models of the form f(x) =

∑
i αixi, χi(f, P ) = αi.

The second axiom, distributional marginality states that gradients at points outside the support of the
distribution of interest should not affect the influence of an input. This axiom ensures that influence
measure only depends on the behavior of the model on points within the manifold containing the
input distribution.
Axiom 2 (Distributional marginality (DM)). If, P ( ∂f1

∂xi

∣∣∣
X

= ∂f2
∂xi

∣∣∣
X
) = 1, where X is the random

variable over instances from X , then χi(f1, P ) = χi(f2, P ).

The third axiom, distribution linearity states that the influence measure is linear in the distribution
of interest. This ensures that influence measures are properly weighted over the input space, i.e.,
influence on infrequent regions of the input space receive lesser weight in the influence measure as
compared to more frequent regions.
Axiom 3 (Distribution linearity (DL)). For a family of distributions indexed by some a ∈ A,
P (x) =

∫
A g(a)Pa(x)da, then χi(f, P ) =

∫
A g(a)χi(f, Pa)da.

We can show that the only influence measure that satisfies these three axioms is the weighted gradient
of the input probability distribution (see Appendix B for the proof).
Theorem 1. The only measure that satisfies linear agreement, distributional marginality and distri-
bution linearity is given by Equation 1.

2.3 INTERNAL INFLUENCE

In this section, we generalize the above measure of input influence to a measure that can be used to
measure the influence of an internal neuron.

We first define a slice of a network. A particular layer in the network can be viewed as a slice. More
generally, a slice is any partitioning of the network into two parts that exposes its internals. Formally,
a slice s of a network f is a tuple of functions 〈g, h〉, such that h : X → Z , and g : Z → R, and
f = g ◦h. The internal representation for an instance x is given by z = h(x). In our setting, elements
of z can be viewed as the activations of neurons at a particular layer. The influence of an element j in
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the internal representation defined by s = 〈g, h〉 is given by

χs
j(f, P ) =

∫
X

∂g

∂zj

∣∣∣∣
h(x)

P (x)dx (2)

We again take an axiomatic approach to justifying this measure, with two natural invariance properties
on the structure of the network.

The first axiom states that the influence measure is agnostic to how a network is sliced, as long as the
neuron with respect to which influence is measured is unchanged. Below, the notation x−i referse to
the vector x with element i removed.

Two slices s1 = 〈g1, h1〉 and s2 = 〈g2, h2〉 are j-equivalent if for all x ∈ X , and zj ∈ Zj ,
h1(x)j = h2(x)j , and g1(h1(x)−jzj) = g2(h2(x)−jzj). Informally, two slices are j-equivalent as
long as they have the same function for representing zj , and the causal dependence of the outcome
on z is identical.
Axiom 4 (Slice Invariance). For all j-equivalent slices s1 and s2, χs1

j (f, P ) = χs2
j (f, P ).

The second axiom equates the input influence of an input with the internal influence of a perfect
predictor of that input. Essentially, this encodes a consistency requirement between inputs and
internal neurons that if an internal neuron has exactly the same behavior as an input, then the internal
neuron should have the same influence as the input.
Axiom 5 (Preprocessing). Consider hi such that P (Xi = hi(X−i)) = 1. Let s = 〈f, h〉, be such that
h(x−i) = x−ihi(x−i), which is a slice of f ′(x−i) = f(x−ihi(x−i)), then χi(f, P ) = χs

i (f
′, P ).

We can now show that the only measure that satisfies these two properties is the one presented above
(see Appendix C for the proof).
Theorem 2. The only measure that satisfies slice invariance and preprocessing is Equation 2.

3 EXPERIMENTS

In this section, we discuss some experiments that demonstrate the capabilities of our explanation
framework. Our work generalizes other influence-based explanation frameworks, such as saliency
maps (Simonyan et al., 2014) and integrated gradients (Sundararajan et al., 2017), meaning we have
the ability to produce the same quality of explanations in the more-limited contexts in which these
methods have been used. However, our explanation framework generalizes to axes left unexplored by
these works, which can be used to provide richer explanations. In particular, we motivate the use of
explanations for slices, various quantities of interest, and various distributions of interest.

We treat explanations as a means to answer specific queries about a model’s behavior, and we show
that the flexibility offered by our framework provides the tools necessary to confirm or refute specific
hypotheses about a model’s behavior.

3.1 EXPLANATIONS FROM SLICES

As discussed in Section 2.3, computing the influence on a slice of the network (Equation 2) lets us de-
termine how relevant neurons in intermediate layers are to a particular network behavior. In particular,
given an image and the network’s prediction on that image, the influence measurements for a slice
can reveal which features or concepts present in that image were relevant to the prediction.

Figure 1(a) shows the results of interpreting the influences taken on a slice of the VGG16 (Simonyan
& Zisserman, 2014) corresponding to an intermediate convolutional layer (conv4_1). In this
example we take the three most influential units for the quantity of interest corresponding to the
correct classification of this image. More preciesly, the quantity of interest used in this example
corresponds to f |L, i.e., the projection of the model’s softmax output to the coordinate corresponding
to the correct label L of this instance. The visualization for each of these units was then obtained by
measuring the influence of the input pixels on these units along each color channel, and scaling the
pixels in the original image accordingly.

Because convolutional units have a limited receptive field, the resulting interpretation shows distinct
regions in the original image, in this case corresponding to the left eye and mouth, that were most
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(a) (b)

Figure 1: (a) Interpretation of the three most influential units from a slice corresponding to a
convolutional layer (conv4_1), for the VGG16 (Simonyan & Zisserman, 2014) network. (b)
Explanation based on integrated gradients (Sundararajan et al., 2017), taken on the same network and
image. The interpretation in both cases was computed by scaling pixels in the original image using
the results of either method.

(a) (b)

Figure 2: (a) Comparative explanation of classes “sports car” and “convertible” taken from the
top-three most influential units at the conv4_1 layer (VGG16 (Simonyan & Zisserman, 2014)).
(b) Explanation computed using the quantity of interest corresponding to “sports car” on the same
instance used in (a).

relevant to the model’s predicted classification. When compared to the explanation provided by
integrated gradients (Sundararajan et al., 2017) shown in Figure 1(b), it is clear that the influence-
directed explanation of the network’s internal units is better at localizing the features used by the
network in its prediction.

3.2 COMPARATIVE EXPLANATIONS

Influence-directed explanations are parameterized by a quantity of interest, corresponding to the
function f in Equation 1. Changing the quantity of interest affords flexibility in the characteristic
explained by the influence measurements and interpretation. One class of quantities that is particularly
useful in answering counterfactual questions such as, “Why was this instance classified as L1 rather
than L2?”, is given by the comparative quantity of interest.

More precisely, if f is a softmax classification model that predicts classes L1, . . . , Ln, then let fLi

be the function fLi = f |i projected to the ith coordinate of its output. Then the comparative quantity
of interest between classes Li and Lj is fLi

− fLj
. When used in Equations 1 and 2, this quantity

captures the tendency of the model to classify instances as Li over Lj .

Figure 2(a) shows an example of a comparitive explanation taken for a VGG16 (Simonyan &
Zisserman, 2014) model trained on the ImageNet dataset (Russakovsky et al., 2015). The original
instance shown on the left is labeled in the “sports car” leaf node of the ImageNet heirarchy. We
measured influence using a comparative quantity against the leaf class “convertible”, using a slice at
the conv4_1 convolutional layer. The interpretation was computed on the top-three most influential
units at this layer in the same way as discussed in Section 3.1. The receptive field of the most
influential unit corresponds to the region containing the hard top of the vehicle, which is understood
to be its most distinctive feature from the convertible class. Figure 2(b) shows an interpretation for
the same instance computed using influence measurements taken from the quantity of interest f |L
(i.e., the same quantity used in Section 3.1 and implicitly used by integrated gradients (Sundararajan
et al., 2017)). While both explanations capture features corresponding to common automobile
features, only the comparative explanation isolates the portion that distinguishes “sports car” from
“convertible”.
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(a) (b)

Figure 3: Distributional influence measurements taken on DR model (Section 3.4) at bottom-most
fully connected layer. To compute the grid, the distribution of influence was conditioned on class 5 (a)
and class 1 (b). Figure (a) depicts an instance from class 5 that was correctly classified as such, and
(b) an instance from class 5 that was incorrectly classified as class 1. In (a) the influences depicted in
the grid align closely with the class-wide ordering of influences, whereas in (b) they are visibly more
random. White space in the middle of the grid corresponds to units with no influence on the quantity.

3.3 DISTRIBUTIONS OF INTEREST

Another dimension along which influence-directed explanations can vary is the distribution P used in
Equations 1 and 2 to measure influence. The examples shown in Sections 3.1 and Sections 3.2 use a
distribution of interest corresponding to a point mass defined over the single instance in question.
The corresponding interpretations refer only to those instances, and so reflect specific features and
concepts that may not generalize across a class. Defining the distribution of interest with support
over a larger set of instances can yield explanations that capture the factors common to network
behaviors across different populations of instances. These explanations capture the “essence” of what
the network learned about a class, and may be useful in understanding problematic behaviors when
debugging a network (see Section 3.4).

Figure 3 depicts an example of such an explanation. These visualizations were generated by measuring
influence on a slice corresponding to the bottom-most fully-connected layer of the Inception Diabetic
Retinopathy (DR) model (see Section 3.4 for details on this model). The quantity of interest f |i
corresponds to a particular class outcome, and the distribution was conditioned on the corresponding
class label. The units in that layer were then sorted according to their influence, with the top-left
corner corresponding to the largest positive influence, and the bottom-right to the largest negative
influence. For a specific instance (shown on the left of Figures 3(a) and (b)), influences at that layer
were then measured, and the magnitude and sign of the corresponding unit in the class-wide ordering
is depicted by the size and shape of the box at that position: large boxes denote larger magnitude,
whereas green boxes denote positive sign and red negative.

Figure 3(a) depicts this for an instance of class 5 that was correctly classified, whereas 3(b) for an
instance of the same class that was incorrectly classified. The difference is striking: for the correctly-
classified instance, the influences align closely with the order determined by the distributional
influence measurements, whereas they are noticeably more random in the incorrectly-classified
case.

3.3.1 VALIDATING THE “ESSENCE” OF A CLASS

As is apparent in Figure 3, it is often the case that relatively few units are highly influential towards a
particular class. In such cases, we refer to this as the “essence” of the class, as the network’s behavior
on these classes can be understood by focusing on these units. To validate this claim, we demonstrate
that these units can be isolated from the rest of the model to extract a classifier that is more proficient
at distinguishing class instances from the rest of the data distribution than the original model. To
this end, we introduce a technique for compressing models using influence measurements to yield
class-specific “expert” models that demonstrate the essence of that class learned by the model.
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Class Recall (orig.) Precision (orig.) Recall (comp.) Precision (comp.)
Chainsaw (491) 14% 100% 71% 100%
Bonnet (452) 62% 100% 92% 100%
Park Bench (703) 52% 100% 71% 100%
Sloth Bear (297) 36% 100% 75% 100%
Pelican (144) 65% 100% 95% 100%

Figure 4: Model compression recall and accuracy for five randomly selected ImageNet classes.

Given a model f with softmax output and slice 〈g, h〉 where h : Rd → Y , let Mh ∈ Rd be a
0-1 vector. Intuitively, Mh masks the set of units at layer h that we wish to retain, and so is 1
at all locations corresponding to such units and 0 everywhere else. Then the slice compression
fMh

(X) = g ◦ h(XTMh) corresponds to the original model after discarding all units at h not
selected by Mh. Given a model f , we obtain a binary classifier f i for class Li (corresponding to
softmax output i) by projecting the softmax output at i, in addition to the sum of all other outputs:
f i = (f |i,

∑
j 6=i f |j).

Class-specific experts. For the sake of this discussion, we define a class-wise expert for Li to be
a slice compression fMh

whose corresponding binary classifier f iMh
achieves better recall on Li

than the binary classifier f i obtained by f , while also achieving approximately the same recall. We
demonstrate that the influence measurements taken at slice 〈g, h〉 over a distribution of interest Pi

conditioned on class Li yields an efficient heuristic for extracting experts from large networks.

In particular, we computeMh by measuring the slice influence (Equation 2) over Pi using the quantity
of interest h|i. Given parameters α and β, we select α units at layer h with the largest positive
influence, and β units with the greatest negative influence (i.e., greatest magnitude among those with
negative influence). Mh is then defined to be zero at all positions except those corresponding to these
α+ β units. In our experiments, we obtain concrete values for α and β by a simple parameter sweep,
ultimately selecting those values that yield the best experts by the criteria defined above. Figure 5
in the Appendix shows the precision and recall obtained for a range of α, β, and notably that both
measures plateau with relatively few units in the compressed model.

Figure 4 shows the precision and recall of experts found in this way for five randomly selected
ImageNet classes, as well as the precision and recall of the original model on each class. We see
that we find experts that have vastly better recall with no difference in precision. This suggests that
the top and bottom influential neurons are truly sufficient to capture the essence of a class. The
improvement we see in the compressed models seems to indicate that other neurons may capture
spurious correlations in the training data that actually hurt the performance, while the essence of the
class is a better indicator of class membership.

To further validate the hypothesis that influence measurements taken over a class-wide distribution of
interest highlight specific components corresponding to the characteristics learned by the network,
we repeated these experiments using activations rather than influences to compute Mh. On the same
set of randomly-selected classes shown in Figure 4, the “experts” obtained in this way achieved
negligible (≈ 0) recall, thus performing significantly worse than the original model. From this we see
that considering activation levels alone does not provide the necessary information about the role of
each unit in the network’s behavior for these classes.

3.4 CASE STUDY: DEBUGGING A DIABETIC RETINOPATHY MODEL

One of the primary ways that we envision influence-directed explanations being put to practical use
is in debugging a model. In this section, we demonstrate a potential workflow for doing so, wherein
a user poses queries about model behavior by crafting appropriate quantities and distributions of
interest, and interpreting the resulting influence measurements to understand the reasons for incorrect
model behavior. We show this in the context of Diabetic Retinopathy classification, which is a
medical imaging task concerned with diagnosing the severity of a condition that affects the eye (Pratt
et al., 2016; Gulshan et al., 2016). We replicate the results of prior work to build a model for this
task, and construct a series of explanations that target questionable aspects of the model’s behavior to
discover the underlying cause of the problem.
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Background. We build on the prior work of Pratt et al. (Pratt et al., 2016) to build a convolutional
network for predicting the severity of Diabetic Retinopathy (DR) in color retinal fundus images
obtained from a Kaggle challenge dataset. DR is diagnosed on a scale from 1 to 5, with one
corresponding to no symptoms of DR and 5 being the most severe presentation of symptoms. The
dataset has a significant skew towards Class 1 with roughly 10 times as many images from Class 1
as compared to other classes. We were not able to come close to reproducing their results using the
architecture presented in their report (Pratt et al., 2016). However, we found that using the Google
Inception network (Szegedy et al., 2015) with the data preprocessing methods described by Pratt et
al. (Pratt et al., 2016), the performance of our model matched the performance described by Pratt
et al. with the overall accuracy within 1% of the results in (Pratt et al., 2016), and importantly,
demonstrated the same pattern of misclassification as observed by Pratt et al. Namely, none of the
images in the dataset are predicted as Severity-2 DR (mild symptoms), either correctly or incorrectly.
The goal of our demonstration is to explain the cause of this behavior, which is not apparent at the
outset.

Explaining the bug. Given that no images are predicted as class 2, our initial exploration will
attempt to determine whether the network did in fact learn concepts or features that distinguish class
2 from its neighbors. If the network did in fact learn concepts for class 2, it is possible that the bias in
the distribution led the training process to prefer class 1 and 3 predictions over class 2, despite the
presence of concepts associated with the latter in an instance. If the model were structured in a way
that whenever units influential towards class 2 are activated, units associated with other classes, with
more total influence on the network’s output, are simultaneously activated, then we would expect
to see the pattern of misclassifications present in this model. We call this the “drowning experts”
hypothesis, and it would be characterized by the presence of experts (Section 3.3.1) for class 2 that
are outweighed by experts for other classes. Under the assumption that the model contains an expert
for class 2, we should be able to extract it using the techniques described in Section 3.3.1. Because
we are particularly interested in positively identifying instances of class 2, we relax our definition of
an expert to allow for those which increase recall for class 2, but possibly sacrifice some precision.
Using the methods described in Section 3.3.1, we found such experts for every class except class
2, which suggests that our original suspicion that the model did not learn class 2 may in fact be
correct.

Taking a look at the characteristics of the data, we observe that the features identifying classes 2-5
are lesions and other defects of increasing size, intensity, and frequency for higher-numbered classes.
In practical terms, class 2 is distinguished from class 1 by very small features in the image space.
However, as part of the preprocessing we applied to reproduce (Pratt et al., 2016), we apply a small
Gaussian blur. This leads us to consider the possibility that the distinctive features of class 2 were
in most cases erased from the corresponding instances, leaving the model with data labeled class 2
being indistinguishable from class 1. We confirm this hypothesis by removing the blur step from
our preprocessing, and re-training the model. On evaluating the retrained model, the characteristic
behavior on class 2 is not present, which is consistent with our hypothesis.

We conclude this section by noting that using a series of influence-directed explanations, we were
able to diagnose and repair a curious problem in a complex model. By identifying portions of the
model associated with certain predictive behaviors, we noted the absence of units responsible for
predicting a particular class, which pointed us to a step in the data preprocessing phase of our training
regime. Without the flexibility to define various quantities and distributions of interest, and to peer
inside the model to understand the intermediate steps in the network’s decisions, it is not clear that
we would have been able to diagnose and repair this issue. Indeed, Pratt et al. (2016) hypothesized
that the cause of the behavior was the limited depth of their network architecture; we observed the
same phenomenon on a significantly larger network.

4 FUTURE WORK

We expect the distributional influence measure introduced in this paper to be applicable to a broad set
of deep neural networks. One direction of future work is to couple this measure with appropriate
interpretation methods to produce influence-directed explanations for other types of deep networks,
such as recursive networks for text processing tasks. Another direction is to develop principled
debugging support for models using influence-directed explanations as a building block.
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A FEATURE COMPARISON TO PRIOR EXPLANATION FRAMEWORKS

Table 1 presents a comparison of the influence-directed explanation framework presented here
to related prior work on explaining CNN decisions. The leftmost three columns describe frame-
work properties for which some frameworks allow flexibility. For example, influence-directed and
decomposition-based explanations can be computed for internal neurons in higher layers, as well
as for neurons in the bottom-most input layer. In contrast, the frameworks proposed for Integrated
Gradients (Sundararajan et al., 2017), Sensitivity Analysis (Simonyan et al., 2014), and the Simple
Taylor Decomposition (Bach et al., 2015) are based on attributing relevance solely to the input
features. Cells marked X∗ in these columns denote that the corresponding framework supports a
limited amount of flexibility along the specified property.

Explanation framework properties Influence measure properties
Quantity Distribution Internal Faithfulness Sensitivity Completeness

influence-
directed X X X X∗ X X∗

integrated
gradients X∗ X∗ X X

sensitivity
analysis X

deconvolution X X

guided
backpropagation X X

relevance
propogation X X X∗ X

simple Taylor X∗ X∗ X X

Table 1: Comparison of the influence-directed explanations proposed here to prior related work
including Integrated Gradients (Sundararajan et al., 2017), Sensitivity Analysis (Simonyan et al.,
2014), Deconvolution (Zeiler & Fergus, 2014), Layer-wise Relevance Propagation Bach et al. (2015),
and Simple Taylor Decomposition (Bach et al., 2015). The first three columns refer to capabilities of
the corresponding explanation framework: Quantity refers to flexibility in the choice of quantity to be
explained; Distribution refers to flexibility in the distribution of instances to be explained; Internal
refers to the ability to produce explanations that characterize the role of internal neurons. The latter
three columns describe properties of the underlying influence measure used to build explanations:
Faithfulness refers to distributional faithfulness; Sensitivity requires that if two instances differ
in one feature and yield different predictions, then that feature is assigned non-zero influence;
Completeness requires that the aggregate difference between influence on two instances sums to
the difference of their outputs. See Sundararajan et al. (2017) for a more detailed discussion of
Sensitivity and Completeness. Cells marked X denote that the cited explanation framework has the
corresponding feature, whereas those marked X∗ denote that the framework may have the feature
under certain parameterizations.

The rightmost three columns in Table 1 refer to properties of the underlying influence measure used
to construct explanations. Cells in these columns are marked X∗ if the framework satisfies the
corresponding property under some parameterizations, but not necessarily in all of them. Notably,
several of the frameworks make use of influence measures that do not satisfy sensitivity under any
circumstances; this matter is described in further detail in (Sundararajan et al., 2017). Measures that
do not satisfy sensitivity can be problematic in practice because they may fail to identify features or
components that are causally-relevant to the quantity of interest, thus leading to “blind spots” or an
inappropriate focus on irrelevant features.

Below we provide a detailed explanation for entries in Table 1 marked X∗.

Influence-Directed. The influence-directed explanation framework presented in this paper supports
all of the features in Table 1, but distributional faithfulness and completeness are contingent on the
selection of appropriate parameters. Because our framework supports arbitrary distributions of
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interest, there is no guarantee that the resulting explanation will reflect behaviors that are faithful to
the training distribution. We view this as a feature, as it allows for explanations that may be relevant
to counterfactual scenarios, and plan to explore the use of this feature in subsequent work. However,
we note that in our framework ensuring distributional faithfulness is not difficult, and is achieved by
using the source distribution, or a conditional or marginal variant of it. For example, the experiments
in this paper use distributions corresponding to a single point from the training data, or the marginal
distribution of instances in a given class.

As for completeness, many of the parameterizations of our framework have have this property. When
the distribution of interest is chosen to coincide with that of integrated gradients, for example, then
completeness follows immediately. We chose not to insist on completeness in all cases, as doing so
would preclude the derivation of several useful classes of explanation. For example, explanations that
exclude parts of the network to localize attribution may not satisfy completeness, but are useful in
filtering out irrelevant information in explanations.

To make this concrete, observe that the explanations shown in Figures 1(a) and 2 (Section 3) were
effectively computed by first identifying the most influential filters in an intermediate layer on a
relevant quantity of interest, and then highlighting the input features that are influential on those
intermediate features. The final attributions on the input features most likely do not sum to the
quantity of interest because parts of the image excluded from the explanation are also relevant to
the classification. Nonetheless, in both cases we obtain a useful explanation by ignoring certain
attributions to identify localized features.

Integrated Gradients. Integrated gradients supports a limited form of flexibility on the distribution
over which it computes attributions. Namely, by selecting a different baseline than the zero vector,
the gradients will be aggregated over a different distribution of instances that may yield a qualitatively
different explanation. However, integrated gradients can only include instances that are a linear
combination of the baseline and input instances. The attributions given by integrated gradients
remain plausibly faithful to the training distribution when the baseline is chosen appropriately, but
establishing confidence in the faithfulness of a linear subspace defined by a particular baseline may
not be an easy task. In the case of image models, when the black image is used as the baseline then
attributions will be computed over variants of the image in question that differ in brightness. For
models that operate over other types of data, the matter of distributional faithfulness needs to be
considered on a case-by-case basis.

Simple Taylor Decomposition. The simple Taylor decomposition can be understood as a special
case of integrated gradients only aggregates attributions for the baseline and input instance. Thus,
like integrated gradients, it supports flexibility in the distribution of interest through calibration of the
baseline. Distributional faithfulness also falls under the same conditions as for integrated gradients,
and depends on the appropriate selection of a baseline instance.

Relevance Propagation. Layer-wise Relevance Propagation generalizes the propagation rule used
in back-propagation methods. In particular, the generalization allows for any complete propagation
rule to be used, thereby ensuring completeness. However, complete propagation rules do not satisfy
sensitivity in all cases. For example, the quantity could be propagated through a single path of
arbitrary neurons and still satisfy completeness. It is not clear that propagation rules not satisfying
sensitivity can be considered causal. Thus, in order to capture causality, the propagation rule must be
selected appropriately.

B UNIQUE MEASURE

Theorem 1. The only measure that satisfies linear agreement, distributional marginality and distri-
bution linearity is given by Equation 1.

Proof. Choose any function f and Pa(x) = δ(x−a), where δ is the Dirac delta function on X . Now,
choose f ′(x) = ∂f

∂xi
|axi. By linearity agreement, it must be the case that, χ(f ′, Pa(x)) =

∂f
∂xi
|a. By

distributional marginality, we therefore have that χi(f, Pa) = χi(f
′, Pa) =

∂f
∂xi
|a. Any distribution
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P can be written as P (x) =
∫
X P (a)Pa(x)da. Therefore, by the distribution linearity axiom, we

have that χ(f, P ) =
∫
X
P (a)χ(f, Pa)da =

∫
X P (a)

∂f
∂xi
|ada.

C SLICE INVARIANCE

Two slices s1 = 〈g1, h1〉 and s2 = 〈g2, h2〉 are j-equivalent if for all x ∈ X , and zj ∈ Zj ,
h1(x)j = h2(x)j , and g1(h1(x)−jzj) = g2(h2(x)−jzj).
Axiom 6 (Slice Invariance). For all j-equivalent slices s1 and s2, χs1

j (f, P ) = χs2
j (f, P ).

Axiom 7 (Preprocessing). Consider hi such that P (Xi = hi(X−i)) = 1. Let s = 〈f, h〉, be such that
h(x−i) = x−ihi(x−i), which is a slice of f ′(x−i) = f(x−ihi(x−i), then χi(f, P ) = χs

i (f
′, P ).

Theorem 2. The only measure that satisfies slice invariance and preprocessing is

χs
j(f, P ) =

∫
X

∂g

∂zj

∣∣∣∣
h(x)dx

Proof. Assume that two slices s1 = 〈g1, h1〉 and s2 = 〈g2, h2〉 are j-equivalent. Therefore,
g1(h1(x)−jzj) = g2(h2(x)−jzj). Taking partial derivatives with respect to zj , we have that:

∂g1
∂zj

∣∣∣∣
h1(x)−jzj

=
∂g2
∂zj

∣∣∣∣
h2(x)−jzj

Now, since h1(x)j = h2(x)j , we have that

∂g1
∂zj

∣∣∣∣
h1(x)

=
∂g2
∂zj

∣∣∣∣
h2(x)

Plugging the derivatives into 6, we get that χs1
j (f, P ) = χs2

j (f, P ).

where, for PZ(z), we use the probability distribution induced by applying h on x, given by:

PZ(z) =

∫
X
PX (x)δ(h(x)− z)dx.

Plugging this distribution into the influence measure above, we get:

χs
j(g, PX ) =

∫
Z

∂g

∂zj

∣∣∣∣
z

PZ(z)dz (3)

=

∫
Z

∂g

∂zj

∣∣∣∣
z

∫
X
PX (x)δ(h(x)− z)dxdz (4)

=

∫
X
PX (x)

∫
Z

∂g

∂zj

∣∣∣∣
z

δ(h(x)− z)dzdx (5)

=

∫
X

∂g

∂zj

∣∣∣∣
h(x)

PX (x)dx. (6)

(7)

Essentially, this shows that we can aggregate the partial derivates of the internal neurons on the
distribution of interest over the input space itself. This measure also has an important slice invariance
property that the influence on a neuron zi only depends on the functional relationship between x,
zi, and the outcomes. In other words, slices that differ only on other neurons will have the same
influence for zi. We formalize and prove this property in Appendix C.
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5 10 20 40 80 120 160 240
0 100 100 100 72 24 4 3 0
10 100 100 100 75 30 10 6 2
20 100 100 100 76 36 11 10 2
40 100 100 100 86 47 25 13 2
80 100 100 100 94 64 41 29 10
120 100 100 100 98 75 52 36 20
160 100 100 100 100 88 69 50 34
240 100 100 100 100 99 88 80 60
320 100 100 100 100 100 95 90 76
640 100 100 100 100 100 100 100 99

(a)

5 10 20 40 80 120 160 240
0 0 24 64 95 98 100 100 100
10 0 20 63 93 98 100 100 100
20 0 20 58 93 98 100 100 100
40 0 13 53 86 97 98 100 100
80 0 12 43 75 93 98 100 100
120 0 8 35 68 93 98 98 100
160 0 4 27 63 87 97 98 98
240 0 1 16 50 75 91 94 97
320 0 0 13 36 68 82 94 95
640 0 0 0 19 41 58 71 79

(b)

Figure 5: (a) Precision and (b) recall for model compression results on a randomly-selected class
from ImageNet using the VGG16 network. The rows correspond to α, and columns to β. The results
indicate that strong results can be obtained by selecting relatively few units for the compression mask
Mh. While selecting larger sets of units does lead to increased performance, returns diminish rapidly.

D DISCUSSION ON INFLUENCE MEASURES

Influence measures are widely studied in cooperative game theory as solutions to the problem of
attribution to of outcomes to participants and has applications to a wide range of settings including
revenue division and voting. In this section, we highlight ideas drawn from this body of work and
differences in terms of two key properties of influence measures: the marginality principle, and
efficiency.

The marginality principle (Young, 1988) states that an agent’s attribution only depends on its own
contribution to the output. Formally, this is stated as: if the partial derivatives with respect to an agent
of two functions are identical throughout, then they have identical attributions for agent i. Our axiom
of distributional marginality (DM) is a weaker form of this requirement that only requires equality of
attribution when partial derivatives are same in the distribution.

A second property, called efficiency, which is especially important for revenue division, is that
attributions add up to the total value generated. This ensures that no value is left unattributed. The
marginality principle, along with efficiency uniquely define the Aumann-Shapley Value(Aumann &
Shapley, 1974). In Sundararajan et al. (2017), the Aumann-Shapley Value is used for attributions
with efficiency as a justification. While it is unclear that efficiency is an essential requirement in our
setting, the Aumann-Shapley value can be recovered in our framework by choosing the distribution of
interest as the uniform distribution on the line segment joining an instance x and a baseline image b.
Certain choices of baselines can be problematic from the point of view of distributional faithfulness,
since the line segment of linear combinations between them might lie significantly out of distribution.
The particular baseline chosen in Sundararajan et al. (2017) is the zero vector, where the line segment
represents scaled images, and could be reasonably called within distribution.
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