
Under review as a conference paper at ICLR 2018

SHADE: SHANNON DECAY INFORMATION-BASED
REGULARIZATION FOR DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Regularization is a big issue for training deep neural networks. In this paper, we
propose a new information-theory-based regularization scheme named SHADE
for SHAnnon DEcay. The originality of the approach is to define a prior based
on conditional entropy, which explicitly decouples the learning of invariant repre-
sentations in the regularizer and the learning of correlations between inputs and
labels in the data fitting term. We explain why this quantity makes our model able
to achieve invariance with respect to input variations. We empirically validate the
efficiency of our approach to improve classification performances compared to
standard regularization schemes on several standard architectures.

1 INTRODUCTION

Deep neural networks (DNNs) have shown impressive state-of-the-art results in the last years on
numerous tasks and especially for image classification (Krizhevsky et al., 2012; He et al., 2016). One
key element is the use of very deep models with a huge number of parameters. Accordingly, DNNs
need to be trained on a lot of data (e.g. ImageNet). Regularization methods such as weight decay
(Krogh & Hertz, 1992), dropout (Srivastava et al., 2014) or batch normalization (Ioffe & Szegedy,
2016) are common practice to mitigate the ratio between the numbers of training samples and model
parameters. Despite constant progress of DNNs performance, their generalization ability is still
largely misunderstood and theoretical tools such as PAC-based analysis seem limited to explain it.
Meanwhile, the question of DNN regularization remains open as demonstrated by Zhang et al. (2017).

Information Bottleneck (IB) is an interesting framework to address regularization (Tishby et al., 1999).
It suggests that it is possible to compare the generalization ability of different models by studying
the compression rate of their representations: a model that is able to remove more information
from the input while providing enough information about the label is more likely to generalize well.
Considering an input variable X , label C and its deep representation Y = h(X), IB regularizes
the training by minimizing the mutual information I(X,Y) at constant mutual information I(C, Y).
Along with IB also come some theoretical investigations, with the definition of generalization bounds
in Shamir et al. (2010).

A challenge for applying IB principles to DNNs is the definition of information-based regularizers
that are differentiable and easily computable in order to be efficiently trained using back-propagation
(LeCun et al., 1998). There are recent attempts in this direction. For example, Alemi et al. (2017)
proposes a DNN that predicts the parameters of the distribution of the random representation variables
conditionally to the input and use it to compute IB measures with variational bounds. Achille &
Soatto (2016) model the information about the data in the learned weights and propose to minimize it.

In this paper, we propose a new regularization loss minimizing H(Y | C), the entropy of the
representation variable conditionally to the label variable, instead of the mutual information I(X,Y).
For a deterministic model, meaning that the entropy H(Y | X) is null, we have I(X,Y) =
I(C, Y) + H(Y | C)1. By minimizing directly H(Y | C) we explicitly decouple the data fitting
term I(C, Y), which attempts at finding correlations between inputs and labels, and a term which
represents the compression rate of the representation H(Y | C).

1For any two variables U , V we have I(U, V) = H(U)−H(U | V) = H(V)−H(V | U).

1

Under review as a conference paper at ICLR 2018

Our contributions are three-fold. First, we derive in Section 2 a new regularization scheme, called
SHADE for SHAnnon DEcay, to tackle the difficulty of getting an accurate, differentiable and
scalable estimate of H(Y | C). It is based on a latent code Z representing the activation state of a
neuron Y , allowing us to express a complete tractable loss with few additional computation. Second,
we discuss the interest of our regularization framework based on conditional entropy in Section 3. In
particular, we argue that this measure H(Y | C) is well designed to compare representations in terms
of invariance while still taking the target task into account. Finally, we extensively experiment our
SHADE regularizer on different deep learning models and several challenging datasets (CIFAR-10,
ImageNet, MNIST-M) in Section 4.

2 SHADE: A NEW REGULARIZATION METHOD BASED ON H(Y | C)

Notations and definitions. X is the input from input space X with high dimensionality and C
is the class label from finite class space C = {1, 2, .., |C|}. A hypothesis space is designed with a
family of parametric (continuous) functions H = {h(w, .) : X → Y; w ∈ W = Rm}. A model
h ∈ H outputs a representation of the input from which a class is predicted. In many tasks like image
classification, the representation Y = h(X) of an input X usually defines a distribution, noted qY |X ,
on the class space (e.g. obtained by applying a softmax function). The training in supervised learning
consists in finding the parameters w of h minimizing the expectancy of a loss function Lcls(Y,C)
that quantifies the difference between the prediction and the label. It is usually the cross-entropy
between the obtained distribution qY |X and the one-hot distribution with unit probability for the
class C noted pC : `cls(Y,C) = −

∑
c∈C pC(c) log

(
qY |X(c)

)
. A regularization term Ω(·) with a

coefficient β is often added to the classification loss, aiming at influencing the learning toward
models with lower complexity2. In image classification, the most commonly used regularization
criterion is the weight decay: Ω(w) = ||w||22. In the IB framework, the regularization term would be
Ω(w) = I

(
h(w,X), X

)
. The final loss for supervised learning is:

L = E(Y,C)

(
`cls(Y,C) + βΩ(w)

)
. (1)

In this section, we will further describe SHADE, a new regularization term based on the conditional
entropy H(Y | C) designed to drive the optimization toward more invariant representation.

2.1 ENTROPY-BASED REGULARIZATION FOR DEEP NEURAL NETWORKS

Layer-wise regularization. A DNN is composed of a number L of layers that transform sequen-
tially the input. Each one can be seen as an intermediate representation variable, noted Y` for layer `,
that is determined by the output of the previous layer and a set of parameters w`. Each layer filters
out a certain part of the information from the initial input. Thus, from the data processing inequality
in Cover & Thomas (1991) can be derived the following inequalities for any `:

H(Y` | C) ≤ H(Y`−1 | C) ≤ ... ≤ H(Y1 | C) ≤ H(X | C). (2)

Similarly to the recommendation of Tishby & Zaslavsky (2015), we apply regularization to all the
layers, using a layer-wise criterion H(Y` | C), and producing a global criterion:

Ωlayers =

L∑
`=1

H(Y` | C). (3)

Unit-wise regularization. Examining one layer `, its representation variable is a random vector
of coordinates Y`,i and of dimension D`: Y` = (Y`,1, ..., Y`,D`

). The upper bound3 H(Y` | C) ≤∑D`

i=1H(Y`,i | C) enables to define a unit-wise criterion that SHADE seeks to minimize. For each

2There are other methods of regularization such as dropout (Srivastava et al., 2014) or data augmentation
(van Dyk & Meng, 2001) that do not apply directly to the loss.

3This upper bound is well justified in deep learning as the neurons of a layer tend to be more and more
independent of each other as we go deeper within the network.

2

Under review as a conference paper at ICLR 2018

unit i of every layer ` we design a loss ωunit(Y`,i | C) = H(Y`,i | C) that will be part of the global
regularization loss:

Ωlayers ≤ Ωunits =

L∑
l=1

D∑̀
i=1

H(Y`,i | C)︸ ︷︷ ︸
ωunit(Y`,i|C)

. (4)

Later in the paper, we use the notation Y instead of Y`,i for simplicity since the coordinates are all
considered independently to define ωunit(Y`,i | C).

2.2 ESTIMATING ENTROPY

In this section, we describe how to define a loss based on the measure H(Y | C) with Y being one
coordinate variable of one layer. Defining this loss is not obvious as the gradient of H(Y | C) with
respect to the layer’s parameters may be computationally intractable. Y has an unknown distribution
and without modeling it properly it is not possible to compute H(Y | C) precisely for the following
reasons.

Since H(Y | C) =
∑

c∈C p(c)H(Y | c) it is necessary to compute |C| different entropies H(Y | c).
This means that, given a batch, the number of samples used to estimate one of these entropies is
divided by |C| on average which becomes particularly problematic when dealing with a large number
of classes such as the 1,000 classes of ImageNet. Furthermore, entropy estimators are extremely
inaccurate considering the number of samples in a batch. For example, LME estimators of entropy
in Paninski (2003) converge in O((logK)2/K) for K samples. Finally, most estimators such as LME
require discretizing the space in order to approximate the distribution via a histogram. This raises
issues on the bins definition considering that the variable distribution is unknown and varies during
the training in addition to the fact that having a histogram for each neuron is computationally and
memory consuming.

To tackle these drawbacks we investigate the two following tricks: the introduction of a latent variable
that enables to use more examples to estimate the entropy; and a bound on the entropy of the variable
by an increasing function of its variance to avoid the issue of entropy estimation with a histogram
and make the computation tractable and scalable.

Latent code. First, inspecting a neuron Y (before ReLU), the ReLU activation makes it act as a
detector, returning a signal when a certain pattern is present on the input. If the pattern is absent the
signal is zero, otherwise, it quantifies the resemblance with it. We therefore propose to associate a
binomial variable Z with each unit variable Y (before ReLU). This variable Z indicates if a particular
pattern is present on the input (Z = 1 when Y � 0) or not (Z = 0 when Y � 0). It acts like a latent
code in variational models (e.g. Kingma & Welling, 2014) or in generative models (e.g. Chen et al.,
2016). In our implementation, we chose a binomial distribution p(Z = 1 | Y) = sigmoid(Y) that
matches this intuition, as detailed in Sec. 2.3.

Furtherfore, it is very likely that most intermediate features of a DNN can take similar values for
inputs of different classes – this is especially true for low-level features. The semantic information
provided by a feature is thus more about a particular pattern than about the class itself. Only the
association of features allows determining the class. So Z represents a semantically meaningful
factor about the class C and from which the input X is generated. The feature value Y is then a
quantification of the possibility for this semantic attribute Z to be present in the input or not.

Then, we assume the Markov chain C → Z → X → Y . Indeed, during the training, the distribution
of Y varies in order to get as close as possible to a sufficient statistic of X for C (see definition in
Cover & Thomas, 1991). Therefore, we expect Z to be such that Y draws near a sufficient statistic of
Z for C as well. By assuming the sufficient statistic relation I(Y,C) = I(Y,Z) we get the equivalent
equality H(Y | C) = H(Y | Z), and finally obtain:

ωunit(Y | C) = H(Y | C) = H(Y | Z) =
∑

z∈{0,1}

p(z)H(Y | Z = z). (5)

This modeling of Z as a binomial variable (one for each unit) has the advantage of enabling good
estimators of conditional entropy since we only divide the batch into two sets for the estimation
(z = 0 and 1) regardless of the number of classes.

3

Under review as a conference paper at ICLR 2018

Algorithm 1 Moving average updates: for z ∈ {0, 1}, pz estimates p(Z = z) and µz estimates
E(Y | Z = z)

1: Initialize: µ0 = −1, µ1 = 1, p0 = p1 = 0.5, λ = 0.8
2: for each mini-batch {y(k), k ∈ 1..K} do
3: for z ∈ {0, 1} do
4: pz ← λpz + (1− λ) 1

K

∑K
k=1 p(z | y(k))

5: µz ← λµz + (1− λ) 1
K

∑K
k=1

p(z | y(k))
pz

y(k)

6: end for
7: end for

Variance bound. The previous trick allows computing fewer entropy estimates to obtain the global
conditional entropy, thus increasing the sample size used for each entropy estimation. Unfortunately,
it does not solve the bin definition issue. To address this, we propose to use the following bound on
H(Y | Z), that does not require the definition of bins:

H(Y | Z) ≤ 1

2
ln
(
2πeVar(Y | Z)

)
. (6)

This bound holds for any continuous distributions Y and there is equality if the distribution is
Gaussian. For many other distributions such as the exponential one, the entropy is also equal to
an increasing function of the variance. In addition, one main advantage is that variance estimators
are much more robust than entropy estimators, converging in O(1/K) for K samples instead of
O(log(K)2/K).

Finally, the ln function being one-to-one and increasing, we only keep the simpler term Var(Y | Z)
to design our final loss:

ΩSHADE =

L∑
`=1

D∑̀
i=1

∑
z∈{0,1}

p(Z`,i = z | Y)Var(Y | Z`,i = z). (7)

In next section, we detail the definition of the differential loss using Var(Y | Z) as a criterion
computed on a mini-batch.

2.3 INSTANTIATING SHADE

For one unit of one layer, the previous criterion writes:

Var(Y | Z) =

∫
Y
p(y)

∫
Z
p(z | y)

(
y − E(Y | z)

)2
dz dy (8)

≈ 1

K

K∑
k=1

[∫
Z
p(z | y(k))

(
y(k) − E(Y | z)

)2
dz

]
. (9)

The quantityVar(Y | Z) can be estimated with Monte-Carlo sampling on a mini-batch of input-target
pairs

{
(x(k), c(k))

}
1≤k≤K of intermediate representations

{
y(k)

}
1≤k≤K as in Eq. (9).

p(Z | y) interpreted as the probability of presence of attribute Z on the input, it should clearly be
modeled such that p(Z = 1 | y) increases with y. The more similarities between the input and the
pattern represented by y, the higher the probability of presence for Z. We suggest using:

p(Z = 1 | y) = σ(y) p(Z = 0 | y) = 1− σ(y) with sigmoid function σ(y) =
1

1 + e−y
.

For the expected values µz = E(Y | z) we use a classic moving average that is updated after each
batch as described in Algorithm 1. Note that the expected values are not changed by the optimization
since they have no influence on the entropy H(Y | Z).

4

Under review as a conference paper at ICLR 2018

The concrete behavior of SHADE can be interpreted by analyzing its gradient as described in
Appendix C.

For this proposed instantiation, our SHADE regularization penalty takes the form:

ΩSHADE =

L∑
`=1

D∑̀
i=1

K∑
k=1

∑
z∈{0,1}

p
(
Z`,i = z

∣∣∣ y(k)`,i

)(
y
(k)
`,i − µ

z
`,i

)2
. (10)

We have presented a regularizer that is applied layer-wise and that can be integrated into the usual
optimization process of a DNN. The additional computation and memory usage induced by SHADE
is almost negligible (computation and storage of two moving averages per neuron). Namely, SHADE
adds half as many parameters as batch normalization does.

3 CONDITIONAL ENTROPY AS INVARIANCE MEASURE FOR CLASSIFICATION

Inspired by the IB framework, we have derived a criterion that SHADE loss aims at minimizing. In
this section, we further explore the relevance of our conditional entropy term for regularization. We
first establish a connection between the entropy H(Y) of a representation and its invariance. Then
we explain why H(Y | C) seems to be a better fitting criterion for a classification task.

H(Y) to measure invariance. For an input X and a deterministic mapping f(X) = Y , we have
H(Y | X) = 0 and therefore:

H(Y) = I(X,Y) +H(Y | X) = I(X,Y) = H(X)−H(X | Y). (11)

H(X) being fixed, H(Y) is inversely related to H(X | Y). Besides, we assume that H(X | Y)
is a good measure to quantify how invariant a representation is. Indeed, if a representation is
invariant to many transformations, many inputs have the same representation. Consequently, given a
representation sample, it is difficult to guess from which input it has been computed. These properties
are perfectly captured by H(X | Y), representing the uncertainty in X knowing Y . The bigger the
uncertainty, the harder it is to predictX precisely. Concretely, when trying to guessX knowing Y , we
can lower bound the error made in the best case, with an increasing function of the conditional entropy
as developed in Appendix A. Therefore, it seems that H(Y) is a good measure of the invariance of
the model.

In the particular case of deep learning, He et al. (2016) explain that the stacking of multiple layers
is responsible for improving the generalization of DNN. This fact can be explained by the data
processing inequality (Cover & Thomas, 1991). In the case of finite input space, each layer is
responsible for filtering a certain amount of information. As clearly illustrated in Tishby & Zaslavsky
(2015), for each stage, the representation has a lower entropy than the representation of the preceding
layer. Increasing the depth increases the capacity of the network to reduce the overall entropy of the
DNN representation thus increasing their invariance.

H(Y) as a regularizer. From this intuition, one can use a variance bound similar to Eq. (6):
H(Y) ≤ 1/2 ln(2πeVar(Y)) to derive a loss in order to minimize the representations’ entropy H(Y).
For instance, we can show that the weight decay reduces this variance under some approximations.
In fact when Y = w>X + b, by estimating Λ = Cov(X), the variance takes the immediate form
Var(Y) = w>Λw. If Λ = Id, meaning that the input coordinates are considered independent with
unit variance, thenVar(Y) = ||w||22. It corresponds to the weight decay regularization or L2 penalty.
Even if within a DNN layer, the batch normalization tends to enforce this unit variance hypothesis
and the depth of DNN tends to ensure the independence hypothesis the weight decay remains poor at
improving generalization as illustrated in Zhang et al. (2017). Considering fewer assumptions, it is
possible to reduce the variance of an output coordinate by penalizing its empirical variance on a batch
during the training. We introduce an alternative loss on the variance called VarEntropy, constructed
the same way SHADE has been derived, but avoiding the introduction of a latent variable Z:

ΩVarEntropy =
1

K

K∑
k=1

(
y(k) − E(Y)

)2
. (12)

Even if experimentally, VarEntropy regularization seems to behave better than simple weight decay,
it is not as efficient as SHADE and we try to explain why below.

5

Under review as a conference paper at ICLR 2018

Importance of conditional entropy. We have seen that lowering the entropy of the representation
enables to make it more invariant. However, another fact reported by He et al. (2016) is that stacking
layers increases the difficulty to train the network. Indeed, when reducing too much the entropy, there
is a risk that the information about the label is filtered as well. The representation is so invariant that
it is no longer possible to distinguish between the classes. In He et al. (2016), they solve this issue by
forcing the transmission of additional information through skip-connections while IB prescribes to
maximize the compression rate at constant information about the label. All this highlights the fact
that having invariant representations is interesting if it is intra-class invariant. Since we do not want
two inputs from different classes to have the same representation, we prefer to focus on a criterion
quantifying the intra-class compression rate in order to maximize intra-class invariance: H(Y | C).

As mentioned in the introduction, H(Y | C) thus differs from standard IB frameworks based
on I(X,Y) (Achille & Soatto, 2016; Alemi et al., 2017). Contrarily to the mutual information
I(X,Y) = H(Y | C) + I(C, Y), our regularizer applied to H(Y | C) ignores I(C, Y). When
minimizing I(X,Y), there is no control on how both termsH(Y | C) and I(C, Y) are modified. Our
regularizer is therefore beneficial in the sense that minimizing H(Y | C) does not conflict with the
mutual information I(C, Y) between the representation and the label, information that is therefore
for classification and should not be penalized.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION WITH VARIOUS ARCHITECTURES ON CIFAR-10

Table 1: Classification accuracy (%) on CIFAR-10 test set.

MLP AlexNet ResNet Inception

No regul. 62.38 83.25 89.84 90.97
Weight decay 62.69 83.54 91.71 91.87
Dropout 65.37 85.95 89.94 91.11
VarEntropy 63.70 83.61 91.72 91.83

SHADE 66.05 85.45 92.15 93.28
SHADE+D 66.12 86.71 92.03 92.51

We perform image classification on the CIFAR-10 dataset, which contains 50k training images and
10k test images of 32×32 RGB pixels, fairly distributed within 10 classes (see Krizhevsky, 2009, for
details). Following the architectures used in Zhang et al. (2017), we use a small Inception model, a
three-layer MLP, and an AlexNet-like model with 3 convolutional and 2 fully connected layers. We
also use a ResNet architecture from Zagoruyko & Komodakis (2016). Those architectures represent a
large family of DNN and some have been well studied in Zhang et al. (2017) within the generalization
scope. For training, we use randomly cropped images of size 28×28 with random horizontal flips.
For testing, we simply center-crop 28×28 images. We use momentum SGD for optimization (same
protocol as Zhang et al., 2017).

We compare SHADE with three regularization methods, namely weight decay, dropout and Var-
Entropy presented in Eq. (12). For all architectures, the regularization parameters have been cross-
validated to find the best ones for each method and the obtained accuracies on the test set are reported
in Table 1.

We obtain the same trends as Zhang et al. (2017), which get a small improvement of 0.31% with
weight decay on AlexNet. The improvement with weight decay is slightly more important with
ResNet and Inception (0.87% and 0.90%) probably thanks to the use of batch normalization. In our
experiments dropout improves generalization performances only for AlexNet and MLP. It is known
that the use of batch normalization lowers the benefit of dropout, which is in fact not used in He et al.
(2016).

We first notice that for all kind of architectures the use of SHADE significantly improves the
generalization performance. It demonstrates the ability of SHADE to regularize the training of deep
architectures. Moreover, SHADE systematically outperforms other regularizations of the same type

6

Under review as a conference paper at ICLR 2018

50 100 250 500 1k 5k 10k 55k
Number of training samples

30
40
50
60
70
80
90

100

Te
st

 a
cc

ur
ac

y

Baseline
SHADE

(a) Results for MNIST-M

4k 10k 50k
Number of training samples

70

75

80

85

90

Te
st

 a
cc

ur
ac

y

Baseline
SHADE

(b) Results for CIFAR-10

(c) Examples of MNIST-M images misclassified by the baseline and correctly classified using
SHADE, both trained with 250 samples.

Figure 1: Results when training with a limited number of samples in the training set for MNIST-M
and CIFAR-10 with and without SHADE.

such as weight decay or VarEntropy, illustrating the advantage of minimizing the conditional entropy
instead of the entropy directly.

Finally, SHADE shows better performances than dropout on all architecture except on AlexNet, for
which they seem to be complementary, probably because of the very large number of parameters
in the fully-connected layers, with best performances obtained with SHADE coupled with dropout
(named SHADE+D). This association is also beneficial for MLP. On Inception and ResNet, even if
dropout and SHADE independently improve generalization performances, their association is not as
good as SHADE alone, probably because it enforces too much regularization.

4.2 LARGE SCALE CLASSIFICATION ON IMAGENET

In order to experiment SHADE regularization on very large scale dataset, we train on ImageNet (Rus-
sakovsky et al., 2015) a WELDON network from Durand et al. (2016) adapted from ResNet-101. This
architecture changes the forward and pooling strategy by using the network in a fully-convolutional
way and adding a max+min pooling, thus improving the performance of the baseline network. We
used the pre-trained weights of ResNet-101 (from the torchvision package of PyTorch) giving
performances on the test set of 77.56% for top-1 accuracy and 93.89% for top-5 accuracy. Provided
with the pre-trained weights, the WELDON architecture obtains 78.51% for top-1 accuracy and
94.65% for top-5 accuracy. After fine tuning the network using SHADE for regularization we finally
obtained 80.14% for top-1 accuracy and 95.35% for top-5 accuracy for a concrete improvement.
This demonstrates the ability to apply SHADE on very large scale image classification successfully.

4.3 TRAINING WITH A LIMITED NUMBER OF SAMPLES

When datasets are small, DNNs tend to overfit quickly and regularization becomes essential. Because
it tends to filter out information and make the network more invariant, SHADE seems to be well fitted
for this task. To investigate this, we propose to train DNNs with and without SHADE on CIFAR-10
and MNIST-M with different numbers of samples in the training set.

First, we tested this approach on the digits dataset MNIST-M (Ganin & Lempitsky, 2015). This
dataset consists of the MNIST digits where the background and digit have been replaced by colored
and textured information (see Fig. 1c for examples). The interest of this dataset is that it contains
lots of unnecessary information that should be filtered out, and is therefore well adapted to measure
the effect of SHADE. A simple convolutional network has been trained with different numbers of
samples of MNIST-M and the optimal regularization weight for SHADE have been determined on

7

Under review as a conference paper at ICLR 2018

0 20 40 60
Epochs

20

40

60

80

Ac
cu

ra
cy

 (%
)

SHADE
VarEntropy

Figure 2: Evolution of the accuracy of a pre-trained Inception model on CIFAR-10 when only
applying regularization.

the validation set (see training details in Appendix D). The results can be seen on Figure 1a. We can
see that especially for small numbers of training samples (< 1000), SHADE provides an important
gain of 10 to 15% points over the baseline. This shows that SHADE helped the model in finding
invariant and discriminative patterns using less data samples.

Additionally, Figure 1c shows samples that are misclassified by the baseline model but correctly
classified when using SHADE. These images contain a large amount of intra-class variance (color,
texture, etc.) that is not useful for the classification tasks, explaining why adding SHADE, that
encourages the model to discard information, allows important performance gains on this dataset and
especially when only few training samples are given.

Finally, to confirm this behavior, we also applied the same procedure in a more conventional setting
by training an Inception model on CIFAR-10. Figure 1b shows the results in that case. We can
see that once again SHADE helps the model gain in performance and that this behavior is more
noticeable when the number of samples is limited, allowing a gain of 6% when using 4000 samples.

4.4 CLASS-INFORMATION PRESERVATION BY CONDITIONAL ENTROPY

The main difference between SHADE and VarEntropy is the introduction of the latent variable Z,
supposed to contain the information about the label C. The motivation of this extension is that
minimizing H(Y | C) instead of H(Y) enables to save the class information during the optimization
of the regularization loss, as explained in Section 3. To illustrate this benefit, we compare the impact
of the two regularization losses on the classification performances of a pre-trained model. To do so,
we fine tune a pre-trained Inception model only with a regularization loss, either based on Var(Y)
or Var(Y | Z); without any label data or classification loss. The network performance obviously
declines for both regularizers as we can see on Figure 2. However, this decline is slower with
SHADE than VarEntropy. This confirms the intuition that Z contains class-information and that
SHADE produces less class-information filtering. This is explained by the optimization of the metric
Var(Y | Z) that uses implicitly-learned information encoded in the network.

5 CONCLUSION

In this paper, we introduced a new regularization method for DNNs training, SHADE, which focuses
on minimizing the entropy of the representation conditionally to the labels. This regularization aims
at increasing the intra-class invariance of the model while keeping class information. SHADE is
tractable, adding only a small computational overhead when included into an efficient SGD training.
We show that our SHADE regularization method significantly outperforms standard approaches
such as weight decay or dropout with various DNN architectures on CIFAR-10. We also validate
the scalability of SHADE by applying it on ImageNet. The invariance potential brought out by
SHADE is further illustrated by its ability to ignore irrelevant visual information (texture, color) on
MNIST-M. Finally, we also highlight the increasing benefit of our regularizer when the number of
training examples becomes small.

8

Under review as a conference paper at ICLR 2018

REFERENCES

A. Achille and S. Soatto. Information dropout: learning optimal representations through noisy
computation. ArXiv, 2016.

A. A. Alemi, I. Fischer, J. V Dillon, and K. Murphy. Deep variational information bottleneck. In
ICLR, 2017.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
NIPS, Jun 2016.

T. Cover and J. Thomas. Elements of information theory. Wiley New York, 1991.

Thibaut Durand, Nicolas Thome, and Matthieu Cord. WELDON: Weakly Supervised Learning of
Deep Convolutional Neural Networks. In CVPR, 2016.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
ICML, pp. 1180–1189, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. JMLR, 2016.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

A. Krizhevsky. Learning multiple layers of features from tiny images. PhD thesis, Computer Science
Department University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.),
NIPS, 2012.

Anders Krogh and John A. Hertz. A simple weight decay can improve generalization. In NIPS, 1992.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning applied to document
recognition. Proceedings of the IEEE, 1998.

Liam Paninski. Estimation of entropy and mutual information. Neural Computation, 2003.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet
large scale visual recognition challeng. ICJV, 2015.

O. Shamir, S. Sabato, and N. Tishby. Learning and generalization with the information bottleneck.
Theoretical Computer Science, 2010.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. Annual Allerton
Conference on Communication, Control and Computing, 1999.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
Information Theory Workshop (ITW). IEEE, 2015.

David A. van Dyk and Xiao-Li Meng. The art of data augmentation. Journal of Computational and
Graphical Statistics, 2001.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In arXiv, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. ICLR, 2017.

9

Under review as a conference paper at ICLR 2018

A ENTROPY BOUNDING THE RECONSTRUCTION ERROR

In section 3 we highlight a link between the entropy H(X | Y) and the difficulty to recover the
input X from its representation Y . Here we exhibit a concrete relation between the reconstruction
error, that quantifies the error made by a strategy that predicts X from Y , and the conditional entropy.
This relation takes the form of an inequality, bounding the error measure in the best case (with the
reconstruction strategy that minimizes the error) by an increasing function of the entropy. We note
x̂(Y) ∈ X the reconstruction model that tries to guess X from Y .

The discrete case In case the input space is discrete, we consider the zero-one reconstruction
error for one representation point Y : ε(Y) = EX [1(x̂(Y) 6= X)]. This is the probability of error
when predicting x̂(Y) from Y . The function that minimizes the expected error E = EY (ε(Y)) is
x̂(Y) = arg maxx∈X p(x | Y) as shown in Proof 1. We derive the following inequality:

H(X | Y)− 1

log |X |
≤ E ≤ 1− 2−H(X|Y). (13)

The left side of the inequality uses Fano’s inequality in Cover & Thomas (1991), the right one is
developed in proof 2. This first bound shows how the reconstruction error and the entropy are related.
For very invariant representations, it is hard to recover the input from Y and the entropy of H(X | Y)
is high.

Besides, there can be an underlying continuity in the input space and it could be unfair to penalize
predictions close to the input as much as predictions far from it. We expose another case below that
takes this proximity into account.

The continuous case In the case of convex input space and input variable with continuous density,
we consider the 2-norm distance as reconstruction error: ε(Y) = EX|Y

[
||X − X̂(Y)||22

]
. This error

penalizes the average distance of the input and its reconstruction from Y . The function that minimizes
the expected error E = EY [ε(Y)] is the conditional expected value: x̂(y) = E[X | Y = y]. Then
E = Var(X | Y). Helped by the well-known inequality H(X | Y) ≤ 1

2 ln(2πeVar(X | Y)) we
obtain:

e2H(X|Y)

2πe
≤ E . (14)

Here again, notice that a high entropy H(X | Y) implies a high reconstruction error in the best case.

A.1 PROOF 1

We have

E =

∫
Y
p(y)ε(y) dy (15)

=

∫
Y
p(y)p(X 6= x̂(y) | y) dy (16)

=

∫
Y
p(y)(1− p(x̂(y) | y)) dy. (17)

Since

p(x̂(y) | y) ≤ p(arg max
x∈X

p(x | y) | y), (18)

the reconstruction that minimizes the error is x̂(y) = arg maxx∈X p(x | y). However, this is
theoretical because in most cases p(x | Y) is unknown.

10

Under review as a conference paper at ICLR 2018

A.2 PROOF 2

We have:

log(1− E) = log

(∫
Y
p(y)(1− ε(y)) dy

)
(19)

= log

(∫
Y
p(y)p(x̂(y) | y)

)
dy (20)

≥
∫
Y
p(y) log(p(x̂(y) | y)) dy (21)

=

∫
Y
p(y)

∫
X
p(x | y) log(p(x̂(y) | y)) dx dy (22)

≥
∫
Y
p(y)

∫
X
p(x | y) log(p(x | y)) dxdy (23)

= −H(X | Y). (24)
The Eq. (21) is obtained using Jensen inequality and Eq. (23) is obtained using the result of Proof 1.

Thus,
E ≤ 1− 2−H(X|Y). (25)

B DEVELOPMENT OF SHADE LOSS

Below is the detail of the development of Equation (8).

Var(Y | Z) =

∫
Z
p(z)Var(Y | z) dz (26)

=

∫
Z
p(z)

∫
Y
p(y | z)(y − E(Y | z))2 dy dz (27)

=

∫
Y

∫
Z
p(z)p(y | z)(y − E(Y | z))2 dy dz (28)

=

∫
Y

∫
Z
p(y)p(z | y)(y − E(Y | z))2 dy dz (29)

=

∫
Y
p(y)

∫
Z
p(z | y)(y − E(Y | z))2 dy dz. (30)

C SHADE GRADIENTS

Here is studied the influence of SHADE on a gradient descent step for a single neuron Y of a single
layer and for one training sample X . The considered case of a linear layer, we have: Y = w>X + b.

The gradient of ΩSHADE with respect to w is:
∇wΩSHADE = (δ1 + δ2)x

with δ1 = σ(y)(1− σ(y))
(
(y − µ1)2 − (y − µ0)2

)
and δ2 = 2σ(y)(y − µ1) + 2(1− σ(y))(y − µ0).

We can interpret the direction of this gradient by analyzing the two terms δ1 and δ2 as follows:

• δ1: If (y − µ0)2 is bigger than (y − µ1)2 that means that y is closer to µ1 than it is to µ0.
Then δ1 is positive and it contributes to increasing y meaning that it increases the probability
of Z being from mode 1. In a way it increases the average margin between positive and
negative detections. Note that if there is no ambiguity about the mode of Z meaning that
σ(y) or 1− σ(y) is very small then this term has negligible effect.
• δ2: This term moves y toward the µz of the mode that presents the bigger probability. This

has the effect of concentrating the outputs around their expectancy depending on their mode
to get sparser activation.

11

Under review as a conference paper at ICLR 2018

D EXPERIMENTS DETAILS ON MNIST-M

Dataset splits and creation. To create MNIST-M, we kept the provided splits of MNIST, so we
have 55,000 training samples, 5,000 validation samples, and 10,000 test samples. Each digit of
MNIST is processed to add color and texture by taking a crop in images from BST dataset. This
procedure is explained in Ganin & Lempitsky (2015).

Subsets of limited size. To create the training sets of limited size N , we keep N/10 (since there
are 10 classes) randomly picked samples from each class. When increasing N we keep the previously
picked samples so the training samples for N = 100 are a subset of the ones for N = 250. The
samples chosen for a given value of N are the same across all models trained using this number of
samples.

Image preprocessing. The only preprocessing applied to the input images is that their values are
rescaled from [0, 1] to [−1, 1].

Optimization. For the training, we use mini-batch of size 50 and use Adam optimizer with the
recommended parameters, i.e. λr = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8.

Hyperparameter tuning. For weight decay and SHADE, the optimal regularization weight of
each model (for each value of N) has been chosen to maximize the accuracy on the validation sets.
We tried the values {10−i, i = 1..7}.

Model architecture. The model have the following architecture:

• 2D convolution (64× 5× 5 kernel, padding 2, stride 1) + ReLU
• MaxPooling 2× 2

• 2D convolution (64× 3× 3 kernel, padding 1, stride 1) + ReLU
• MaxPooling 2× 2

• 2D convolution (64× 3× 3 kernel, padding 1, stride 1) + ReLU
• MaxPooling 2× 2

• Fully connected (1024 inputs, 10 outputs) + SoftMax

E EXPERIMENTS DETAILS ON IMAGENET

The fine tuning in the experiment section 4.2 has been done with momentum-SGD with a learning
rate of 10−5 and a momentum of 0.9 and a batch size of 16 images. It took 8 epochs to converge.

12

	Introduction
	SHADE: A new Regularization Method Based on H(Y|X)
	Entropy-based Regularization for Deep Neural Networks
	Estimating Entropy
	Instantiating SHADE

	Conditional Entropy as Invariance Measure for Classification
	Experiments
	Image Classification with Various Architectures on CIFAR-10
	Large Scale Classification on ImageNet
	Training with a Limited Number of Samples
	Class-Information Preservation by Conditional Entropy

	Conclusion
	Entropy bounding the reconstruction error
	Proof 1
	Proof 2

	Development of SHADE loss
	SHADE Gradients
	Experiments details on MNIST-M
	Experiments details on Imagenet

