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Abstract

Spatiotemporal trajectory data is crucial for various traffic-related applications.
However, issues such as device malfunctions and network instability often result in
sparse trajectories that lose detailed movement information compared to their dense
counterparts. Recovering missing points in sparse trajectories is thus essential.
Despite recent progress, three challenges remain. First, the lack of large-scale dense
trajectory datasets hinders the training of a trajectory recovery model. Second, the
varying spatiotemporal correlations in sparse trajectories make it hard to generalize
across different sampling intervals. Third, extracting road conditions for missing
points is non-trivial.
To address these challenges, we propose PLMTrajRec, a novel trajectory recovery
model. It leverages the scalability of a pre-trained language model (PLM) and
can effectively recover trajectories by fine-tuning with small-scale dense trajectory
datasets. To handle different sampling intervals in sparse trajectories, we first
convert sampling intervals and movement features into prompts for the PLM
to understand. We then introduce a trajectory encoder to unify trajectories of
varying intervals into a single interval. To extract road conditions for missing
points, we propose an area flow-guided implicit trajectory prompt that represents
traffic conditions in each region, and a road condition passing mechanism that
infers the road conditions of missing points using the observed ones. Experiments
on four public trajectory datasets with three sampling intervals demonstrate the
effectiveness, scalability, and generalization ability of PLMTrajRec. Code is
available at https://github.com/wtl52656/PLMTrajRec.

1 Introduction

Spatiotemporal trajectories are sequences of (location, timestamp) pairs that record the movement of
individuals and vehicles. They play a pivotal role in various applications, such as urban planning [36,
42, 1, 19], traffic management [25, 34, 46], and personalized location services [45, 33, 6, 5]. However,
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Figure 1: Impact of road conditions on route selection and movement patterns.

factors such as network instability, device malfunctions, or cost-saving settings often lead to sparse
trajectories with large sampling intervals [26, 44]. Such sparse trajectories fail to accurately reflect
movement behavior and route choices, limiting their usefulness. To address this issue, recovering the
missing points in sparse trajectories is crucial for preserving trajectory completeness—a task usually
referred to as trajectory recovery.

Two branches of methods have been proposed to tackle trajectory recovery: free space trajectory
recovery [9, 7] and map-matched trajectory recovery [37, 8]. Free space methods directly predict the
coordinates of missing points but do not ensure alignment with the road network, typically requiring
a subsequent map-matching step. Map-matched methods, by contrast, aim to recover missing points
on the road network, making them more accurately resemble real-world trajectories.

This work follows the map-matched trajectory recovery branch. Despite the progress, it still faces
three challenges: First, limited dense trajectory datasets. Trajectory recovery models are data-
driven and typically require large-scale pairs of sparse and dense trajectories. However, because of
cost-saving settings and device malfunctions, most collected trajectories remain sparse. The limited
availability of dense trajectory data makes existing models prone to overfitting and hampers their
performance. Second, difficulty in generalizing across varying sampling intervals. Real-world
sparse trajectory datasets often contain trajectories with a mixture of different sampling intervals [34].
Trajectories with different sampling intervals encompass different spatiotemporal correlations. Yet,
existing works [37, 8, 26] treat different sampling intervals the same way, requiring retraining
when facing trajectories with sampling intervals unseen during training, which introduces additional
computational burden. Third, non-trivial extraction of dynamic road conditions for missing
points. Road conditions of both observed and missing trajectory points are essential in facilitating
more accurate trajectory recovery. For example, in Figure 1(b) and (c), knowing the conditions at p2
and p3 reveals that the user is gradually decelerating on R1 due to congestion. If we only consider
conditions at p1 and p4, we might infer that the user takes R1 instead of R2 (Figure 1(a)), but not the
finer details of the movement. Yet, since the missing points in a sparse trajectory are unknown, it is
non-trivial to extract the road conditions at their exact locations.

To tackle these challenges, we propose Pre-trained Language Model for Trajectory Recovery
(PLMTrajRec). Drawing inspiration from [21, 15], which demonstrate that PLM possess broader
general knowledge and mitigate the lack of domain-specific datasets, we integrate a PLM to enable
high-performance trajectory recovery by fine-tuning on small-scale dense trajectory datasets (Chal-
lenge 1). To handle sparse trajectories with varying sampling intervals (Challenge 2), we introduce
an interval and feature-guided (IF-guided) explicit trajectory prompt. It incorporates both sampling
intervals and movement features into a prompt for the PLM, helping the model extract information
from these features. We also introduce an interval-aware trajectory embedder to standardize different
sampling intervals and learn their spatiotemporal correlations. To infer road conditions for missing
points (Challenge 3), we design an area flow-guided (AF-guided) implicit trajectory prompt that
gathers traffic flows in each region. We also present a road condition passing mechanism that uses
road conditions from nearby observed points to estimate those of the missing points. We conduct
extensive experiments on four real-world datasets, each with three sampling intervals, showing that
PLMTrajRec achieves superior performance in effectiveness, scalability, and generalizability.

2 Related Work

Trajectory recovery aims to reconstruct missing points from sparse trajectories. Based on whether
the road network is considered, it can be divided into two types: free-space recovery and map-matched
recovery. Free-space recovery directly restores missing GPS coordinates. Traditional methods often
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use predefined rules [4, 28, 12, 9] or assume Markov transitions between points [2, 47]. They are
limited in capturing the global spatial-temporal dependencies essential for accurate trajectory recovery.
Recent deep learning approaches improve recovery performance by modeling complex spatiotemporal
patterns [39, 40], including sequence-based models [32, 38, 7, 27] and graph-based methods [30].
However, these methods typically require a separate map-matching step to align the recovered trajec-
tory with road networks before practical use, which introduces additional errors and computational
overhead. In contrast, map-matched trajectory recovery integrates the road network into the model and
directly recovers the trajectory on the road network. MTrajRec [26] represents each point by a road
segment and moving rate, using a multi-task seq2seq framework. RNTrajRec [8] enhances this by
modeling spatial-temporal relations with a transformer-based architecture. LightTR [20] introduces a
lightweight recovery framework using federated learning. MM-STGED [37] further captures both
local and global semantic patterns via graph modeling. While these methods demonstrate promising
results, their performance is limited by the scarcity of large-scale dense trajectory data and poor
generalization across different sampling intervals, as discussed in Section 1.

Cross-domain Application of PLM has received significant attention recently. In the field of
time series analysis, Time-LLM [15] reprograms time series data with natural language prompts
to harness the capabilities of PLM in handling time series effectively. TEMPO [3] leverages PLM
for time series forecasting by employing interpretable prompt tuning to identify similar patterns in
time series data. Similarly, TEST [29] introduces soft prompts to enhance PLM’s understanding
of time series embeddings. In the field of computer vision, VisionLLM [35] employs PLM as
versatile decoders and has demonstrated promising performance in diverse visual tasks. MvNet [23]
integrates frozen PLM and multi-view vision prompting to efficiently encode three-dimensional data.
In recommendation systems, GenRec [14] utilizes specialized prompts and extensive knowledge
within PLM to provide accurate recommendations to users. Although PLMs have demonstrated
effectiveness across various domains, they cannot be directly applied to trajectory learning. Trajectory
data have unique spatiotemporal characteristics that require specialized modeling approaches.

3 Preliminaries

Trajectory. A trajectory is defined as a series of timestamped locations, denoted as T =
⟨p1, · · · , p|T |⟩ where pi = (lati, lngi, ti) represents the latitude and longitude coordinates of an
object at the time ti, i ∈ {1, · · · , |T |}. |T | is the length of the trajectory. The sampling interval of T
is defined as ti − ti−1, for i ≥ 2.

Road Network. A road network is modeled as a directed graph G = (V, E), where V is the set of
nodes, and E is the set of edges. Each node v ∈ V represents an intersection and is associated with
geographic coordinates, including latitude and longitude. Each edge e ∈ E corresponds to a road
segment connecting two intersections, defined by its start node e.start ∈ V and end node e.end ∈ V .

Map-matched Trajectory. Using a map-matching algorithm, a trajectory T can be projected onto
the road network to obtain a map-matched trajectory Tm. This ensures that each point in Tm aligns
accurately with a particular road. A map-matched trajectory is denoted as Tm = ⟨q1, · · · , q|Tm|⟩,
where each point qj = (ej , rj , tj) represents the vehicle’s position at time tj . Here, ej ∈ E is the
matched road segment, and rj is the moving ratio, representing the proportion of distance traveled
along road segment ej relative to its total length.

Map-matched Trajectory Recovery. Given a sparse trajectory Ts = ⟨p1, · · · , p|Ts|⟩ with a sampling
interval of µ, the goal of map-matched trajectory recovery is to reconstruct the dense map-matched
trajectory Tm = ⟨q1, · · · , q|Tm|⟩ with a sampling interval of ϵ. Note that the sampling interval µ > ϵ.

4 Methodology

In this paper, we present both scalable and generalizable trajectory recovery model, PLMTrajRec,
by fine-tuning a PLM that is pre-trained on a large-scale corpus with limited dense trajectory data.
The overall framework of PLMTrajRec as shown in Figure 2, comprises three main components:
dual trajectory prompts, an interval-aware trajectory embedder, and a PLM-based trajectory encoder.
The dual trajectory prompts provide essential prior information through two key components.
First, the interval and feature-guided (IF-guided) explicit trajectory prompt incorporates the sampling
interval of sparse trajectories and their movement features into the PLM, helping the model capture
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Figure 2: The framework of PLMTrajRec, consists of Dual Trajectory Prompts, Interval-aware
Trajectory Embedder, and PLM-based Trajectory Encoder.

trajectory characteristics. Second, the area flow-guided (AF-guided) implicit trajectory prompt
encodes road conditions, offering valuable context for recovering missing points. The interval-aware
trajectory embedder normalizes trajectories with varying sampling intervals µ into a unified interval
ϵ, efficiently handling diverse spatiotemporal correlations and enhancing model generalization. Each
trajectory point, both observed and missing, is then embedded into a format suitable for the PLM.
The PLM-based trajectory encoder leverages a pre-trained BERT model trained on a large-scale
corpus to capture bidirectional context. Most parameters are frozen to retain general knowledge,
while a multi-head attention layer remains trainable to learn trajectory-specific patterns. Finally, the
model predicts the road segment e and movement ratio r for the recovered map-matched trajectory.

4.1 Dual Trajectory Prompts

To enable PLM to recover trajectories with different intervals and effectively model road conditions
for missing trajectory points, we introduce dual trajectory prompts, consisting of an IF-guided explicit
trajectory prompt and an AF-guided implicit trajectory prompt.

4.1.1 Interval and Feature-guided (IF-guided) Explicit Trajectory Prompt

The IF-guided explicit trajectory prompt provides a structured textual description of the sampling
intervals and movement features of sparse trajectories, enabling PLMTrajRec to identify varying
sampling intervals and capture essential trajectory characteristics.

As shown in Figure 2, the prompts regarding sampling intervals consist of three components: the
<Task Part> informs the PLM about the overall task to be performed, the <Target Part> defines the
required output format, and the <Content Part> specifies the sampling intervals, guiding the PLM in
effectively analyzing the trajectories. The prompts for movement features include two components:
the <Time Part> provides the trajectory’s specific start and end times, helping the PLM understand
the duration and potential time patterns, such as morning or evening peaks. The <Move Part>
supports the PLM in inferring the trajectory’s movement patterns. We provide a detailed example of
the IF-guided explicit trajectory prompt in Appendix E. After obtaining the prompt for each part, we
use PLM’s tokenizer and token embedding to convert text into embeddings and concatenate them to
form the overall IF-guided explicit trajectory prompt embedding He.

4.1.2 Area Flow-guided (AF-guided) Implicit Trajectory Prompt

Road conditions reflect both the surrounding environment and object movement, providing valuable
information for trajectory recovery. For example, vehicles typically slow down in congested areas
and accelerate in smoother traffic. However, due to the complexity and variability of real-world road
conditions, describing them directly in natural language is challenging. Therefore, we represent these
conditions as implicit trajectory prompts.
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We first calculate the average road conditions across all areas and time intervals, then extract the
relevant information for each trajectory point. Specifically, we divide the target area into a spatial grid
of I × J cells and split the day into T intervals. For each cell, we count the total number of passing
vehicles, forming a regional flow matrix RC ∈ RI×J×T , where each entry denotes the traffic volume
at region (i, j) and time t. To capture spatiotemporal patterns, we apply a 2D convolution over
the spatial dimensions and a 1D convolution over the temporal dimension. This produces a feature
representation of road conditions Hrc ∈ RI×J×T×F , where F is the number of output features.

For observed points, we can directly extract their road condition features using their coordinates
and timestamps. For missing points, however, extracting their road conditions is challenging since
location information is unavailable. To address this, we design a road condition passing mechanism
inspired by message passing [10], which estimates the road condition of missing points using nearby
known information. The detailed implementation is presented in Section 4.2.2.

4.2 Interval-aware Trajectory Embedder

To enable our model to handle sparse trajectories with varying sampling intervals while effectively
capturing spatiotemporal correlations, we propose an interval-aware trajectory embedder.

4.2.1 Trajectory Interval Unification

Sparse trajectories often exhibit mobility patterns at varying granularities, with sampling intervals
ranging from seconds to minutes, introducing different spatiotemporal correlations between trajectory
points. To address this, we normalize all input trajectories to match the sampling interval of the target
trajectory. Specifically, we insert a placeholder token ‘[m]’ to indicate missing points, resulting in a
preprocessed sparse trajectory T ϵ of fixed interval ϵ, where the length is given by p|Ts|.t−p1.t

ϵ + 1.
Although the exact locations of ‘[m]’ are unknown, their timestamps remain computable. We give an
example about T ϵ in Appendix G.

4.2.2 Trajectory Feature Extractor

Given the preprocessed sparse trajectory T ϵ, there are two cases for extracting trajectory point
features: Case 1: The trajectory point s ∈ T ϵ is observed, i.e., ∃ k ∈ {1, · · · , |Ts|} such that
pk.t = s.t. Case 2: The location of trajectory point s ∈ T ϵ is missing, i.e., s = [m], where its
timestamp s.t is known.

For Case 1, we incorporate both the continuous GPS coordinates of trajectory point s and its local
road network context to extract the spatial characteristics. First, we encode the latitude and longitude
of s using Learnable Fourier Features (LFF)[31, 18], which project continuous spatial inputs into a
F -dimensional representation with a feature mapping function Φ(x) = WΦ[cos(xWr)||sin(xWr)],
where x ∈ {s.lat, s.lon}. Using LFF to encode latitude and longitude features has two advantages:
(1) The differences in coordinates between consecutive trajectory points are often minimal. Φ(·)
effectively captures these subtle positional shifts by sine and cosine functions, enhancing spatial
sensitivity. (2) The relative information x − y between points x and y can be captured through
multiplication operations, which is important for understanding movement, such as distance. We
provide detailed insight and proof of LFF in Appendix F.

Second, considering that vehicles move within the road network, the relationship between a trajectory
point and its surrounding road segments is critical. To measure the relationship between a trajectory

point s and a road segment l, we define a function f(ds,l) =

{
e−(

ds,l
κ )2 if ds,l < φdist,

0 otherwise,
based on

their shortest distance, where ds,l is the shortest distance between s and road l, κ is a hyperparameter,
and φdist is a distance threshold. Then we obtain the road network representation hroad

s by weighting
the road segment embedding (a randomly initialized vector). Finally, the complete representation of a
trajectory point s is obtained as:

hs = W1[(Φ(s.lat) + Φ(s.lon)) ||hroad
s ] + b1, (1)

where W1 ∈ RF×2F and b1 ∈ RF are learnable parameters, and || is the concatenation operation.

For Case 2, where the location of point s is unknown, we represent its features using road conditions,
as described in Section 4.1.2. Since road conditions at a specific point are influenced by surrounding
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conditions that propagate along both temporal and spatial dimensions, we propose a road condition
passing mechanism, inspired by the message passing mechanism [10], to infer the road conditions at
the missing location.

Road Condition Passing Mechanism. First, for the missing point s, we identify the nearest observed
forward and backward trajectory points, sf and sb, respectively. We give an example about sf and sb
in Appendix G. Then, we retrieve the road conditions of sf and sb as follows:

hf
rc = Hrc[πlat(sf .lat), πlng(sf .lng), πt(sf .t)], hb

rc = Hrc[πlat(sb.lat), πlng(sb.lng), πt(sb.t)], (2)

where πlat, πlng, and πt are index functions mapping latitude, longitude, and time to their corre-
sponding indices. Next, we calculate the time intervals between point s and points sf and sb, denoted
as △tf = s.t− sf .t and △tb = sb.t− s.t. The road condition of point s is then computed as:

hs
rc =

e−△tfhf
rc + e−△tbhb

rc

e−△tf + e−△tb
(3)

In addition, we encode the time intervals △tf and △tb to quantify the relative position of s. The
final representation of s is hs = W2[m || FC(△tf ||△tb) || hs

rc] + b2, where m ∈ RF is a learnable
vector representing the missing location, and FC(·) : R2 → RF is the fully connected layer. Finally,
the overall trajectory representation is H ∈ R|T ϵ|×F .

4.2.3 Trajectory Feature Transformation

To enhance the model’s ability to comprehend trajectory features, we introduce K reference tokens
Ew ∈ RK×F , inspired by [16, 11], to bridge the connection between PLM and the trajectory. These
reference tokens are designed to capture the global semantics of the trajectory.

Given the trajectory embedding H, we first apply a 1D CNN to aggregate neighboring information
and capture local movement patterns, i.e. H′ = Conv1d(H). Next, we compute cross-attention
between the trajectory embedding H′ and the reference tokens Ew to capture the global semantics
H′′, where H′ acts as the query, and Ew serves as both the key and value. Then, we concatenate
H′′ with the explicit trajectory prompt embedding He to form the final trajectory representation Z.
Finally, we incorporate the Transformer positional embedding into each element of Z and feed this
enhanced representation into the PLM encoder to encode the trajectory.

4.3 PLM-based Trajectory Encoder

We utilize pre-trained BERT as our foundational PLM, as its encoder-only structure is well-suited for
reconstruction tasks due to its effective use of bi-directional contextual information from trajecto-
ries [29]. To optimize PLM for trajectory recovery, we implement the Low-Rank Adaptation (LoRA)
algorithm [13] for fine-tuning. After obtaining the output embeddings from the PLM, we discard the
IF-guided explicit trajectory prompt portion and extract trajectory embeddings Z′ ∈ R|T ϵ|×d. For the
j-th element of Z′, we apply the softmax function to calculate the probability of each road segment
and determine the predicted road segment ej via the argmax operation. Additionally, we employ a
Multi-Layer Perceptron (MLP) with a Sigmoid activation function to predict the moving ratio rj .

4.4 Joint Training Strategy

To enable PLMTrajRec to effectively recover sparse trajectories across varying sampling intervals,
we implement a comprehensive joint training strategy. Specifically, for each dense trajectory T ,
we generate M sparsified variants by resampling at different intervals, yielding M distinct sparse
datasets T1, . . . ,TM . These datasets are merged into a unified training dataset Tall =

⋃M
i=1 Ti,

enabling the model to achieve balanced performance across different sampling rates. Subsequently,
we fine-tune the model on each individual sparse trajectory dataset to further enhance trajectory
recovery performance for specific sampling intervals.

We employ multi-task learning to simultaneously optimize road segment recovery and moving ratio
recovery. For road segment recovery, we utilize the cross-entropy loss function, while for moving
ratio recovery, we employ the mean squared error loss function. These two objectives are balanced
using a weighting factor λ to ensure optimal performance on both tasks.
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5 Experiments

In this section, we present comprehensive experiments to evaluate the effectiveness, scalability, and
generalization capabilities of PLMTrajRec.

Datasets. We evaluate our model on four public trajectory datasets from Chengdu3, China, and
Porto4, Portugal. For each city, we use road networks and trajectories at two different scales, named
Chengdu-Small, Chengdu-Large, Porto-Small, and Porto-Large. All trajectories are standardized
to a 15-second sampling interval. We remove trajectories with travel times less than 5 minutes or
exceeding 1 hour, as well as outliers. The road network data is sourced from OpenStreetMap5. We
apply a map-matching algorithm [22] to align trajectories with the road network and obtain ground
truth road segments and movement ratios. Table 6 summarizes the statistics of our datasets.

Baselines. To evaluate the effectiveness of our model, we compare PLMTrajRec with 12 baseline
methods. These include five free space trajectory recovery models: HMM [22] + ShortestPath,
Linear [12] + HMM [22], MPR [9] + HMM [22], DHTR [32] + HMM [22], and AttnMove [38] +
Rule, and seven map-matched trajectory recovery models: MTrajRec [26], T2vec [17] + Decoder,
T3s [41] + Decoder, TERI [7] + Decoder, TrajBERT [27] + Decoder, RNTrajRec [8], and
MM-STGED [37]. The details of each baseline are provided in Appendix C.

Evaluation Metrics. Following existing works [26, 8, 37], we use five common metrics to evaluate
the effectiveness of our model. For road segment recovery, we adopt Accuracy (Acc), Recall, and
Precision (Prec). To assess the recovered GPS coordinates, we employ Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE). The details of each metric are provided in Appendix D.1.

Settings. During training, we use sparse trajectories with three different sampling intervals µ
to train PLMTrajRec, where µ = 4 minutes, 2 minutes, and 1 minute, respectively, and recover
dense trajectories with sampling interval ϵ = 15 seconds. After training, we evaluate the model’s
performance across these intervals to test its generalization ability. To further improve accuracy,
we fine-tune the model on each specific interval, enabling more precise trajectory recovery. We
implement this fine-tuning using LoRA specifically for the attention components of the PLM. Detailed
experimental settings are provided in Appendix D.2.

5.1 Experimental Results

The comparison of the results is shown in Table 1. We observe that as the sampling interval increases,
trajectory recovery becomes more challenging, resulting in decreased performance across all models.
Compared to baselines, our model achieves superior performance across all metrics, with an average
improvement of 16.51% and 9.35% on the Chengdu-Small and Porto-Small datasets. Notably, our
model demonstrates substantial gains in RMSE metrics, with an average reduction of 351.8 meters in
Chengdu-Small and 119.2 meters in Porto-Small. These results indicate PLMTrajRec generalizes
effectively, enabling accurate trajectory recovery across varying sampling intervals. By fine-tuning at
the specific sampling interval, PLMTrajRec + FT, the performance further improves 1.49%, 0.13%,
1.16%, and 0.80% on the four datasets. These outstanding results can be attributed to the PLM’s
strong generalization capability in processing sparse trajectories with varying sampling intervals and
the efficient extraction of spatiotemporal correlations by the interval-aware trajectory embedder.

5.2 Scalability Analysis

To evaluate the effectiveness of PLMTrajRec in trajectory recovery when dense trajectory data is
limited, we conduct scalability experiments. Specifically, we train the model using subsets of the
training set at 20%, 40%, 60%, 80%, and 100%, and evaluate performance on the test set. The results
are presented in Table 2. As the size of the training set increases, the performance improves across all
baseline models. Notably, with only 20% of the training data, PLMTrajRec already surpasses most
baselines, trailing only MM-STGED. With 40% of the training data, PLMTrajRec outperforms all
other models, demonstrating its strong scalability. This advantage underscores the practicality of
PLMTrajRec in limited data scenarios.

3https://outreach.didichuxing.com/
4https://www.kaggle.com/competitions/pkdd-15-predict-taxi-service-trajectory-i
5http://www.openstreetmap.org/
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Table 1: Performance comparison on Chengdu-Small and Porto-Small datasets with sampling intervals
at 4 minutes, 2 minutes, and 1 minute, respectively. Red denotes the best result, and blue denotes the
second-best result. ↓ means lower is better. ↑ means higher is better.

Dataset Sampling Interval µ 4 minutes / 2 minutes / 1 minute

Methods Acc(%) ↑ Recall(%) ↑ Prec(%) ↑ MAE ↓ RMSE ↓
C

he
ng

du
-S

m
al

l

HMM+ShortestPath 26.85 / 33.85 / 35.92 28.64 / 47.89 / 67.92 29.55 / 48.31 / 60.16 939.3 / 754.1 / 529.7 1047.7 / 826.2 / 638.2
Linear+HMM 26.42 / 43.78 / 68.59 30.45 / 45.35 / 65.66 36.15 / 48.77 / 66.67 974.5 / 816.9 / 707.4 1145.4 / 1054.7 / 1005.2
MPR+HMM 36.93 / 49.88 / 62.25 38.62 / 54.62 / 62.67 44.53 / 50.94 / 60.53 821.9 / 474.8 / 418.8 914.1 / 899.0 / 659.0

DHTR+HMM 41.48 / 47.17 / 51.09 57.34 / 60.16 / 63.40 50.48 / 51.73 / 50.14 673.6 / 662.0 / 584.7 911.3 / 912.2 / 750.4
AttnMove+Rule 63.43 / 71.98 / 79.60 73.97 / 77.42 / 81.55 78.72 / 80.67 / 82.75 358.2 / 291.1 / 194.4 916.7 / 764.8 / 752.6

MTrajRec 65.79 / 74.52 / 81.12 75.14 / 78.25 / 81.73 78.42 / 81.09 / 83.75 315.1 / 254.5 / 187.1 904.4 / 885.7 / 718.4
T3s+Decoder 65.60 / 74.62 / 80.90 75.26 / 78.95 / 82.78 78.14 / 81.79 / 83.15 318.2 / 242.2 / 187.1 926.3 / 857.5 / 713.0

T2vec+Decoder 66.51 / 75.69 / 81.69 75.68 / 78.86 / 81.90 78.27 / 81.68 / 83.88 307.5 / 231.6 / 185.6 915.2 / 783.6 / 714.1
TERI+Decoder 66.42 / 75.32 / 81.25 75.59 / 78.74 / 81.89 78.36 / 81.38 / 83.92 309.2 / 239.0 / 186.9 903.8 / 823.7 / 710.4

TrajBERT+Decoder 66.09 / 75.20 / 81.38 75.38 / 78.69 / 81.72 78.59 / 81.53 / 83.65 310.7 / 235.0 / 183.2 911.4 / 813.7 / 710.7
RNTrajRec 67.66 / 75.80 / 81.88 75.59 / 79.35 / 82.09 79.97 / 81.86 / 84.84 306.1 / 218.5 / 177.9 886.0 / 757.0 / 702.5

MM-STGED 70.64 / 78.14 / 84.26 76.04 / 80.06 / 84.15 81.63 / 83.58 / 85.92 266.2 / 197.2 / 154.0 829.7 / 696.0 / 633.5
PLMTrajRec 74.12 / 81.76 / 87.17 79.63 / 84.31 / 87.99 86.46 / 88.38 / 90.52 262.8 / 187.4 / 141.4 483.0 / 366.2 / 290.8

PLMTrajRec+FT 74.58 / 82.29 / 88.15 80.09 / 84.59 / 88.82 86.63 / 88.72 / 91.04 253.2 / 181.2 / 138.6 465.7 / 349.0 / 289.1

Po
rt

o-
Sm

al
l

HMM+ShortestPath 20.19 / 27.30 / 34.75 26.22 / 40.05 / 48.46 33.51 / 46.00 / 48.67 886.9 / 647.3 / 527.2 941.5 / 747.0 / 659.3
Linear+HMM 32.23 / 49.35 / 66.17 36.09 / 50.45 / 64.72 49.80 / 63.87 / 75.22 489.3 / 408.7 / 368.3 637.3 / 609.8 / 571.1
MPR+HMM 32.22 / 49.76 / 66.27 38.67 / 52.97 / 65.66 48.07 / 62.86 / 74.51 534.0 / 409.8 / 402.6 700.2 / 610.9 / 628.2

DHTR+HMM 32.02 / 43.76 / 52.98 58.29 / 65.25 / 69.60 45.61 / 52.10 / 57.17 456.7 / 385.3 / 420.4 627.1 / 578.0 / 625.8
AttnMove+Rule 49.31 / 61.39 / 72.07 48.62 / 60.90 / 69.59 78.03 / 82.98 / 80.41 310.0 / 213.4 / 156.6 621.3 / 468.5 / 360.7

MTrajRec 52.36 / 61.65 / 71.65 60.39 / 65.65 / 70.92 77.28 / 78.99 / 80.35 266.1 / 179.9 / 114.9 590.1 / 451.5 / 332.3
T3s+Decoder 52.24 / 61.75 / 71.78 60.24 / 65.53 / 71.61 77.80 / 79.14 / 80.16 270.4 / 181.3 / 110.1 594.9 / 461.2 / 328.0

T2vec+Decoder 53.13 / 62.24 / 71.86 60.27 / 65.77 / 71.10 77.62 / 78.97 / 80.48 256.3 / 173.9 / 114.2 571.0 / 438.0 / 334.7
TERI+Decoder 53.59 / 62.14 / 71.53 60.02 / 65.39 / 71.38 78.26 / 79.18 / 80.29 253.9 / 178.3 / 113.2 558.3 / 443.9 / 325.9

TrajBERT+Decoder 52.98 / 62.34 / 71.63 60.12 / 65.66 / 71.47 77.93 / 79.02 / 80.39 251.8 / 177.9 / 112.7 560.1 / 441.2 / 329.5
RNTrajRec 54.59 / 63.39 / 72.31 60.42 / 65.84 / 71.88 79.20 / 79.25 / 80.57 248.1 / 171.3 / 110.3 549.1 / 433.9 / 325.7

MM-STGED 57.30 / 65.69 / 73.16 59.48 / 66.15 / 72.27 80.21 / 80.74 / 80.81 222.8 / 152.5 / 108.2 510.4 / 400.8 / 321.9
PLMTrajRec 57.61 / 66.40 / 74.42 59.15 / 66.52 / 72.78 82.19 / 82.14 / 82.82 200.9 / 141.9 / 95.6 376.9 / 294.6 / 211.7

PLMTrajRec+FT 57.67 / 66.72 / 75.35 59.08 / 66.87 / 73.87 82.05 / 82.38 / 83.28 200.8 / 141.7 / 95.2 370.2 / 293.5 / 220.3

C
he

ng
du

-L
ar

ge

HMM+Short 22.38 / 38.72 / 48.36 27.18 / 45.46 / 57.57 28.69 / 49.99 / 55.42 886.2 / 572.8 / 388.3 1136.0 / 846.7 / 638.6
Linear+HMM 25.71 / 36.12 / 56.50 35.06 / 41.53 / 62.11 36.05 / 46.11 / 68.52 802.8 / 503.3 / 375.7 979.2 / 761.0 / 611.6

MPR 31.10 / 45.70 / 58.68 41.57 / 52.08 / 64.32 47.43 / 58.30 / 70.21 718.7 / 529.3 / 396.8 946.5 / 793.3 / 673.3
DHTR+HMM 37.45 / 52.69 / 66.05 50.47 / 59.71 / 71.95 56.35 / 64.98 / 74.23 582.5 / 492.3 / 248.5 930.9 / 776.9 / 572.1

AttnMove+HMM 67.37 / 73.53 / 79.14 71.16 / 77.92 / 80.61 72.61 / 78.46 / 81.60 361.8 / 344.7 / 197.5 859.0 / 663.5 / 455.7
MTrajRec 70.09 / 80.09 / 83.75 74.11 / 81.72 / 84.46 75.17 / 81.64 / 85.19 348.7 / 312.4 / 146.4 828.5 / 528.6 / 347.7

T3s+Decoder 70.62 / 79.19 / 83.11 75.23 / 83.65 / 85.58 77.94 / 82.97 / 85.84 359.1 / 293.8 / 127.3 771.3 / 499.5 / 299.8
T2vec+Decoder 71.49 / 80.11 / 82.35 76.97 / 81.57 / 84.96 78.38 / 82.76 / 85.57 301.8 / 246.2 / 135.6 792.8 / 461.4 / 301.8
TREI+Decoder 71.20 / 81.81 / 83.72 75.04 / 83.54 / 86.48 78.04 / 81.11 / 87.02 267.6 / 205.3 / 125.6 783.3 / 400.8 / 278.5

TrajBERT+Decoder 71.15 / 80.52 / 84.37 75.88 / 82.35 / 86.91 79.61 / 81.03 / 86.96 278.8 / 218.3 / 119.7 752.6 / 413.0 / 282.1
RNTrajRec 73.62 / 80.85 / 84.21 76.05 / 83.02 / 86.34 78.90 / 82.73 / 87.75 261.8 / 183.3 / 121.8 764.8 / 389.8 / 253.0

MM-STGED 75.51 / 83.77 / 86.21 79.24 / 84.02 / 89.17 80.13 / 85.57 / 89.22 240.2 / 162.9 / 102.0 718.9 / 337.7 / 203.9
PLMTrajRec 78.97 / 85.11 / 89.84 82.72 / 88.72 / 92.38 86.13 / 89.01 / 93.11 222.8 / 146.9 / 85.4 421.6 / 273.0 / 137.5

PLMTrajRec+FT 79.15 / 85.48 / 90.28 83.03 / 88.93 / 92.22 86.96 / 89.34 / 92.86 218.2 / 143.1 / 83.6 406.6 / 268.6 / 133.0

Po
rt

o-
L

ar
ge

HMM+Short 23.81 / 43.10 / 49.16 28.57 / 52.40 / 53.50 26.17 / 50.40 / 57.30 810.4 / 717.7 / 387.7 932.9 / 704.5 / 496.3
Linear+HMM 28.75 / 43.37 / 57.62 31.35 / 51.14 / 61.90 34.11 / 57.91 / 63.94 838.5 / 634.8 / 349.6 961.2 / 683.7 / 462.1

MPR 37.14 / 46.54 / 58.67 39.08 / 55.82 / 60.91 38.58 / 58.30 / 62.42 649.6 / 497.3 / 355.2 830.1 / 552.1 / 458.7
DHTR+HMM 39.87 / 54.78 / 63.75 50.38 / 60.26 / 64.81 57.44 / 58.25 / 66.53 518.3 / 439.2 / 241.2 663.8 / 466.9 / 362.8

AttnMove+HMM 57.25 / 63.05 / 68.22 60.08 / 65.76 / 70.64 66.47 / 66.59 / 69.77 332.9 / 263.3 / 174.9 414.5 / 376.6 / 288.0
MTrajRec 61.87 / 66.85 / 72.63 62.99 / 68.68 / 72.42 69.44 / 69.55 / 71.63 259.9 / 194.4 / 128.0 362.1 / 320.5 / 216.5

T3s+Decoder 63.52 / 67.39 / 71.31 64.92 / 70.56 / 73.67 72.81 / 71.06 / 74.08 216.0 / 172.2 / 137.0 375.1 / 324.9 / 225.9
T2vec+Decoder 64.24 / 68.84 / 72.54 63.85 / 69.70 / 74.60 73.86 / 70.04 / 72.82 231.1 / 164.8 / 103.6 358.4 / 308.3 / 208.1
TREI+Decoder 63.41 / 67.63 / 72.21 63.71 / 69.54 / 73.59 74.78 / 71.37 / 74.22 215.9 / 166.5 / 115.4 345.7 / 311.7 / 212.4

TrajBERT+Decoder 63.59 / 68.54 / 71.59 62.09 / 70.75 / 74.62 73.58 / 70.83 / 73.32 191.0 / 150.7 / 91.6 342.2 / 293.6 / 190.2
RNTrajRec 65.98 / 68.88 / 72.72 64.75 / 70.71 / 74.31 74.94 / 71.25 / 73.95 192.8 / 147.6 / 82.4 311.0 / 286.6 / 185.8

MM-STGED 66.66 / 70.03 / 74.03 65.59 / 73.44 / 76.68 75.62 / 74.53 / 76.33 173.6 / 113.6 / 68.6 296.3 / 255.9 / 149.6
PLMTrajRec 67.57 / 73.14 / 77.30 68.74 / 76.10 / 79.36 78.93 / 76.77 / 80.92 146.3 / 97.3 / 53.8 264.2 / 191.9 / 116.7

PLMTrajRec+FT 67.87 / 73.68 / 77.75 69.18 / 76.40 / 79.93 78.87 / 77.02 / 81.05 142.7 / 96.0 / 52.3 261.3 / 188.2 / 117.3

Table 2: Scalability analysis. The performance comparison on the Chengdu-Small dataset when
trained with different data ratios. The result of other dataset can be found in Table 7, 8, and 9. Red
denotes the best result, and blue denotes the second-best result.

Setting Data Ratio 20% 40% 60% 80% 100%
Metric Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE

µ = 4 minutes

MTrajRec 60.73 1048.0 63.58 968.5 64.73 929.4 65.39 914.6 65.79 904.4
T3s + Decoder 60.49 1098.9 63.32 968.7 64.23 961.9 65.04 942.3 65.60 926.3

T2vec + Decoder 62.17 966.1 64.92 946.1 64.95 972.3 65.31 946.8 66.51 915.2
RNTrajRec 60.80 998.0 62.85 931.3 64.19 909.1 65.46 835.0 67.66 886.0

MM-STGED 64.61 935.0 67.76 881.8 68.53 853.7 69.95 825.3 70.64 829.7
PLMTrajRec 68.30 585.3 71.57 515.6 72.74 512.5 73.56 488.3 74.12 483.0

µ = 2 minutes

MTrajRec 69.85 919.8 72.58 907.4 73.97 902.3 74.32 891.3 74.52 885.7
T3s + Decoder 68.86 909.5 72.29 897.2 73.63 883.8 74.53 868.8 74.62 857.5

T2vec + Decoder 69.47 905.4 72.77 858.3 73.80 855.8 74.89 831.3 75.69 783.6
RNTrajRec 68.05 991.0 70.20 856.9 71.17 834.4 72.62 795.3 75.80 757.0

MM-STGED 71.65 865.0 75.32 773.0 75.49 752.1 76.94 747.7 78.14 696.0
PLMTrajRec 76.29 452.8 79.37 411.5 80.37 395.4 81.18 377.4 81.76 366.2

µ = 1 minute

MTrajRec 75.39 937.5 78.53 835.1 80.01 794.3 80.93 725.7 81.12 718.4
T3s + Decoder 76.49 917.1 79.08 824.9 80.65 767.8 80.82 716.5 80.90 713.0

T2vec + Decoder 75.89 845.4 79.09 746.8 79.41 752.3 81.21 742.2 81.69 714.1
RNTrajRec 75.65 846.2 79.48 784.8 79.61 769.3 81.74 742.5 81.88 702.5

MM-STGED 76.02 857.7 79.86 734.7 82.25 676.4 83.44 663.0 84.26 633.5
PLMTrajRec 81.62 397.5 84.59 352.0 85.75 328.7 86.73 305.4 87.17 290.8

5.3 Zero-shot Study on Sampling Interval

We further analyze the model’s generalizability when tested on sampling intervals absent during
training. Specifically, PLMTrajRec is trained with sampling intervals of 1 minute and 4 minutes,
then evaluated on trajectories sampled at 2-minute intervals. Table 3 presents the results, where ↓
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Table 3: Zero-shot study on Chengdu-Small and Porto-Small datasets with µ = 2 minutes. Red
denotes the best result, and blue denotes the second-best result.

Datasets Chengdu-Small Porto-Small
Methods Acc(%) MAE RMSE Acc(%) MAE RMSE

MTrajRec 56.39 (↓ 18.13%) 492.7 (↓ 48.37%) 1046.2 (↓ 15.34%) 37.51 (↓ 24.14%) 322.0 (↓ 44.13%) 566.8 (↓ 20.34%)
T3s + Decoder 63.81 (↓ 10.81%) 353.0 (↓ 31.39%) 980.6 (↓ 9.68%) 45.88 (↓ 15.87%) 247.2 (↓ 26.66%) 527.1 (↓ 12.51%)

T2vec + Decoder 63.32 (↓ 12.37%) 376.6 (↓ 38.50%) 928.1 (↓ 15.57%) 51.46 (↓ 10.78%) 245.3 (↓ 29.10%) 507.2 (↓ 13.65%)
RNTrajRec 64.93 (↓ 10.87%) 339.6 (↓ 35.70%) 912.8 (↓ 17.07%) 52.82 (↓ 10.57%) 214.1 (↓ 19.98%) 478.6 (↓ 9.34%)

MM-STGED 68.27 (↓ 9.90%) 291.8 (↓ 32.42%) 862.6 (↓ 19.31%) 55.71 (↓ 9.98%) 182.4 (↓ 16.40%) 450.9 (↓ 11.11%)
PLMTrajRec 79.62 (↓ 2.14%) 195.3 (↓ 4.05%) 379.6 (↓ 3.53 %) 64.96 (↓ 1.44%) 147.1 (↓ 3.52%) 303.8 (↓ 3.03%)

indicates the percentage decline compared to performance when trained with 2-minute sampling
intervals. While all models exhibit decreased accuracy when the target sampling interval is excluded
from training data, PLMTrajRec demonstrates a notably smaller performance degradation. This
robustness can be attributed to its trajectory prompts and joint training strategy, which effectively
identify the sampling interval patterns in target trajectories, enhancing generalizability. In contrast,
baseline models rely exclusively on trajectory point information to capture correlations, limiting their
ability to generalize across different temporal dynamics between training and testing datasets.

5.4 Model Analysis

Table 4: Ablation study with µ = 2 minutes. Red denotes the best result, and blue denotes the
second-best result.

Datasets Chengdu-Small Porto-Small Chengdu-Large Porto-Large
Methods Acc(%) MAE RMSE Acc(%) MAE RMSE Acc(%) MAE RMSE Acc(%) MAE RMSE

PLMTrajRec - Randomly initialized BERT 74.11 288.4 831.9 62.06 179.3 413.9 79.28 251.5 462.0 68.29 169.2 282.3
PLMTrajRec - GPT-2 80.23 273.7 492.7 64.33 272.0 450.6 81.63 217.5 428.6 70.29 149.3 266.5
PLMTrajRec - Llama 80.51 255.3 473.5 64.69 235.1 438.3 82.24 204.1 412.4 70.58 136.9 248.1

w/o IF-guided explicit trajectory prompt 81.04 205.8 394.2 66.13 157.9 314.6 83.82 167.0 322.7 72.24 125.0 236.0
w/o AF-guided implicit trajectory prompt 81.43 191.4 371.1 66.18 149.6 298.1 84.23 173.9 304.2 72.10 128.3 241.1

w/o Dual trajectory prompts 80.70 225.9 407.4 65.52 171.0 339.4 83.20 185.3 348.2 71.72 131.0 249.1
w/o Reference tokens 80.83 236.6 437.2 65.89 165.4 327.7 82.71 206.3 386.6 71.26 131.2 251.3

PLMTrajRec 81.76 187.4 366.2 66.40 141.9 294.6 85.11 146.9 273.0 73.14 97.3 191.9

Ablation Study. As shown in Table 4, removing dual trajectory prompts results in a 12.80%
degradation in average performance across the four datasets, validating the importance of capturing
both task-specific information and road conditions for missing trajectory points. Ablating reference
tokens causes performance declines ranging from 8.27% to 20.19%, as the PLM cannot effectively
interpret raw trajectory data without these references. Experiments with randomly initialized BERT
in PLMTrajRec yield substantially poorer results, demonstrating the effectiveness of pre-trained
language models for trajectory recovery task. Similarly, decoder-only PLM frameworks such as
GPT-2 and Llama show decreased performance, indicating that the ability to capture bidirectional
contextual information is essential for accurate trajectory recovery.

Table 5: Efficiency analysis on Chengdu-Small and Porto-Small datasets with µ = 2 minutes. The ratio
after the trainable parameters denotes the percentage of trainable parameters to the total parameters.

Dataset Chengdu-Small Porto-Small

Methods # Param. # Trainable Train time Inference # Param. # Trainable Train time Inference
Param. (ratio) (min/epoch) time (min) Param. (ratio) (min/epoch) time (min)

DHTR 4.95M 4.95M (100%) 7.37 1.29 4.62M 4.62M (100%) 10.52 3.07
MTrajRec 5.03M 5.03M (100%) 9.58 1.86 4.85M 4.85M (100%) 18.68 5.41

RNTrajRec 11.36M 11.36M (100%) 10.73 2.23 10.85M 10.85M (100%) 20.57 6.83
MM-STGED 9.24M 9.24M (100%) 12.35 5.77 8.88M 8.88M (100%) 28.27 16.39
PLMTrajRec 45.05M 16.28M (35.15%) 24.18 2.56 44.76M 16.00M (35.74%) 54.14 10.38

Efficiency Analysis. As shown in Table 5, incorporating a PLM increases the model’s parameter
count as well as training and inference time. However, by deploying LoRA, we significantly reduce
the number of trainable parameters, with only 35.15% and 35.74% of the total parameters requiring
training. Since the introduction of PLM substantially improves trajectory recovery performance, this
approach achieves an effective trade-off between performance efficacy and computational efficiency.

5.5 Hyperparameter Study

To explore the impact of hyperparameters on model performance, we conduct hyperparameter analysis
with the sparse trajectory sampling interval of 2 minutes.
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Figure 3: Hyperparameter analysis of the number of reference tokens K of trajectory feature
transformation.
The Number of Reference Tokens K We set the parameter K from the set {128, 256, 512, 1024}
to explore its impact on trajectory recovery. The experimental results are shown in Figure 3. As
K increases, the effectiveness of trajectory recovery also improves. This suggests that having a
larger token space aids in accurately representing trajectory features. When K is larger than 512,
the performance improvement of PLMTrajRec becomes marginal, while the computational cost will
increase. To balance the performance and efficiency of the model, we set K to 512.
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Figure 4: Hyperparameter analysis of the rank r of LoRA.
The Rank r of LoRA As shown in Figure 4, we set the range of r ∈ {4, 8, 16, 64} to explore
its impact. It is observed that the model performs well when r = 4. As r increases, the accuracy
will continue to increase, but not obvious. This suggests that PLM encapsulates substantial domain
expertise through training on extensive corpora, rendering it adaptable to trajectory recovery tasks
with minor adjustments. Yet as r increases, the number of parameters also increases, making the
model training require more memory. Thus, we set r = 8 to balance the performance and resources.
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Figure 5: Hyperparameter analysis of the weight λ in the loss function.
The Loss Weight λ As shown in Figure 5, as the loss function weight λ increases, the model
performance first improves and then decreases. This is because a smaller λ will make the model
focus on road segment recovery, while a larger λ will focus on moving rate recovery. To balance
these two tasks, we set the value of λ to 10.

6 Conclusion

In this paper, we investigate the problem of trajectory recovery with limited-scale training datasets
and propose a novel trajectory recovery model named PLMTrajRec. By leveraging pre-trained
language models, PLMTrajRec can effectively recover trajectories even with limited dense trajectory
datasets, thereby demonstrating strong scalability. The model incorporates both an interval and
feature-guided explicit trajectory prompt and an interval-aware trajectory embedder, enabling it to
effectively generalize across sampling intervals. Additionally, we introduce an area flow-guided
implicit trajectory prompt to gather traffic flows in each region, and propose a road condition passing
mechanism to infer missing-point conditions from nearby observations. Experimental results on four
datasets with three sampling intervals validate the effectiveness, scalability, and generalizability of
the proposed model. We discuss the limitations and broader impacts of PLMTrajRec in Appendix A.
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made in the paper.
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much the results can be expected to generalize to other settings.
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Justification: The paper does not include theoretical results.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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of a large language model), releasing of a model checkpoint, or other means that are
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our code and data are available at https://github.com/wtl52656/
PLMTrajRec.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Section 5, Appendix D, 5.5.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to Appendix 5.5.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We conduct efficiency analysis in Section 5.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We ensured that the study complied with the NeurIPS Code of Ethics in all
respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix A.2 Broader Impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not suffer from this risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM is a crucial component in the paper, which aims to achieve scalability
and generalization, as demonstrated in Section 1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations and Broader Impacts

A.1 Limitations

Due to the varying number of road segments across different datasets, some modules are technically
not transferable across datasets, such as the road segment embeddings and the road segment ID
prediction based on multi-classification. Consequently, our model trained on one dataset struggles to
generalize to others. Future work will focus on developing a universal road segment embedding to
enable cross-dataset adaptation and enhance model versatility.

A.2 Broader Impacts

Our proposed model demonstrates the effectiveness of applying PLM to trajectory data. The inherent
scalability and generalization capabilities of PLM can be effectively leveraged for trajectory modeling,
enabling the model to achieve comparable performance using only 20% of the training data and to
generalize well to unseen sampling intervals. Furthermore, for the trajectory recovery task, encoder-
only PLM architectures outperform decoder-only, as they are better suited to capture bidirectional
information within trajectories.

B Dataset

Following [37], for -Small datasets, we focus on the road network only on the commonly used roads.
Specifically, for the Chengdu-Small dataset, we select four types of roads: Primary, Secondary, Trunk,
and Tertiary. For the Porto-Small, we select Primary, Secondary, Motorway, and Tertiary. We employ
map matching on the selected road network to obtain the ground-truth road segment ID and moving
ratio of the trajectory, and trajectories that cannot be matched are discarded. In addition, to validate
our approach on a larger scale, we utilize all roads within the regions and perform map matching
again, and construct a larger dataset, termed as Chengdu-Large and Porto-Large. The statistics of
these datasets are summarized in Table 6.

Table 6: Statistics Description of Dataset.

Types Chengdu-Small Porto-Small Chengdu-Large Porto-Large

#Sampling Intervals 15s 15s 15s 15s
#Trajectories 118,354 322,079 1,563,292 836,391

#Road Segments 2504 2224 12564 15707
Latitude range (30.655, 30.727) (41.142, 41.174) (30.600, 30.730) (41.100, 41.190)

Longitude range (104.043, 104.129) (-8.652, -8.578) (104.011, 104.150) (-8.675, -8.550)

C Baseline Setting

We choose the following 12 methods as baselines, including five free space trajectory recovery and
seven map-matched trajectory recovery.

C.1 Free-space Trajectory Recovery

Free space trajectory recovery first recovers trajectory points and then projects the trajectory onto the
road network.

• HMM [22] + ShortestPath first projects the sparse trajectory on the road network based on the
hidden markov model (HMM), and then calculate the shortest path.

• Linear [12] + HMM [22] linearly interpolates missing trajectory points and then implements
HMM to perform the map matching process.

• MPR [9] + HMM [22] first divides the area of interest into grids to identify frequently traveled
routes between sparse trajectory points. Then, it assumes that vehicle movement maintains a

21



constant speed for trajectory recovery. Subsequently, it employs HMM to project the trajectory
onto the road network.

• DHTR [32] + HMM [22] incorporates a sequence-to-sequence framework and Kalman filtering to
recover trajectory points. Subsequently, it applies an HMM to yield a trajectory that is constrained
by the map.

• AttnMove [38] + Rule uses attention to predict the missing road segments and uses the central
location as the moving rate.

C.2 Map-matched Trajectory Recovery

Map-matched trajectory recovery can directly recover the trajectory on the road network.

• MTrajRec [26] utilizes a sequence-to-sequence framework with Gated Recurrent Units (GRU) as
the key component for trajectory recovery. It optimizes road segment and moving rate prediction
through multi-task learning.

• T2vec [17] is a deep learning model for trajectory similarity learning. We use its encoder to embed
the sparse trajectory.

• T3s [41] uses LSTM and attention mechanisms to encode sparse trajectory data effectively.

• TERI [7] assumes that the number of missing trajectory points is unknown and proposes a two-
stage trajectory recovery framework. In the first stage, a transformer-based model predicts the
number of points to be recovered, and in the second stage, the same framework is used for recovery
trajectory coordinates. Here, we utilize only the second stage of TERI.

• TrajBERT [27] employs a transformer encoder and a forward and backward neighbor selector to
learn complex mobility patterns bi-directionally from sparse trajectories.

• RNTrajRec [8] leverages the Transformer to capture the spatial-temporal correlation of the sparse
trajectories. It also takes into account the relation between the trajectory and the road network.

• MM-STGED [37] models sparse trajectories from a graph perspective and recovers trajectories by
capturing micro and macro semantic information.

Notably, despite T2vec, T3S, TERI, and TrajBERT employing different techniques to capture sparse
trajectories’ spatial-temporal dependencies, they cannot directly generate the desired format for
missing points. Therefore, after these models obtain the trajectory embeddings, we append the
Decoder part of MTrajRec to output the road segment and moving ratio of the trajectory point.
Denoted by T2v + Decoder, T3S + Decoder, TERI + Decoder, and TrajBERT + Decoder,
respectively.

D Implement Details

D.1 Evaluation Metrics

We adopt five widely used metrics to evaluate the effectiveness of our model, following previous
works [37, 8, 26]. For road segment recovery, we use Accuracy (Acc), Recall, and Precision (Prec)
to assess the alignment between the true road segments Ep = {e1, · · · , em} and the predicted road
segments Êp = {ê1, · · · , êm}. A higher value in these metrics indicates a more accurate road segment
recovery. The metrics are formally defined as follows:

Acc =
1

m

m∑
i=1

1{ei = êi} × 100%,

Recall =
|Ep ∩ Êp|

|Ep|
× 100%,

Prec =
|Ep ∩ Êp|

|Êp|
× 100%,

(4)

where 1{·} is the indicator function, where ei = êi,1{ei = êi} = 1, elsewise 1{ei = êi} = 0.
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To evaluate the recovered GPS coordinates, we employ the Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) to quantify the distance error between the true trajectory
Tm = q1, · · · , q|Tm| and the predicted trajectory T̂m = q̂1, · · · , q̂|T̂m|. The formulas for MAE and
RMSE are given as follows:The formulas of MAE and RMSE are as follows:

MAE =
1

|Tm|

|Tm|∑
i=1

|RN_dist(qi, q̂i)|,

RMSE =

√√√√ 1

|Tm|

|Tm|∑
i=1

|RN_dist(qi, q̂i)|2

(5)

Here, following [26, 8, 37], RN_dist(q, q̂) signifies the shortest distance along the road network
between the trajectory points q and q̂. Both MAE and RMSE are denoted in meters. Lower values of
these metrics indicate a higher level of accuracy in the recovery results.

D.2 Setting

We split the trajectory dataset into training, validation, and testing sets in a 7:2:1 ratio. We employ
the PyTorch framework to implement PLMTrajRec, with a learning rate of 1e-4 and a batch size
of 64. BERT-small is selected as the foundation model for PLM with 4 transformer layers, and the
number of hidden states is 512. For road condition extraction, the area of interest is divided into a 64
× 64 grid, and the time dimension is partitioned into hourly intervals. The hidden state dimension is
set to F = 512. In function f(ds,l) of Section 4.2.2, we set κ = 15 and φdist = 50 meters. The model
is trained for 50 epochs with early stopping, using a patience of 10 epochs. We train the baselines
using the parameters reported in the original paper and set the number of training epochs to 50. All
experiments are conducted on NVIDIA RTX A4000 GPUs.

E Example of the IF-guided Explicit Trajectory Prompt

Consider a sparse trajectory T = ⟨p1, · · · , pN ⟩ of N trajectory points with a sampling interval of
4 minutes, starting at 8 o’clock on Saturday and ending at 9 o’clock on Saturday. Our goal is to
recover it within a sampling interval of 15 seconds. Therefore, the trajectory prompts that are related
to sampling intervals are:

• Task Part: Sparse trajectory recovery.

• Target Part: Output the road segment and moving ratio for each point in the trajectory.

• Content Part: The sparse trajectory is sampled on average {four minutes} and aims to
recover trajectory every {fifteen seconds}.

The content within the placeholders {} is filled with trajectory-specific information. The movement
feature-related trajectory prompts are:

• Time Part: The trajectory started at {eight o’clock} on {Saturday} and ended at {nine
o’clock} on {Saturday}.

• Movement Part: Total time cost: {sixty minutes zero seconds}. Total space transfer distance:
{z} kilometers.

where the elements in are determined by the characteristics of the sparse trajectory. Here z =∑N
i=2dist(pi, pi−1), where dist(·, ·) is used to calculate the distance between two trajectory points.

F Insight about the Learnable Fourier Features

Consider two trajectory points x and y, and the feature mapping function Φ(x) =
WΦ[cos xWr||sin xWr] in Learnable Fourier Features. The relative information x − y between
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points x and y can be captured through multiplication operations, i.e.:
Φ(x) · Φ(y) = WΦ[cos xWr||sin xWr] ·WΦ[cos yWr||sin yWr]

= ||Wϕ||2 · (cos x · cos y + sin x · sin y) · ||Wr||2
= ||Wϕ||2 · cos(x− y) · ||Wr||2

(6)

In our PLMTrajRec, after feature conversion, we input the trajectory feature into a pre-language
training model based on BERT. Since there are a lot of multiplication-based attention operations in the
PLM, the relative information x−y can be easily modeled and utilized. This relative information helps
infer crucial details like the distance between trajectory points, which is important for understanding
movement. For instance, a larger distance between two points may indicate a higher likelihood of
vehicle acceleration.

G Example of the Preprocessed Sparse Trajectory and Road Condition of the
Missing Trajectory Point
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Figure 6: An example of the processed sparse trajectory.

As shown in Figure 6, the sparse trajectory Ts consists of three trajectory points p1, p2, and p3, with
a sampling interval of 1 minute. We aim to reconstruct the dense trajectory with a sampling interval
of 15 seconds. Based on the timestamps of the observed trajectory points and the desired sampling
interval, we determine the number of missing trajectory points and use a placeholder token [m] to
indicate them, and formulate the preprocessed sparse trajectory T ϵ.

To obtain the road condition of the missing trajectory point s, we identify its nearest observed forward
and backward trajectory points, sf and sb, respectively. For instance, suppose we have a missing
point s timestamped at 8:00:45, its observed forward point sf = p1, and the backward point sb = p2.
Then, we use Equation 2 to calculate the road condition of point s

H The Detailed Description of Variants

• PLMTrajRec - Randomly initialized BERT: We randomly initialize the parameters of
BERT instead of using the pre-trained BERT based on large-scale corpus datasets.

• PLMTrajRec - GPT-2: We replace the pretrained BERT with GPT-2 [24].
• PLMTrajRec - Llama: We replace the pretrained BERT with Llama [43].
• w/o IF-guided explicit trajectory prompt: We remove the IF-guided explicit trajectory

prompt.
• w/o AF-guided implicit trajectory prompt: We use the ‘[MASK]’ token in the BERT to

represent the missing location.
• w/o dual trajectory prompts: We remove both the IF-guided explicit and implicit trajectory

prompt, and the missing points are represented by the ‘[MASK]’ token in BERT.
• w/o reference tokens: We remove the trajectory feature transformation layer in the trajectory

embedder module.

I Scalability Results on Different Datasets

I.1 Scalability Results on Chengdu-Large

As shown in Table 7, our model consistently achieves superior performance on the Chengdu-Large
dataset under varying settings. Notably, under three different sampling intervals, the model surpasses
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Table 7: Scalability analysis. The performance comparison on the Chengdu-Large dataset when
trained with different data ratios. Red denotes the best result, and blue denotes the second-best result.

Setting Data Ratio 20% 40% 60% 80% 100%
Metric Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE

µ = 4 minutes

MTrajRec 65.58 874.5 66.73 852.2 68.29 842.5 69.32 837.4 70.09 828.5
T3s + Decoder 66.63 863.4 68.10 838.1 68.84 825.0 69.79 815.4 70.62 771.3

T2vec + Decoder 66.39 883.2 69.02 849.0 69.30 831.9 70.82 813.9 71.49 792.8
RNTrajRec 68.38 825.1 71.11 806.6 71.89 788.9 72.77 772.6 73.62 764.8

MM-STGED 71.28 781.3 73.76 753.7 74.89 739.6 75.33 727.6 75.51 718.9
PLMTrajRec 77.57 482.6 78.04 461.9 78.53 446.2 78.82 429.7 78.97 421.6

µ = 2 minutes

MTrajRec 74.92 638.1 77.13 593.8 78.48 572.7 79.27 554.7 80.09 528.6
T3s + Decoder 74.41 614.9 77.09 574.9 77.82 566.4 78.78 526.9 79.19 499.5

T2ev + Decoder 76.39 593.7 78.19 533.2 78.86 528.4 79.53 502.7 80.11 461.4
RNTrajRec 75.19 584.4 77.47 502.0 79.26 473.4 79.98 433.0 80.95 389.8

MM-STGED 79.34 474.2 81.20 449.7 82.37 384.0 83.10 366.9 83.77 337.7
PLMTrajRec 83.92 336.9 84.47 312.7 84.82 292.5 84.98 285.9 85.11 273.0

µ = 1 minute

MTrajRec 78.51 438.0 81.18 386.2 82.36 370.0 82.82 359.7 83.75 347.7
T3s + Decoder 78.38 447.2 80.17 364.1 82.10 335.6 82.83 312.9 83.11 299.8

T2ev + Decoder 77.18 432.7 79.66 408.4 81.29 384.5 82.14 335.0 82.35 301.8
RNTrajRec 80.51 374.0 82.37 331.9 83.72 300.1 84.03 275.8 84.21 253.0

MM-STGED 83.02 283.1 84.17 265.8 85.32 244.2 85.98 219.7 86.21 203.9
PLMTrajRec 88.13 174.6 88.84 159.9 89.63 150.3 89.82 144.7 89.94 137.5

the SOTA baseline trained on the full dataset while using only 20% of the data. It achieves an
improvement of 3.76% in Acc and 33.78% in RMSE. These results indicate that our model is
well-suited for the recovery task in data-scarce scenarios, demonstrating its strong generalization
capability.

I.2 Scalability Results on Porto-Small

Table 8: Scalability analysis. The performance comparison on the Porto-Small dataset when trained
with different data ratios. Red denotes the best result, and blue denotes the second-best result.

Setting Data Ratio 20% 40% 60% 80% 100%
Metric Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE

µ = 4 minutes

MTrajRec 49.55 733.3 51.10 652.1 51.77 638.1 52.09 629.2 52.36 590.1
T3s + Decoder 50.34 715.8 51.09 648.3 51.67 632.7 52.01 628.7 52.24 594.9

T2vec + Decoder 50.46 700.4 51.81 656.1 52.36 641.4 52.72 620.6 53.13 571.0
RNTrajRec 51.41 677.8 52.66 636.2 53.38 583.0 53.94 562.1 54.59 549.1

MM-STGED 55.62 642.1 56.09 601.4 56.68 574.6 57.04 539.2 57.30 510.4
PLMTrajRec 56.54 432.9 56.90 410.5 57.07 396.5 57.14 384.8 57.61 376.9

µ = 2 minutes

MTrajRec 57.62 629.3 59.39 562.1 60.25 529.0 61.10 486.2 61.65 451.5
T3s + Decoder 57.84 617.3 59.62 573.8 60.14 541.7 61.29 483.2 61.75 461.2

T2vec + Decoder 57.57 603.4 60.00 555.6 60.61 532.8 61.94 475.5 62.24 438.0
RNTrajRec 60.60 587.8 62.25 518.5 62.91 464.5 63.11 448.7 63.39 433.9

MM-STGED 62.24 479.7 63.72 452.5 64.07 437.3 64.78 414.3 65.69 400.8
PLMTrajRec 65.01 371.4 65.47 348.4 65.76 327.0 66.17 310.7 66.40 294.6

µ = 1 minute

MTrajRec 67.26 499.0 69.39 414.6 70.69 386.4 71.25 352.3 71.65 332.3
T3s + Decoder 68.10 482.1 69.28 421.4 70.47 372.5 71.04 335.9 71.78 328.0

T2vec + Decoder 67.89 514.3 69.69 428.7 70.82 392.9 71.10 349.0 71.86 334.7
RNTrajRec 69.66 419.8 71.17 368.2 71.93 352.2 72.19 336.3 72.31 325.7

MM-STGED 71.54 382.6 72.05 364.5 72.64 355.1 72.84 338.8 73.16 321.9
PLMTrajRec 72.28 316.6 73.06 264.9 73.57 244.4 74.08 221.9 74.42 211.7

The experimental results on the Porto-Small dataset are presented in Table 8. Our model significantly
outperforms all baseline models. We attribute this to the model’s effective use of world knowledge
stored in the PLM, which enhances the model’s ability to understand the characteristics of trajectory
data. When compared with state-of-the-art trajectory recovery models such as MM-STGED and
RNTrajRec, our model achieves improvements of 14.43% and 17.56%, respectively.

I.3 Scalability Results on Porto-Large

The experimental results on the Porto-Large dataset are presented in Table 9, our model consistently
achieves the best performance across all evaluation metrics. Compared with the state-of-the-art model
MM-STGED, PLMTrajRec outperforms it by margins of 14.84%, 11.57%, 11.65%, 10.46%, and
10.85% under data ratios of 20%, 40%, 60%, 80%, and 100%, respectively. Remarkably, even when
trained on only 20% of the data, our model exceeds the performance of the baseline trained on the
full dataset. These results highlight the strong scalability of PLMTrajRec.
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Table 9: Scalability analysis. The performance comparison on the Porto-Large dataset when trained
with different data ratios. Red denotes the best result, and blue denotes the second-best result.

Setting Data Ratio 20% 40% 60% 80% 100%
Metric Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE Acc(%) RMSE

µ = 4 minutes

MTrajRec 58.41 473.1 59.47 439.3 60.74 392.2 61.13 378.2 61.87 362.1
T3s + Decoder 59.54 459.3 61.92 411.4 62.50 398.1 62.92 381.8 63.52 375.1

T2vec + Decoder 59.30 449.7 62.19 408.8 63.45 382.8 63.98 361.9 64.24 358.4
RNTrajRec 61.66 419.4 64.07 352.6 64.69 339.7 65.24 328.8 65.98 311.0

MM-STGED 63.82 364.7 65.11 328.3 65.79 313.7 66.37 302.1 66.66 296.3
PLMTrajRec 66.53 311.6 66.89 295.6 67.12 279.8 67.38 271.0 67.57 264.2

µ = 2 minutes

MTrajRec 62.12 418.9 64.58 372.0 65.10 359.9 66.04 332.4 66.85 320.5
T3s + Decoder 63.49 391.7 64.68 366.7 66.22 348.6 66.79 335.9 67.39 324.9

T2vec + Decoder 63.94 402.4 66.70 352.2 67.21 320.6 68.41 316.9 68.84 308.3
RNTrajRec 64.19 388.0 67.33 340.0 67.81 331.2 68.30 304.8 68.88 286.6

MM-STGED 67.89 315.3 68.29 288.6 68.80 276.2 69.71 264.5 70.03 255.9
PLMTrajRec 71.82 242.6 72.37 221.4 72.88 210.4 73.02 202.7 73.14 191.9

µ = 1 minute

MTrajRec 69.10 359.1 71.48 318.9 71.98 264.0 72.31 238.2 72.63 216.5
T3s + Decoder 68.82 366.3 70.90 327.6 70.89 271.6 71.11 244.4 71.31 225.9

T2vec + Decoder 69.43 337.1 71.29 300.1 72.01 252.5 72.38 221.3 72.54 208.1
RNTrajRec 70.19 305.0 71.48 258.1 71.92 215.3 72.51 199.8 72.72 185.8

MM-STGED 71.97 264.6 72.50 187.5 72.95 174.7 73.58 159.0 74.03 149.6
PLMTrajRec 76.29 157.6 76.72 138.6 76.91 129.5 77.17 125.3 77.30 116.7

J Case Study

We conduct a case study on the Chengdu-Small dataset to visualize the trajectory recovery perfor-
mance with various baselines. As shown in Figure 7, we draw the truth and recovered trajectory,
where red points represent the truth trajectory points and blue points indicate the recovered trajectory
points. We find that the recovered trajectory aligns well with the road network, demonstrating the
effectiveness of using road segment and moving rate to represent trajectory point. To facilitate a
more intuitive comparison of recovery performance among different models, we focus on two distinct
regions, labeled as A and B, for visual analysis. In region A, characterized by a relatively simple
road network structure, all models can accurately recover road segments. Among them, PLMTrajRec
maps trajectory points better by leveraging PLM. In contrast, region B exhibits a more intricate
road network with multiple accessible routes. RNTrajRec captures spatial-temporal correlations of
trajectories that are not adequate and recovers incorrect road segments. PLMTrajRec not only excels
in road segment recovery but also in accurately matching the actual trajectory points. This success can
be attributed to its ability to model missing trajectory points through the implicit trajectory prompt,
thereby introducing more valuable information and improving performance.
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Figure 7: Case study on the Chengdu-Small dataset. Red points represent the truth trajectory points
and blue points represent the recovered trajectory points.
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