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Abstract
Large Language Models (LLMs) have demon-001
strated impressive zero-shot capabilities and002
versatility in NLP tasks, however they some-003
times fail to maintain crucial invariances for004
specific tasks. One example is permutation sen-005
sitivity, where LLMs’ outputs may significantly006
vary depending on the order of the input op-007
tions. While debiasing techniques can mitigate008
these issues, and yield better performance and009
reliability, they often come with a high compu-010
tational cost at inference. This paper addresses011
this inefficiency at inference time. The aim012
is to distill the capabilities of a computation-013
ally intensive, debiased, teacher model into a014
more compact student model. We explore two015
variants of student models: one based on pure016
distillation, and the other on an error-correction017
approach for more complex tasks, where the018
student corrects a single biased decision from019
the teacher to achieve a debiased output. Our020
approach is general and can be applied to both021
black-box and white-box LLMs. Furthermore,022
we demonstrate that our compact, encoder-only023
student models can outperform their larger, bi-024
ased teacher counterparts, achieving better re-025
sults with significantly fewer parameters.026

1 Introduction027

Recent advancements in Large Language Models028

(LLMs) have led to dramatic shifts within natu-029

ral language processing (NLP). Unlike prior "pre-030

train and fine-tune" (Devlin et al., 2019; He et al.,031

2020) approaches, instruction-tuned LLMs com-032

bined with effective good prompting techniques033

has enabled LLMs to excel at unseen tasks without034

task-specific training (Brown et al., 2020; Touvron035

et al., 2023). This has led to the current capabilities036

of LLMs, where they demonstrate great versatility,037

while also being powerful and displaying state-of-038

the-art performance on many standard NLP bench-039

mark leaderboards (Park, 2023).040

Despite their impressive general abilities, LLMs041

suffer from particular limitations. They are prone042

to hallucinating information (Huang et al., 2023; 043

Manakul et al., 2023), can have large sensitivity 044

to the form of prompts (Sclar et al., 2023; Zhou 045

et al., 2022) and also demonstrate systematic biases 046

such as gender bias (Kotek et al., 2023). Further- 047

more, due to the general nature of their pre-training 048

and instruction-tuning (Wei et al., 2021; Ouyang 049

et al., 2022), for certain applications, they may be 050

unaware of particular important task invariances. 051

One such invariance that LLMs may fail to main- 052

tain is permutation-invariance. Ongoing work has 053

demonstrated that LLMs can be sensitive to the 054

input order of options, which has been observed 055

for both question answering (Pezeshkpour and Hr- 056

uschka, 2023; Zheng et al., 2023a) and pairwise 057

assessment (Zheng et al., 2023b; Wang et al., 2023; 058

Liusie et al., 2023b). For these tasks, varying the 059

ordering of the input options may lead to different 060

decisions by the LLM, which can impact down- 061

stream performance and reliability. 062

Although debiasing approaches can be applied 063

to enforce invariances, such methods can be com- 064

putationally expensive or inapplicable to black-box 065

settings (Zheng et al., 2023a). To address these 066

challenges, this work introduces a general frame- 067

work that can be used to adapt both black-box and 068

white-box systems to follow a particular invari- 069

ance, while being inference efficient. For a given 070

invariance and debiasing scheme, our framework 071

trains a compact student to emulate the debiased 072

teacher, which during inference can be efficiently 073

deployed. We investigate two variants of students, 074

a simple knowledge-distilled student, as well as 075

an error-correction student that takes in a single 076

biased teacher sample and corrects it to learn the 077

debiased teacher decision, applicable for more com- 078

plicated tasks. We demonstrate the effectiveness of 079

our framework on permutation invariance, and il- 080

lustrate that small 330M parameter student models 081

can outperform their larger biased teacher counter- 082

parts, while also maintaining particular embedded 083

1



invariances.084

The contributions of this work are: 1) We pro-085

vide metrics for assessing the sensitivity of mod-086

els to the input ordering of options. 2) We show-087

case that LLMs can demonstrate large permutation088

sensitivity and that biases seem correlated to task089

performance. 3) We study several different debi-090

ased approaches that yield significant performance091

gains. 4) Experiments on RACE++ and SummEval092

demonstrate that the teacher-student training for093

debiasing framework yields effective students that094

perform better than their biased teacher while being095

inference-efficient and not expensive to train.096

2 Multiple Choice Prompting097

Prompting has been shown effective in leveraging098

the diverse zero-shot abilities of instruction-tuned099

Large Language Models (LLMs). For a particular100

task, inputs can be rephrased into natural language101

queries which condition the LLM to generate useful102

responses (Reynolds and McDonell, 2021; Chae103

and Davidson, 2023).104

For example in multiple choice classification105

tasks, there may be input information x (e.g. con-106

text and question), and a set of K possible answers,107

A = {a1, ..., aK}. Given an ordered realisation of108

the possible answers Aσ (e.g. (a2, a4, a1, a3)), a109

prompt t(x,Aσ) can be designed to convert the in-110

put information into a textual representation. Note111

that a different ordering of answers Aσj , would112

lead to a different textual prompt representation.113

The work of Robinson et al. (2023) conducted a114

systematic study into Multiple Choice Prompting115

(MCP) in which the position of each ordered an-116

swer in Aσ is bound to a symbol or option label wk117

within the prompt. Instead of tasking the LLM with118

generating the full correct answer a∗ (Lieber et al.,119

2021; Brown et al., 2020), it only needs to predict120

the label w∗ of the correct position (often a single121

token such as "A", "B", "C" or "D"). This converts122

the significant problems that arise when comparing123

the probabilities of variable-length answers a ∈ A124

into simple probabilities of different tokens. The125

predictive probability of the k-th option under the126

particular permutation of answers then becomes:127

P (wk|x,Aσ)=
PLLM(wk|t(x,Aσ))∑
jPLLM(wj |t(x,Aσ))

(1)128

where the model probabilities have been normal-129

ized, since the LLM vocabulary span tokens be-130

yond the symbols w1:K . The probability of an131

answer a can then be found by matching it to its 132

corresponding position, yielding a distribution over 133

answers P (ak|x,Aσ). Overall, the system decision 134

is the answer with the highest probability. 135

â = argmax
ak

P (ak|x,Aσ) (2) 136

The above approach assumes full access to the 137

output probabilities, which may not be available. 138

For black-box LLMs that are served through APIs 139

(Achiam et al., 2023; Anil et al., 2023), one may 140

only have access to the autoregressively generated 141

output text. In such settings, one can instead ran- 142

domly sample from the underlying distribution to 143

get an approximate system decision ã: 144

ã(i)∼ P (ak|x,Aσ) (3) 145

For well-designed prompts, the majority of the 146

probability mass should be associated with the op- 147

tion labels w1:K . One can therefore directly sample 148

from w̃(i)∼ PLLM(wk|t(x,Aσ)) and reject samples 149

that do not belong to the options labels. 150

2.1 Multiple Choice Question Answering 151

The objective for multiple choice question answer- 152

ing is for a model to determine which of the pro- 153

vided options is the correct answer for the specified 154

question. To determine the answer, the model must 155

either leverage general knowledge learned in train- 156

ing or, if contextual information is provided, infer 157

answers from the passage. In this work, simple 158

prompts are used as demonstrated in Figure 2. 159

Context: Last week I talked with some of my 
students about what they want to...

Question: What does the author want to be?

A) a doctor
B) a model
C) a teacher
D) a reporter

Figure 2: Templates used for prompting LLMs for
MCQA. For context-free questions, the context is
omitted.

2.2 Comparative Asessment 160

Comparative Assessment aims to determine which 161

of two responses is better. Given a context (e.g. 162

previous dialogue/article) the LLM is asked to as- 163

sess which response is better, A or B. Comparative 164

assessment can be used for various NLG metrics, 165
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What is the capital of England?

A) London
B) Paris

What is the capital of England?

A) Paris
B) London

What is the capital of England?

London
Paris

A
B

Inconsistent with different orderings

A
B

LLM LLM

Inefficient 

debiased

=
…

What is the capital of England?

A) Paris
B) London

A
B

Distillation

Training Inference

Error Correction
What is the capital of England?

A) Paris
B) London

A
B

Inference

+

Training

A

Standard

Permutation Debiased

Figure 1: High-level diagram of the work: The left-hand side illustrates how LLMs may be sensitive to input
ordering, but by averaging results from different permutations can yield debiased distributions. The right-hand
side shows two variants of students that emulate the debiased teacher distribution, either through distillation or
through error correction where the student improves a single sampled biased decision.

and the prompt can be adapted towards particular166

attributes. The prompt used is shown in Figure 3.167

Context: Sick of awkward father-daughter portraits? Well 
one photographer has found an effective ...

Which Summary is more coherent, Summary A or Summary B?

Summary A: A series of photos sees Japanese dads jumping 
next to their daughters...

Summary B: Japanese photographer Yûki Aoyama's latest 
series of images capture... 

Figure 3: Prompts used for comparative assess-
ment. Different attributes use different adjectives.

3 Inherent Biases in LLMs168

3.1 Quantifying Bias to Permutations169

Although LLMs have shown effective zero-shot170

performance, they may exhibit bias where they171

fail to recognize specific task-related invariances172

(Pezeshkpour and Hruschka, 2023; Miceli Barone173

et al., 2023). Previous work has highlighted sen-174

sitivity to the permutations of options in multiple175

choice question answering (Pezeshkpour and Hr-176

uschka, 2023; Zheng et al., 2023a). Similarly, com-177

parative assessment systems have been shown to178

favour options in particular positions (Zheng et al.,179

2023b; Wang et al., 2023; Liusie et al., 2023b).180

If a system demonstrates perfect awareness of181

this permutation invariance, then for any two per-182

mutations of the options, Aσj , Aσm , one would183

expect consistent distributions,184

P
(
ak|x,Aσj

)
= P(ak|x,Aσm) ∀j,m (4)185

I.e, the probability of an answer should be inde- 186

pendent of how the options have been presented. 187

However, the predictive distribution produced by 188

an LLM may not conform to Equation 4 and suffer 189

from inherent bias, where different permutations 190

lead to different predictive distributions. This may 191

impact system performance, and yield biased de- 192

cisions in downstream applications. To assess the 193

sensitivity of a system to permutation, we define 194

two metrics that can be used to measure a system’s 195

inherent bias towards a particular task. 196

Permutation Sensitivity. As defined by Equation 197

4, the distribution over possible answers should 198

be unaffected by the input ordering. Therefore 199

to quantify the sensitivity of a model to changes 200

in the input order, one can measure the expected 201

divergence D between the distributions resulting 202

from any two possible permutations Aσj , Aσm : 203

ps(x,A) = (5) 204

Eσj,m

[
D
[
P
(
.|x,Aσj

)
; P(.|x,Aσm)

]]
205

Positional Bias. A possible cause for permutation 206

sensitivity may be systematic bias, where the most 207

obvious form of bias would be a global preference 208

for a specific option. To measure if there is any sys- 209

tematic preference for certain labels irrespective of 210

the option, one can alternatively look at the average 211

probability mass associated with each option label 212

wk over all permutations: 213

Pσ(wk|x,A) = Eσ[P(wk|x,Aσ)] (6) 214
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Note that this marginalized distribution looks at the215

probability of the k-th option irrespective of how216

the answers have been presented. If this positional217

distribution is non-uniform U(·), the natural inter-218

pretation is that the underlying LLM has a biased219

preference for a particular position. Therefore, a220

measure of positional bias can be defined as the221

divergence between the positional and uniform dis-222

tribution223

pb(x,A) = D[Pσ(.|x,A); U(·)] (7)224

Note that positional bias is more relaxed than per-225

mutation sensitivity; a system that is permutation226

insensitive guarantees having no positional bias,227

while the reverse is not true.228

3.2 Debiasing Approaches229

To minimize the permutation sensitivity and/or po-230

sitional bias, we consider two different debiasing231

strategies that by design enforce invariance.232

Permutation debiasing. A simple approach for233

correcting permutation sensitivity is to ensemble234

all permutations235

P(ai|x,A) = Eσ[P(ai|x,Aσ)] (8)236

This approach eliminates any permutation sensi-237

tivity and therefore by definition, positional bias.238

However, it would require K! passes through the239

LLM which could be prohibitively expensive. Ap-240

proximate approaches such as cyclic permutations241

(Zheng et al., 2023a) can be used, but they still242

require K passes and are also computationally ex-243

pensive at inference time.244

Prior-matching. Instead of cycling through all245

possible permutations and correcting for permuta-246

tion sensitivity, a simpler alternative is to focus on247

minimizing positional bias. Consider introducing248

a set of weights α = α1:K ∈ R
K
+ to scale the249

original LLM probabilities associated with each250

particular option label:251

P(wk|x,Aσ,α)=
αkPLLM(wk|t(x,Aσ))∑
jαjPLLM(wj |t(x,Aσ))

252

One can then find the weights ᾱ that ensure the253

system has minimal positional bias1 (Liusie et al.,254

1One can alternatively find α to minimize permutation
sensitivity, but initial results yielded similar performance to
prior-matching

2023a; Zhao et al., 2021) and that the prior over 255

positions is uniform over all questions. 256

ᾱ = argmin
α

∑
k

∣∣∣Pσ(wk|x,A,α)− 1

K

∣∣∣ (9) 257

4 Teacher-Student Training for Debiasing 258

To address the computational inefficiencies linked 259

with permutation debiasing, this section proposes 260

using teacher-student training to investigate if a 261

smaller inference efficient proxy system Pθ could 262

emulate the characteristics of the debiased teacher 263

distribution. Instead of performing K! calls to ob- 264

tain a permutation debiased prediction, a proxy 265

student could potentially achieve it in a single call. 266

Our approach is general and is applicable to both 267

white and black-box systems, without the need for 268

labelled data. Although we focus on correcting per- 269

mutation sensitivity, the framework can be applied 270

for any task invariance and debiasing strategy. 271

4.1 Distillation 272

The most inference-efficient approach is to knowl- 273

edge distil the debiased teacher distribution onto 274

a small non-autoregressive student Pθ. Given the 275

input x and ordered options Aσ, the student can 276

be designed to model the debiased teacher distribu- 277

tion, 278

Pθ(a|x,Aσ) ≈ P(a|x,A) ∀{x,A}, σ (10) 279

That is, irrespective of how the possible answers are 280

presented to the student, it should predict consistent 281

distributions that agree with the debiased teacher. 282

This is achieved by minimizing the KL-divergence 283

(Hinton et al., 2015): 284

L(θ) = E{x,A},σ

[
KL

(
P(·|x,A)||Pθ(·|x,Aσ)

)]
285

During training, the debiased teacher probabilities 286

still have to be computed which requires K! white- 287

box calls for every single data point. However, once 288

the student has been trained it can be used indepen- 289

dently of the original LLM, and be significantly 290

faster. Since white-box access is not guaranteed, 291

Section 4.3 discusses how to apply teacher-student 292

training to black-box settings. 293

4.2 Error Correction 294

For complex tasks, the capacity of a small proxy 295

system might be insufficient. Instead of tasking 296

a student with directly performing the task as in 297
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the section above, we consider an error correction298

student. In addition to the task information and a299

permutation of the answers, the student receives a300

sample from a biased teacher, with the aim of emu-301

lating the debiased teacher distribution and possibly302

correcting the initial biased sample.303

ã ∼ P(ak|x,Aσ) (11)304

Pθ(ak|x,Aσ, ã) ≈ P(ak|x,A) (12)305

Similarly to distillation, the student can be trained306

by minimising the KL divergence between the307

proxy and the debiased teacher:308

L(θ) = E{x,A},σ

[
Eã∼P(·|x,Aσ)

[
309

KL
(
P(·|x,A)||Pθ(·|x,Aσ, ã)

)]]
310

At inference time this model requires a single bi-311

ased black-box sample from the LLM to produce312

an approximation to the full debiased distribution313

of the teacher.314

4.3 Black-Box Considerations315

The approaches outlined in Sections 4.1 & 4.2 have316

assumed white-box access to the debiased teacher317

distribution P(a|x,A) during training. In black-318

box settings, this is not true and a hierarchical319

monte-carlo approximation to the debiased teacher320

needs to be used:321

σ ∼ {σ1, σ2, ..., σK!} (13)322

ã(i) ∼ P(a|x,Aσ) (14)323

where a random permutation of answers Aσ is first324

chosen followed by sampling from the resulting bi-325

ased distribution. In expectation, we regain the de-326

biased distribution and can therefore use a sample-327

based approximation:328

P(a|x,A) = Eσ [P(a|x,Aσ)]329

= Eσ [Eã [1(ã = a|x,Aσ)]]330

≈ 1

N

∑
i

1(ã(i) = a)331

332

Furthermore, the monte-carlo approximation for333

the knowledge distillation criteria becomes:334

L(θ) = E{x,A},σ

[
KL

(
P(·|x,A)||Pθ(·|x,Aσ)

)]
335

c
= E{x,A},σ

[
EP(·|x,A)

[
− ln Pθ(·|x,Aσ)

]]
336

≈ E{x,A},σ

[ 1

N

∑
i

− ln Pθ(ã
(i)|x,Aσ)

]
337

This allows us to train student models that can 338

emulate the debiased teacher distribution without 339

white-box access to the original LLM. Alternative 340

divergence-based loss functions such as Reverse 341

KL would not cleanly decompose into a black-box 342

compatible form. Note, that for error correction 343

students, an extra LLM sample is required as input 344

to the student. 345

5 Experimental Set Up 346

5.1 Datasets 347

Experiments are done on two forms of tasks: Mul- 348

tiple Choice Question Answering (MCQA) and 349

Comparative Assessment. For MCQA, we uti- 350

lize three popular datasets: RACE++ (Lai et al., 351

2017; Liang et al., 2019), which consists of En- 352

glish comprehension questions designed for Chi- 353

nese students spanning from middle school to col- 354

lege. CosmosQA (Huang et al., 2019), a large- 355

scale commonsense-based reading comprehension 356

dataset of passages and questions assessing compre- 357

hension. ARC-CHALLENGE (Clark et al., 2018), 358

which contain challenging science exam questions 359

drawn from a variety of sources. All datasets have 360

(or are filtered to) 4 options per question. 361

For comparative assessment, SummEval (Fab- 362

bri et al., 2020) is used. SummEval is a sum- 363

mary evaluation benchmark of 100 passages and 16 364

machine-generated summaries per passage, where 365

human annotators have evaluated each summary 366

on coherency (COH), consistency (CON), fluency 367

(FLU), and relevancy (REL). We use the first 70 368

passages for training, the next 10 for validation, 369

and the final 20 for evaluation. 370

5.2 Base Language Models 371

Two different open-sourced LLM families are 372

investigated in this work for their general task- 373

solving abilities: FlanT5 (Chung et al., 2022), 374

which is a seq2seq T5 (Raffel et al., 2020) sys- 375

tem that has been further instruction tuned on a 376

diverse set of 1600+ NLP tasks (Wang et al., 2022); 377

and Llama2-chat (Touvron et al., 2023), which is 378

a decoder-only language model that is further fine- 379

tuned and optimized for dialogue use cases. A 380

range of the model sizes are considered: 3B and 381

11B for FlanT5, and 7B and 13B for Llama2-chat. 382

5.3 Proxy models 383

For the student proxy models, only simple encoder- 384

only models are considered. We consider both 385
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MCQA SummEval

RACE++ COSMOS ARC-CHAL COH CON FLU REL
acc ps acc ps acc ps acc ps acc ps acc ps acc ps

FlanT5-3B
baseline (biased) 86.7 0.09 85.7 0.12 73.6 0.22 69.2 0.20 81.1 0.12 62.5 0.17 64.5 0.17
prior-matching 86.5 0.12 85.6 0.12 73.0 0.21 70.2 0.15 80.6 0.12 64.3 0.13 64.3 0.15
ctx prior-matching 86.7 0.07 86.0 0.09 73.9 0.14 70.9 0.12 80.8 0.11 64.4 0.12 64.5 0.12
perm-debias 87.3 0.00 86.1 0.00 74.1 0.00 71.7 0.00 82.0 0.00 65.7 0.00 65.4 0.00

FlanT5-11B
baseline (biased) 88.8 0.10 85.8 0.14 76.7 0.21 61.6 0.42 70.5 0.38 55.6 0.44 62.8 0.39
prior-matching 88.3 0.11 86.0 0.12 76.8 0.20 67.2 0.16 77.8 0.14 58.9 0.16 64.8 0.15
ctx prior-matching 88.8 0.06 86.5 0.09 77.9 0.13 67.8 0.13 77.7 0.12 59.2 0.12 65.6 0.13
perm-debias 88.9 0.00 87.4 0.00 77.9 0.00 68.9 0.00 79.7 0.00 61.4 0.00 67.0 0.00

Llama-7B
baseline (biased) 61.2 0.67 62.1 0.65 58.5 0.67 62.8 0.30 64.1 0.49 58.0 0.42 58.3 0.56
prior-matching 61.9 0.58 64.0 0.57 58.5 0.63 62.5 0.29 62.8 0.28 59.5 0.30 62.1 0.28
ctx prior-matching 66.7 0.35 67.6 0.41 62.3 0.40 63.7 0.19 64.2 0.17 59.9 0.20 63.4 0.18
perm-debias 68.3 0.00 72.0 0.00 64.3 0.00 64.8 0.00 66.2 0.00 59.7 0.00 65.7 0.00

Llama-13B
baseline (biased) 71.3 0.43 68.1 0.51 68.8 0.47 62.3 0.38 71.8 0.23 58.9 0.56 63.8 0.40
prior-matching 71.8 0.39 68.7 0.45 69.0 0.46 66.0 0.22 72.6 0.17 61.7 0.25 65.5 0.24
ctx prior-matching 73.3 0.25 70.9 0.35 70.3 0.31 66.7 0.16 72.1 0.14 62.4 0.18 65.7 0.17
perm-debias 74.6 0.00 75.0 0.00 70.6 0.00 68.6 0.00 73.1 0.00 63.5 0.00 66.3 0.00

Table 1: Accuracy (acc) and permutation sensitivity (ps, §3.1) for various LLMs when prompted for MCQA
or for pairwise comparative assessment. Llama2-7B is used as the teacher for RACE++ and FlanT5-11b for
SummEval. ’ctx- prior matching’ refers to applying prior matching to each input over all permutations.

RoBERTa (Liu et al., 2019) and DeBERTa-v3 (He386

et al., 2020), where both the base (110M) and large387

(330M) size are investigated. The input to the stu-388

dent system proxy is matched to that of the teacher,389

however for error correction, we further provide390

the biased teacher decision by appending text to the391

end of the input prompt. E.g. If the sampled biased392

teacher prediction was "A", then we concatenate393

Prediction: A to the end of the input text.394

5.4 Methodology395

When applying teacher-student training for debias-396

ing, the debiased white-box teacher distributions397

are used to train the student. We train 4 seeds398

per RACE++ setting and 6 seeds per SummEval399

setting and report the average performance and av-400

erage sensitivity. For RACE++ Llama2-7b is used401

as the teacher, while for SummEval FlanT5-11b is402

used as the teacher. Details of the hyperparameters403

can be found in appendix A.404

For each task, we provide the performance of the405

teacher under different settings. Debiased white-406

box teacher refers to the performance when permu-407

tation debiased decisions are used. Biased white-408

box teacher performance refers when the predic-409

tion is taken as the argmax of a single teacher call.410

The expected biased black-box performance is411

the expected accuracy when samples from the412

teacher are drawn from the underlying biased dis- 413

tribution. Note that accuracy may differ from the 414

biased white-box accuracy, if the decisions are not 415

well calibrated (Guo et al., 2017). When evaluat- 416

ing permutation sensitivity, total variation is used 417

since the KL divergence is unbounded and, if used, 418

metrics may be overly influenced by individual 419

samples that largely diverge. 420

6 Results 421

6.1 Permutation Bias of LLMs 422

Table 1 shows the performance and permutation 423

sensitivity for various LLMs on a range of multiple 424

choice answering tasks, as well as for comparative 425

assessment, and demonstrates the following points: 426

1) LLMs may fail to adhere to task invari- 427

ances. Both Llama2 and FlanT5 style models ex- 428

hibit high permutation sensitivity across various 429

tasks. Llama2, in particular, shows reasonable accu- 430

racy across a range of tasks, however also has high 431

permutation sensitivity in nearly all tasks. This 432

highlights that the output distribution of prompted 433

LLMs can be largely influenced by the order of the 434

input options. 435

2) Models that satisfy positional invariance 436

for some tasks, may not be positional invari- 437

ant for all tasks. FlanT5-3B and FlanT5-11B 438
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SummEval

RACE++ COH CON FLU REL
type acc ps acc ps acc ps acc ps acc ps

Teachers
debiased white-box 68.3 0.00 68.9 0.00 79.7 0.00 61.4 0.00 67.0 0.00
biased white-box 61.2 0.67 61.6 0.42 70.5 0.38 55.6 0.44 62.8 0.39
expected biased black-box 58.4 - 58.5 - 65.5 - 54.3 - 58.8 -

Students
RoBERTa-base (110M) d 26.7 0.07 61.5 0.05 70.5 0.07 61.2 0.05 60.9 0.06
RoBERTa-base (110M) ec 61.4 0.37 66.4 0.04 71.7 0.06 61.6 0.03 61.9 0.05

DeBERTa-base (110M) d 26.9 0.05 62.6 0.03 67.1 0.04 62.1 0.03 63.0 0.05
DeBERTa-base (110M) ec 64.1 0.31 66.0 0.03 71.1 0.04 64.1 0.03 62.1 0.06

RoBERTa-large (330M) d 26.9 0.09 64.8 0.05 67.6 0.06 62.7 0.05 62.1 0.05
RoBERTa-large (330M) ec 68.0 0.25 66.7 0.05 72.0 0.05 63.3 0.04 63.6 0.05

DeBERTa-large (330M) d 47.9 0.11 65.1 0.04 71.5 0.04 64.9 0.03 63.2 0.03
DeBERTa-large (330M) ec 68.1 0.25 66.1 0.03 70.9 0.02 64.8 0.03 63.3 0.04

Table 2: Performance of a student trained to emulate the debiased teacher, measured with task accuracy (acc)
and permutation sensitivity (ps). The students are either directly distilled (d, §4.1) or trained to correct the
distribution of a single biased black-box teacher decision (ec, §4.1).

demonstrate minimal permutation sensitivity for439

all MCQA tasks, likely due to the additional fine-440

tuning of FlanT5 on a variety of tasks including441

multiple choice question answering exams. This442

fine-tuning has likely imparted implicit permuta-443

tion invariance for tasks resembling those encoun-444

tered during training. However, when FlanT5-11B445

is applied to comparative assessment, the system446

exhibits considerable permutation sensitivity across447

all attributes of SummEval. This implies that fur-448

ther training on supervised data may mitigate bias449

and implicitly impart invariances, however, such450

a solution is task-specific and may not necessarily451

generalize to tasks seen beyond training.452

3) Addressing neglected invariances can yield453

significantly better task performance. Permuta-454

tion debiasing guarantees zero permutation sensi-455

tivity, and applying the method can yield large im-456

provements in performance for many tasks. Even457

tasks with low permutation sensitivity (e.g. FlanT5458

on MCQA) gain small performance boosts, though459

in settings with high bias one can gain up to 10% in460

accuracy. Further, a loose correlation between per-461

mutation sensitivity and accuracy can be observed462

across tasks and models.463

4) Positional Bias alone does not account for464

the observed positional bias. Applying prior465

matching, which ensures that there is no positional466

bias towards any of the label tokens, alone does not467

resolve the permutation sensitivity. Although in468

some cases this can significantly improve both sen-469

sitivity and accuracy (e.g. FlanT5-11B comparative470

assessment), for some tasks, permutation sensitiv- 471

ity may remain significant and performance can be 472

substantially worse than permutation debiasing. 473

5) Context Positional Bias can account for 474

much of the observed performance degradation. 475

As an extension to prior matching, we also con- 476

sider context-prior matching where prior matching 477

is applied over all K! permutations of the particular 478

input. This enables one to capture the positional 479

bias caused by the specific input prompt. Correct- 480

ing for this bias yields performance closely match- 481

ing that of permutation debiasing, highlighting that 482

a positional bias can exist for particular contexts. 483

However note that, unlike prior matching, context- 484

prior matching requires K! calls and is only useful 485

as analysis relative to permutation sensitivity. 486

6.2 Debiased Student Performance 487

Table 2 shows the performance of various students 488

when trained to emulate the teacher debiased de- 489

cisions, where students are either purely distilled 490

(§4.1) or trained to achieve error-correction (§4.2). 491

The table shows that: 492

1) For some tasks (e.g. comparative assessment 493

on SummEval) the teacher’s abilities can be ade- 494

quately learned by a smaller student through stan- 495

dard knowledge distillation. The resulting student 496

can achieve performance considerably better than 497

the biased teacher and low permutation sensitivity, 498

all while being considerably more computationally 499

efficient. 500

2) For complex tasks (e.g. RACE++) the stu- 501
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dent is not powerful enough to alone capture the502

abilities of the teacher. However, in such cases,503

error correction students can effectively leverage504

a single-biased teacher decision to predict the es-505

timated general debiased distributions. These stu-506

dent systems are more robust to changes in permu-507

tations, although are not fully permutation invariant.508

Note that error correction consistently yields bet-509

ter performance than copying the biased teacher’s510

decision, illustrating that the students can capture511

useful information of the underlying teacher’s pre-512

diction space.513

3) Although the size and ability of student can514

be an important factor when applying the frame-515

work (e.g. RACE++), for some tasks the required516

model complexity can saturate early and a further517

increase in size/ability does not impact downstream518

performance.519

6.3 Black-Box Training Efficiency520

100 101 102

Number of Biased-Black Box Samples per Question

58

60

62

64

66

68

Ac
cu

ra
cy

DeBERTa-large (ec)
RoBERTa-large (ec)
DeBERTa-base (ec)
Teacher (max voting)

Figure 4: RACE++ performance of error correc-
tion students when using N black-box samples to
approximate the debiased distribution (§4.3)

The previous section applied the teacher-student521

training framework assuming white-box access dur-522

ing training. Although infinite black-box samples523

can be used to derive the underlying distribution,524

this section investigates the sample efficiency of525

the framework in black-box settings. Figure 4 dis-526

plays the RACE++ performance of an error cor-527

rection student when trained using N black-box528

teacher samples per example. The curve illus-529

trates that teacher-student training does not require530

an excessive number of black-box samples, with531

performance saturating at 32 samples per exam-532

ple. Interestingly, when using only a few samples,533

DeBERTa-large can outperform the max-voting534

performance of the debiased teacher. This im-535

plies that by applying teacher-student training, the536

student can infer the systematic biases present in 537

the teacher, and yield corrected distributions from 538

many noisy approximations. The analysis was done 539

for RACE++, and as having more options would 540

require more samples to approximate the true un- 541

derlying distribution, one would expect compara- 542

tive assessment to require fewer black-box samples 543

per input. 544

6.4 Impact of Data Size 545

103 104

Training data size

58

60

62

64

66
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ra
cy

SummEval-COH (d)
SummEval-COH (ec)
RACE++ (ec)

Figure 5: DeBERTa-large accuracy when using a
limited number of examples during teacher-student
training.

Figure 5 shows the effectiveness of a student 546

DeBERTa-large model when trained on a lim- 547

ited number of training samples. The plot shows 548

that the number of samples required before per- 549

formance saturates varies largely on task com- 550

plexity. For comparative assessment on Sum- 551

mEval coherency, only 2000 examples are required, 552

while RACE++ requires 30,000 examples before 553

a DeBERTa-large error correction student reaches 554

the debiased teacher performance on RACE++. 555

7 Conclusions 556

This paper explores the sensitivity of LLMs to the 557

order of input options for multiple-choice question- 558

answering and comparative assessment. We il- 559

lustrate the effectiveness of various debiasing ap- 560

proaches for mitigating these biases and the as- 561

sociated performance improvement. While these 562

debiasing methods often entail high computational 563

costs, we show that teacher-student training can 564

yield inference-efficient student models capable of 565

emulating a debiased teacher distribution. Our ap- 566

proach is practical in both white-box and black-box 567

settings, requiring a manageable number of training 568

data points and black-box samples. 569
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8 Limitations570

The teacher-student training was demonstrated to571

be effective for multiple choice question answer-572

ing and comparative assessment, however was not573

demonstrated to invariances beyond permutation574

sensitivity. Further, in the current framework, the575

training domain matches the downstream evalua-576

tion domain. Though this is a useful set-up for577

some scenarios, it does not investigate cross-task578

generalization or whether the students generalize to579

tasks that differ mildly from those in training. Our580

work also currently requires access to unlabelled581

input examples, which the teacher then produces582

predictions for.583

9 Ethical Considerations584

This work was demonstrated with permutation sen-585

sitivity and has not been studied when applied to586

further biases. Care should be taken if our methods587

are used to mitigate sensitive topics that may have588

real-world impact, where more in-depth analysis589

should be made on the impact the student may have.590

591
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A Hyperparameter Settings 786

We train over the entire training dataset with 2 epochs, with a batch size of 4 and learning rate of 1e-5 787

for the base students and 5e-6 for the large students, using the AdamW optimizer. The learning rate 788

was selected through a 1D search using 3 seeds for SummEval-COH, with the best learning rate in 789

the set {1e−6, 2e−6, 5e−6, 1e−5, 2e−5, 5e−5}. This learning rate was later kept for all later experiments. 790

Validation is run every 1000 examples, and the checkpoint with best validation accuracy is used at 791

evaluation. Experiments were run on Nvidia L40 GPUs with 50Gb of RAM. For DeBERTa-large Each 792

Summeval seed took 1 hour to run, and each RACE++ seed took 2 hours. 793

B Further details on LLM Set Up 794

For comparative assessment, the label words wk used are "Summary A" and "Summary B". This is 795

equivalent to appending "Summary" to the end of the input and then calculating the probability of "A" or 796

"B". For llama2-chat, a further "Answer:" is appended to the prompt so the model knows where the input 797

ends and the generated answer ends. 798

C LLM performance on extended tasks 799

Tables 3 and 4 show the LLM performance on further multiple choice and comparative assessment tasks, 800

while also presenting the positional bias observed for the systems and debiasing approaches. Similar 801

trends to those in the main paper are observed over a wider range of tasks. 802

D Detailed Student Performance 803

Table 5 shows the standard deviations observed in the accuracies for the various student models. We 804

further run experiments on BERT (Devlin et al., 2019) and BERT-tiny (Jiao et al., 2020) to investigate the 805

ability of weaker students. As expected, the BERT students were observed to be much weaker than their 806

more modern counterparts (RoBERTa and DeBERTa) of equivalent size. 807

SummEval TopicalChat

COH CON FLU REL COH CNT ENG NAT
acc pb ps acc pb ps acc pb ps acc pb ps acc pb ps acc pb ps acc pb ps acc pb ps

FlanT5-3B
baseline 69.2 0.16 0.20 81.1 0.06 0.12 62.5 0.12 0.17 64.5 0.10 0.17 75.8 0.04 0.11 70.7 0.08 0.13 65.9 0.01 0.11 70.1 0.02 0.11
prior-matching 70.5 0.03 0.15 80.5 0.03 0.11 64.3 0.03 0.13 64.1 0.02 0.15 75.7 0.02 0.11 71.8 0.00 0.11 65.5 0.02 0.11 69.5 0.06 0.12
ctx prior-matching 70.9 0.00 0.12 80.8 0.01 0.11 64.4 0.01 0.12 64.5 0.01 0.12 75.4 0.01 0.09 71.6 0.00 0.09 66.1 0.00 0.09 69.4 0.00 0.10
perm-debias 71.7 0.00 0.00 82.0 0.00 0.00 65.7 0.00 0.00 65.4 0.00 0.00 76.2 0.00 0.00 72.6 0.00 0.00 66.6 0.00 0.00 70.9 0.00 0.00

FlanT5-11B
baseline 61.6 0.42 0.42 70.5 0.37 0.38 55.6 0.44 0.44 62.8 0.39 0.39 69.2 0.29 0.29 62.4 0.35 0.35 66.3 0.29 0.29 68.1 0.30 0.30
prior-matching 67.3 0.02 0.16 77.8 0.00 0.14 58.9 0.03 0.16 65.3 0.05 0.16 74.9 0.14 0.17 75.3 0.04 0.13 73.5 0.06 0.13 73.5 0.14 0.17
ctx prior-matching 67.8 0.00 0.13 77.7 0.02 0.12 59.2 0.02 0.12 65.6 0.00 0.13 77.1 0.00 0.09 75.5 0.00 0.10 73.6 0.00 0.10 74.6 0.00 0.10
perm-debias 68.9 0.00 0.00 79.7 0.00 0.00 61.4 0.00 0.00 67.0 0.00 0.00 77.9 0.00 0.00 79.6 0.00 0.00 75.0 0.00 0.00 75.8 0.00 0.00

Llama-7B
baseline 62.8 0.09 0.30 64.1 0.45 0.49 58.0 0.33 0.42 58.3 0.53 0.56 63.3 0.12 0.31 60.7 0.44 0.45 60.9 0.51 0.52 60.3 0.27 0.34
prior-matching 62.5 0.07 0.29 62.8 0.13 0.29 59.6 0.10 0.30 62.0 0.01 0.27 63.3 0.12 0.31 63.0 0.04 0.27 64.5 0.05 0.30 62.0 0.07 0.31
ctx prior-matching 63.7 0.00 0.19 64.2 0.01 0.17 59.9 0.03 0.20 63.4 0.00 0.18 63.2 0.02 0.19 65.1 0.01 0.18 66.3 0.00 0.19 61.4 0.02 0.22
perm-debias 64.8 0.00 0.00 66.2 0.00 0.00 59.7 0.00 0.00 65.7 0.00 0.00 63.5 0.00 0.00 65.5 0.00 0.00 67.0 0.00 0.00 63.3 0.00 0.00

Llama-13B
baseline 62.3 0.36 0.38 71.8 0.18 0.23 58.9 0.56 0.56 63.8 0.38 0.40 63.4 0.29 0.33 64.5 0.37 0.40 70.9 0.28 0.31 60.1 0.35 0.39
prior-matching 65.8 0.06 0.23 72.9 0.01 0.17 61.6 0.03 0.24 65.5 0.11 0.24 64.9 0.04 0.20 67.9 0.04 0.24 73.4 0.04 0.20 64.3 0.03 0.22
ctx prior-matching 66.7 0.00 0.16 72.1 0.02 0.14 62.4 0.01 0.18 65.7 0.01 0.17 65.4 0.02 0.14 68.9 0.01 0.16 73.3 0.00 0.13 64.9 0.01 0.16
perm-debias 68.6 0.00 0.00 73.1 0.00 0.00 63.5 0.00 0.00 66.3 0.00 0.00 67.5 0.00 0.00 70.0 0.00 0.00 74.4 0.00 0.00 65.8 0.00 0.00

Table 3: Accuracy (acc), permutation bias (pb) and permutation sensitivity for various LLMs when prompted
for Comparative Assessment.
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RACE++ COSMOS ReClor ARC-EASY ARC-CHAL
acc pb ps acc pb ps acc pb ps acc pb ps acc pb ps

FlanT5-3B
baseline (biased) 86.7 0.01 0.09 85.7 0.02 0.12 54.8 0.03 0.25 85.3 0.05 0.16 73.6 0.06 0.22
prior-matching 86.5 0.05 0.12 85.6 0.01 0.12 54.0 0.03 0.25 85.9 0.03 0.15 73.0 0.03 0.21
ctx prior-matching 86.7 0.00 0.07 86.0 0.00 0.09 55.4 0.00 0.17 87.0 0.00 0.09 73.9 0.00 0.14
perm-debias 87.3 0.00 0.00 86.1 0.00 0.00 54.2 0.00 0.00 86.8 0.00 0.00 74.1 0.00 0.00

FlanT5-11B
baseline (biased) 88.8 0.03 0.10 85.8 0.05 0.14 57.0 0.10 0.30 89.5 0.05 0.14 76.7 0.06 0.21
prior-matching 88.3 0.05 0.11 86.0 0.02 0.12 57.8 0.03 0.28 89.3 0.03 0.13 76.8 0.03 0.20
ctx prior-matching 88.8 0.00 0.06 86.5 0.00 0.09 58.8 0.00 0.19 90.2 0.00 0.08 77.9 0.00 0.13
perm-debias 88.9 0.00 0.00 87.4 0.00 0.00 59.6 0.00 0.00 90.2 0.00 0.00 77.9 0.00 0.00

Llama-7B
baseline (biased) 58.1 0.32 0.72 52.2 0.30 0.73 38.8 0.61 0.99 76.2 0.15 0.45 58.5 0.24 0.67
prior-matching 59.9 0.02 0.59 54.1 0.03 0.65 40.8 0.02 0.72 76.1 0.04 0.41 58.5 0.05 0.63
ctx prior-matching 64.6 0.00 0.33 56.8 0.00 0.46 44.4 0.00 0.44 80.6 0.00 0.26 62.3 0.00 0.40
perm-debias 66.0 0.00 0.00 60.8 0.00 0.00 48.6 0.00 0.00 83.7 0.00 0.00 64.3 0.00 0.00

Llama-13B
baseline (biased) 71.3 0.19 0.43 63.4 0.19 0.54 49.6 0.31 0.65 82.7 0.07 0.29 68.8 0.14 0.47
prior-matching 71.8 0.05 0.39 65.1 0.01 0.48 50.2 0.06 0.59 83.1 0.02 0.28 69.0 0.05 0.46
ctx prior-matching 73.3 0.00 0.25 65.8 0.00 0.38 50.0 0.00 0.40 86.3 0.00 0.19 70.3 0.00 0.31
perm-debias 74.6 0.00 0.00 70.2 0.00 0.00 53.2 0.00 0.00 87.9 0.00 0.00 70.6 0.00 0.00

Table 4: Accuracy (acc), permutation bias (pb) and permutation sensitivity for various LLMs when prompted
for Multiple Choice Question Answering.

.

SummEval

RACE++ COH CON FLU REL

Teachers
debiased white-box 68.3 68.9 79.7 61.4 67.0
biased white-box 61.2 61.6 70.5 55.6 62.8
expected biased black-box 58.4 58.5 65.5 54.3 58.8

Distillation
BERT-tiny (4.4M) 26.4±0.4 50.9±1.0 51.6±1.8 50.0±0.5 50.6±0.9
BERT-base (110M) 45.6±0.2 57.7±0.7 69.5±0.6 60.9±1.2 56.8±0.4
RoBERTa-base (110M) 26.7±0.3 61.5±5.3 70.5±1.2 61.2±1.8 60.9±0.7
DeBERTa-base (110M) 26.9±0.0 62.6±5.7 67.1±7.7 62.1±5.5 63.0±0.4
RoBERTa-large (330M) 26.9±0.0 64.8±1.2 67.6±7.7 62.7±2.9 62.1±0.5
DeBERTa-large (330M) 47.9±21.0 65.1±0.6 71.5±0.7 64.9±0.6 63.2±0.5

Error Correction
BERT-tiny (4.4M) 57.7±0.6 53.9±2.0 57.5±5.1 51.6±1.6 53.0±2.4
BERT-base (110M) 58.7±0.0 57.4±0.4 70.7±0.7 61.9±1.2 58.7±0.8
RoBERTa-base (110M) 61.4±0.1 66.4±0.4 71.7±0.5 61.6±0.6 61.9±0.4
DeBERTa-base (110M) 64.1±0.1 66.0±0.5 71.1±1.3 64.1±1.0 62.1±1.5
RoBERTa-large (330M) 68.0±0.5 66.7±0.7 72.0±1.2 63.3±0.6 63.6±0.5
DeBERTa-large (330M) 68.1±0.9 66.1±0.8 70.9±1.6 64.8±0.5 63.3±0.6

Table 5: Results extending the accuracies presented in Table 2, providing standard deviations and extended to
BERT and BERT-tiny.
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