
Published as a conference paper at ICLR 2017

LEARNING TO REMEMBER RARE EVENTS

Łukasz Kaiser∗
Google Brain
lukaszkaiser@google.com

Ofir Nachum∗†
Google Brain
ofirnachum@google.com

Aurko Roy‡
Georgia Tech
aurko@gatech.edu

Samy Bengio
Google Brain
bengio@google.com

ABSTRACT

Despite recent advances, memory-augmented deep neural networks are still lim-
ited when it comes to life-long and one-shot learning, especially in remembering
rare events. We present a large-scale life-long memory module for use in deep
learning. The module exploits fast nearest-neighbor algorithms for efficiency and
thus scales to large memory sizes. Except for the nearest-neighbor query, the
module is fully differentiable and trained end-to-end with no extra supervision. It
operates in a life-long manner, i.e., without the need to reset it during training.
Our memory module can be easily added to any part of a supervised neural net-
work. To show its versatility we add it to a number of networks, from simple
convolutional ones tested on image classification to deep sequence-to-sequence
and recurrent-convolutional models. In all cases, the enhanced network gains the
ability to remember and do life-long one-shot learning. Our module remembers
training examples shown many thousands of steps in the past and it can success-
fully generalize from them. We set new state-of-the-art for one-shot learning on
the Omniglot dataset and demonstrate, for the first time, life-long one-shot learn-
ing in recurrent neural networks on a large-scale machine translation task.

1 INTRODUCTION

Machine learning systems have been successful in many domains, from computer vision
(Krizhevsky et al., 2012) to speech recognition (Hinton et al., 2012) and machine translation
(Sutskever et al., 2014; Bahdanau et al., 2014; Cho et al., 2014). Neural machine translation (NMT)
is so successful that for some language pairs it approaches, on average, the quality of human trans-
lators (Wu et al., 2016). The words on average are crucial though. When a sentence resembles one
from the abundant training data, the translation will be accurate. However, when encountering a
rare word such as Dostoevsky (in German, Dostojewski), many models will fail. The correct Ger-
man translation of Dostoevsky does not appear enough times in the training data for the model to
sufficiently learn its translation.

While more example sentences concerning the famous Russian author might eventually be added to
the training data, there are many other rare words or rare events of other kinds. This illustrates a
general problem with current deep learning models: it is necessary to extend the training data and
re-train them to handle such rare or new events. Humans, on the other hand, learn in a life-long
fashion, often from single examples.

We present a life-long memory module that enables one-shot learning in a variety of neural networks.
Our memory module consists of key-value pairs. Keys are activations of a chosen layer of a neural
network, and values are the ground-truth targets for the given example. This way, as the network
is trained, its memory increases and becomes more useful. Eventually it can give predictions that

∗First two authors contributed equally.
†Work done as a member of the Google Brain Residency program (g.co/brainresidency).
‡Work done during internship at Google Brain.

1

g.co/brainresidency

Published as a conference paper at ICLR 2017

leverage on knowledge from past data with similar activations. Given a new example, the network
writes it to memory and is able to use it afterwards, even if the example was presented just once.

There are many advantages of having a long-term memory. One-shot learning is a desirable property
in its own right, and some tasks, as we will show below, are simply not solvable without it. Even
real-world tasks where we have large training sets, such as translation, can benefit from long-term
memory. Finally, since the memory can be traced back to training examples, it might help explain
the decisions that the model is making and thus improve understandability of the model.

It is not immediately clear how to measure the performance of a life-long one-shot learning model,
since most deep learning evaluations focus on the average performance and do not have a one-shot
component. We therefore evaluate in a few ways, to show that our memory module indeed works:

(1) We evaluate on the well-known one-shot learning task Omniglot, which is the only dataset with
explicit one-shot learning evaluation. This dataset is small and does not benefit from life-long
learning capability of our module, but we still exceed the best previous results and set new
state-of-the-art.

(2) We devise a synthetic task that requires life-long one-shot learning. On this task, standard
models fare poorly while our model can solve it well, demonstrating its strengths.

(3) Finally, we train an English-German translation model that has our life-long one-shot learning
module. It retains very good performance on average and is also capable of one-shot learning.
On the qualitative side, we find that it can translate rarely-occurring words like Dostoevsky.
On the quantitative side, we see that the BLEU score for the generated translations can be
significantly increased by showing it related translations before evaluating.

2 MEMORY MODULE

Our memory consists of a matrix K of memory keys, a vector V of memory values, and an addi-
tional vector A that tracks the age of items stored in memory. Keys can be arbitrary vectors of size
key-size, and we assume that the memory values are single integers representing a class or token
ID. We define a memory of size memory-size as a triple:

M = (Kmemory-size×key-size, Vmemory-size, Amemory-size).

A memory query is a vector of size key-size which we assume to be normalized, i.e., ‖q‖ = 1.
Given a query q, we define the nearest neighbor of q inM as any of the keys that maximize the dot
product with q:

NN(q,M) = argmaxi q ·K[i].

Since the keys are normalized, the above notion corresponds to the nearest neighbor with respect
to cosine similarity. We will also use the natural extension of it to k nearest neighbors, which we
denote NNk(q,M). In our experiments we always used the set of k = 256 nearest neighbors.

When given a query q, the memoryM = (K,V,A) will compute k nearest neighbors (sorted by
decreasing cosine similarity):

(n1, . . . , nk) = NNk(q,M)

and return, as the main result, the value V [n1]. Additionally, we will compute the cosine similarities
di = q ·K[ni] and return softmax(d1 · t, . . . , dk · t). The parameter t denotes the inverse of softmax
temperature and we set it to t = 40 in our experiments. In models where the memory output is again
embedded into a dense vector, we multiply the embedded output by the corresponding softmax
component so as to provide a signal about confidence of the memory.

The forward computation of the memory module is thus very simple, the only interesting part being
how to compute nearest neighbors efficiently, which we discuss below. But we must also answer the
question how the memory is trained.

Memory Loss. Assume now that in addition to a query q we are also given the correct desired
(supervised) value v. In the case of classification, this v would be the class label. In a sequence-
to-sequence task, v would be the desired output token of the current time step. After computing
the k nearest neighbors (n1, . . . , nk) as above, let p be the smallest index such that V [np] = v and

2

Published as a conference paper at ICLR 2017

K

q

k1

n1

kb

nb

V

V [n1] V [nb] 6= v

Case 1: V [n1] = v; Loss = [q · kb − q · k1 + α]+

Update: K[n1]← q+k1
‖q+k1‖

A[n1]← 0

K

q

k1

n1

kp

np

V

V [n1] V [np] = v

Case 2: V [n1] 6= v; Loss = [q · k1 − q · kp + α]+

Update: K[n′]← q V [n′]← v A[n′]← 0

Figure 1: The operation of the memory module on a query q with correct value v; see text for details.

b the smallest index such that V [nb] 6= v. We call np the positive neighbor and nb the negative
neighbor. When no positive neighbor is among the top-k, we pick any vector from memory with
value v instead of K[np]. We define the memory loss as:

loss(q, v,M) = [q ·K[nb]− q ·K[np] + α]+ .

Recall that both q and the keys in memory are normalized, so the products in the above loss term
correspond to cosine similarities between q, the positive key, and the negative key. Since cosine
similarity is maximal for equal terms, we want to maximize the similarity to the positive key and
minimize the similarity to the negative one. But once they are far enough apart (by the margin α,
0.1 in all our experiments), we do not propagate any loss. This definition and reasoning behind it are
almost identical to the one in Schroff et al. (2015) and similar to many other distance metric learning
works (Weinberger & Saul, 2009; Weston et al., 2011).

Memory Update. In addition to computing the loss, we will also update the memoryM to account
for the fact that the newly presented query q corresponds to v. The update is done in a different way
depending on whether the main value returned by the memory module already is the correct value v
or not. As before, let n1 = NN(q,M) be the nearest neighbor to q.

If the memory already returns the correct value, i.e., if V [n1] = v, then we only update the key for
n1 by taking the average of the current key and q and normalizing it:

K[n1]←
q +K[n1]

‖q +K[n1]‖
.

When doing this, we also re-set the age: A[n1]← 0.

Otherwise, when V [n1] 6= v, we find a new place in the memory and write the pair (q, v) there.
Which place should we choose? We find memory items with maximum age, and write to one of
those (randomly chosen). More formally, we pick n′ = argmaxiA[i] + ri where |ri| � |M| is
a random number that introduces some randomness in the choice so as to avoid race conditions in
asynchronous multi-replica training. We then set:

K[n′]← q, V [n′]← v, A[n′]← 0.

With every memory update we also increment the age of all non-updated indices by 1. The full
operation of the memory module is depicted in Figure 1.

Efficient nearest neighbor computation. The most expensive operation in our memory module
is the computation of k nearest neighbors. This can be done exactly or in an approximate way.

In the exact mode, to calculate the nearest neighbors in K to a mini-batch of queries Q =
(q1, . . . , qb), we perform a single matrix multiplication: Q×KT . This multiplies the batch-size

3

Published as a conference paper at ICLR 2017

LSTM LSTM...

Encoder Output

x1 xn

LSTM LSTM...

<GO> ym

Memory

^ ym+1

LSTM LSTM...
LSTM LSTM...

Attention

Key Value

y1

y1 <END>

^

... ...

... ...

Figure 2: The GNMT model with added memory module. On each decoding step t, the result of
the attention at is used to query the memory. The resulting value is combined with the output of the
final LSTM layer to produce the predicted logits ŷt. See text for further details.

× key-size matrix Q by the key-size × memory-size matrix KT , and the result is the
batch-size × memory-size matrix of all distances, from which we can choose the top-k.
This procedure is linear in memory-size, so it can be expensive for very large memory sizes. But
matrix multiplication is very heavily optimized, so in our experiments on GPUs we find that this
operation is not a bottleneck for memory sizes up to half a million.

If the exact mode is too slow, the k nearest neighbors can be computed approximately using locality
sensitive hashing (LSH). LSH is a hashing scheme so that near neighbors get similar hashes (Indyk
& Motwani, 1998; Andoni & Indyk, 2006). For cosine similarity, the computation of an LSH is
very simple. We pick a number of random normalized hash vectors h1, . . . , hl. The hash of a query
q is a sequence of l bits, b1, . . . , bl, such that bi = 1 if, and only if, q · hi > 0. It turns out that
near neighbors will, with high probability, have a large number of identical bits in their hash. To
compute the nearest neighbors it is therefore sufficient to only look into parts of the memory with
similar hashes. This makes the nearest neighbor computation work in approximately constant time
– we only need to multiply the query by the hash vectors, and then only use the nearest buckets.

2.1 USING THE MEMORY MODULE

The memory module presented above can be added to any classification network. There are two
main choices: which layer to use to generate queries, and how to use the output of the module.

In the simplest case, we use the final layer of a network as query and the output of the module is
directly used for classification. This simplest case is similar to matching networks (Oriol Vinyals,
2016b) and our memory module yields good results already in this setting (see below).

Instead of using the output of the module directly, it is possible to embed it again into a dense
representation and mix it with other predictions made by the network. To study this setting, we
add the memory module to sequence-to-sequence recurrent neural networks. As described in detail
below, a query to memory is made in every step of the decoder network. Memory output is embedded
again into a dense representation and combined with inputs from other layers of the network.

Convolutional Network with Memory. To test our memory module in a simple setting, we first
add it to a basic convolutional network network for image classification. Our network consists of
two convolutional layers with ReLU non-linearity, followed by a max-pooling layer, another two
convolutional-ReLU layers, another max-pooling, and two fully connected layers. All convolutions
use 3× 3 filters with 64 channels in the first pair, and 128 in the second. The fully connected layers
have dimension 256 and dropout applied between them. The output of the final layer is used as query
to our memory module and the nearest neighbor returned by the memory is used as the final network
prediction. Even this basic architecture yields good results in one-shot learning, as discussed below.

4

Published as a conference paper at ICLR 2017

i1

...

in

s0

CGRU CGRU

s1

CGRU. . . CGRUd

sn = d0

CGRUd

d1

CGRUd

d2

CGRUd. . .

dn

M M
o1 o2 . . . onp0 p1 p2 pn−1

Figure 3: Extended Neural GPU with memory module. Memory query is read from the position one
below the current output logit, and the embedded memory value is put at the same position of the
output tape p. The network learns to use these values to produce the output in the next step.

Sequence-to-sequence with Memory. For large-scale experiments, we add the memory mod-
ule into a large sequence-to-sequence model. Such sequence-to-sequence recurrent neural networks
(RNNs) with long short-term memory (LSTM) cells (Hochreiter & Schmidhuber, 1997) have proven
especially successful at natural language processing (NLP) tasks, including machine translation
(Sutskever et al., 2014; Bahdanau et al., 2014; Cho et al., 2014). We add the memory module to
the Google Neural Machine Translation (GNMT) model (Wu et al., 2016). This model consists of
an encoder RNN, which creates a representation of the source language sentence, and a decoder
RNN that outputs the target language sentence. We left the encoder RNN unmodified. In the de-
coder RNN, we use the vector retrieved by the attention mechanism as query to the memory module.
In the GNMT model, the attention vector is used in all LSTM layers beyond the second one, so the
computation of the other layers and the memory can happen in parallel. Before the final softmax
layer, we combine the embedded memory output with the output of the final LSTM layer using an
additional linear layer, as depicted in Figure 2.

Extended Neural GPU with Memory. To test versatility of our memory module, we also add it to
the Extended Neural GPU, a convolutional-recurrent model introduced by Kaiser & Bengio (2016).
The Extended Neural GPU is a sequence-to-sequence model too, but its decoder is convolutional
and the size of its state changes depending on the size of the input. Again, we leave the encoder
part of the model intact, and extend the decoder part by a memory query. This time, we use the
position one step ahead to query memory, and we put the embedded result to the output tape, as
shown in Figure 3. Note that in this model the result of the memory will be processed by two
recurrent-convolutional cells before the corresponding output is produced. The fact that this model
still does one-shot learning confirms that the output of our memory module can be used deep inside
a network, not just near the output layer.

3 RELATED WORK

Memory in Neural Networks. Augmenting neural networks with memory has been heavily stud-
ied recently. Many of these approaches design a memory component that is intended as a general-
ization of the memory in standard recurrent neural networks. In recurrent networks, the state passed
from one time step to the next can be interpreted as the network’s memory representation of the
current example. Moving away from this fixed-length vector representation of memory to a larger
and more versatile form is at the core of these methods.

Augmenting recurrent neural networks with attention (Bahdanau et al., 2014) can be interpreted as
creating a large memory component that allows content-based addressing. More generally, Graves
et al. (2014) augmented a recurrent neural network with a computing-inspired memory component
that can be addressed via both content- and address-based queries. Sukhbaatar et al. (2015) present
a similar augmentation and show the importance of allowing multiple reads and writes to memory
between inputs. These approaches excel at tasks where it is necessary to store large parts of a se-

5

Published as a conference paper at ICLR 2017

quential input in a representation that can later be precisely queried. Such tasks include algorithmic
sequence manipulation tasks, natural language modelling, and question-answering tasks.

The success of these approaches hinges on making the memory component fully differentiable and
backpropagating signal through every access of memory. In this setting, computational requirements
necessitate that the memory be small. Some attempts have been made at making hard access queries
to memory (Zaremba & Sutskever, 2015; Xu et al., 2015), but it was usually challenging to match
the soft version. Recently, more successful training for hard queries was reported (Gülçehre et al.,
2016) that makes use of a curriculum strategy that mixes soft and hard queries at training time. Our
approach applies hard access as well, but we encourage the model to make good queries via a special
memory loss.

Modifications to allow for large-scale memory in neural networks have been proposed. The original
implementation of memory networks (Weston et al., 2014) and later work on scaling it (Bordes
et al., 2015; Chandar et al., 2016) used memory with size in the millions. The cost of doing so is
that the memory must be fixed prior to training. Moreover, since during the beginning of training the
model is unlikely to query the memory correctly, strong supervision is used to encourage the model
to query memory locations that are useful. These hints are either given as additional supervising
information by the task or determined heuristically as in Hill et al. (2015).

All the work discussed so far has either used a memory that is fixed before training or used a memory
that is not persistent between different examples. For one-shot and lifelong learning, a memory must
necessarily be both volatile during training and persistent between examples. To bridge this gap,
Santoro et al. (2016) propose to partition training into distinct episodes consisting of a sequence
of labelled examples {(xi, yi)}ni=1. A network augmented with a fully-differentiable memory is
trained to predict yi given the previous sequence (x1, y1, . . . , xi−1). This way, the model learns to
store important examples with their corresponding labels in memory and later re-use this information
to correctly classify new examples. This model successfully exhibits one-shot learning on Omniglot.

However, this approach again requires fully-differentiable memory access and thus limits the size of
the memory as well as the length of an episode. This restriction has recently been alleviated by Rae
et al. (2016). Their model can utilize large memories, but unlike our work does not have an explicit
cost to guide the formation of memory keys.

For classification tasks like Omniglot, it is easy to construct short episodes so that they include a few
examples from each of several classes. However, this becomes harder as the output becomes richer.
For example, in the difficult sequence-to-sequence tasks which we consider, it is hard to determine
which examples would be helpful for correctly predicting others a priori, and so constructing short
episodes each containing examples that are similar and act as hints to each other is intractable.

One-shot Learning. While the recent work of Santoro et al. (2016) succeeded in bridging the
gap between memory-based models and one-shot learning, the field of one-shot learning has seen a
variety of different approaches over time.

Early work utilized Bayesian methods to model data generatively (Fei-Fei et al., 2006; Lake et al.,
2011). The paper that introduced the Omniglot dataset (Lake et al., 2011) approached the task with a
generative model for strokes. This way, given a single character image, the probability of a different
image being of the same character may be approximated via standard techniques. One early neural
network approach to one-shot learning was given by Siamese networks (Koch, 2015). When our
approach is applied to the Omniglot image classification dataset, the resulting training algorithm is
actually similar to that of Siamese networks. The only difference is in the loss function: Siamese
networks utilize a cross-entropy loss whereas our method uses a margin triplet loss.

A more sophisticated neural network approach is given by Vinyals et al. (2016). The strengths of
this approach are (1) the model architecture utilizes recent advances in attention-augmented neural
networks for set-to-set learning (Oriol Vinyals, 2016a), and (2) the training algorithm is designed to
exactly match the testing phase (given k distinct images and an additional image, the model must
predict which of the k images is of the same class as the additional image). This approach may also
be considered as a generalization of previous work on metric learning.

6

Published as a conference paper at ICLR 2017

Table 1: Results on the Omniglot dataset. Although our model uses only a simple convolutional
neural network, the addition of our memory module allows it to approach much more complex
models on 1-shot and multi-shot learning tasks.

Model 5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot
Pixels Nearest Neighbor 41.7% 63.2% 26.7% 42.6%
MANN (no convolutions) 82.8% 94.9% – –
Convolutional Siamese Net 96.7% 98.4% 88.0% 96.5%
Matching Network 98.1% 98.9% 93.8% 98.5%
ConvNet with Memory Module 98.4% 99.6% 95.0% 98.6%

4 EXPERIMENTS

We perform experiments using all three architectures described above. We experiment both on real-
world data and on synthetic tasks that give us some insight into the performance and limitations of
the memory module. In all our experiments we use the Adam optimizer (Kingma & Ba, 2014) and
the parameters for the memory module remain unchanged (k = 256, α = 0.1). Good performance
with a single set of parameters shows the versatility of our memory module. The source code for the
memory module, together with our settings for Omniglot, is available on github1.

Omniglot. The Omniglot dataset (Lake et al., 2011) consists of 1623 characters from 50 different
alphabets, each hand-drawn by 20 different people. The large number of classes (characters) with
relatively few data per class (20), makes this an ideal data set for testing one-shot classification. In
the N -way Omniglot task setup we pick N unseen character classes, independent of alphabet. We
provide the model with one drawing of each character and measure its accuracy theK-th time it sees
the character class. Our setup is identical to Oriol Vinyals (2016b), so we also augmented the data
set with random rotations by multiples of 90 degrees and use 1200 characters for training, and the
remaining character classes for evaluation. We present the results from Oriol Vinyals (2016b) and
ours in Table 1. Even with a simpler network without batch normalization, we get similar results.

Synthetic task. To better understand the memory module operation and to test what it can remem-
ber, we devise a synthetic task and train the Extended Neural GPU with and without memory (we
use a small Extended Neural GPU with 32 channels and memory of size half a million).

To create training and test data for our synthetic task, we use symbols from the set S =
{2, . . . , 16000} and first fix a random function f : S → S. The function f is chosen at random, but
fixed and the same for all training and testing examples (we used 40K training examples).

In our synthetic task, the input is a sequence consisting of As and Bs with one continuous substring
of 7 digits from the set 0, 1, 2, 3. The substring is interpreted as a number written in base-4, e.g.,
1982 = 1323324, so the string 132332 would be interpreted as 1982. The corresponding output
is created by copying all As and Bs, but mapping the number through the random function f . For
instance, assuming f(1982) = 3726, the output corresponding to 132332 would be 322032 as
3726 = 3220324. Here is an example of an input-output pair:

Input A 0 1 3 2 3 3 2 B A B A B
Output A 0 3 2 2 0 3 2 B A B A B

This task clearly requires memory to store the fixed random function. Since there are 16K elements
to learn, it is hard to memorize, and each single instance occurs quite rarely. The raw Extended
Neural GPU (or any other sequence-to-sequence model) are limited by their size. With long training,
the small model can memorize some of the sequences, but it is only a small fraction.

Additionally, there is no direct indication in the data what part of the input should trigger the pro-
duction of each output symbol. For example, to produce the first 3 output in the above example, the

1 https://github.com/tensorflow/models/tree/master/learning_to_remember_
rare_events

7

https://github.com/tensorflow/models/tree/master/learning_to_remember_rare_events
https://github.com/tensorflow/models/tree/master/learning_to_remember_rare_events

Published as a conference paper at ICLR 2017

Table 2: Results on the synthetic task. We report the percentage of fully correct sequences from the
test set, which contains 10000 random examples. See text for details.

Model Accuracy
Hamming Nearest Neighbor 0.1%
Baseline Sequence-to-Sequence with Attention 0.9%
Baseline Extended Neural GPU 12.2%
Sequence-to-Sequence with Attention and Memory 35.2%
Extended Neural GPU with Memory Module 71.3%

Table 3: Results on the WMT En-De task. As described in the text, we split the test set in two
(odd lines and even lines) to evaluate the model on one-shot learning. Given the even test set, the
model can perform better on the odd test set. We also see a dramatic improvement when the model
is provided with the whole test set, validating that the memory module is working as intended.

Model Full Test Odd Test
GNMT 23.25 23.17
GNMT with Memory Module 23.29 23.16
GNMT with Memory Module and Even Test context – 23.60
GNMT with Memory Module and Whole Test context 31.11∗ –

memory key needs to encode all base-4 symbols from the input. Not just one or two aligned sym-
bols, but a number of them. Moreover, it should not encode more symbols or it will not generalize
to the test set. Similarly, a basic nearest neighbor classifier fails on this task. We use sequences of
length up to 40 during training, but there are only 7 relevant symbols. The simple nearest neighbor
by Hamming distance will most probably select some sequence with similar prefix or suffix of As
and Bs, and not the one with the corresponding base-4 part. We also trained a large sequence-to-
sequence model with attention on this task (a 2-layer LSTM model with 256 units in each layer).
This model can memorize the whole training set, but it suffers from a similar problem as the Ham-
ming nearest neighbor – it almost doesn’t generalize, its accuracy on the test set is only about 1%.
The same model with a memory module generalizes much better, reaching over 30% accuracy. The
Extended Neural GPU with our memory module yields even better results, see Table 2.

Translation. To evaluate the memory module in a large-scale setting we use the GNMT
model (Wu et al., 2016) extended with our memory module on the WMT14 English-to-German
translation task. We evaluate the model both qualitatively and quantitatively.

On the qualitative side, we note that our memory-augmented model can successfully translate rare
words like Dostoevsky, unlike the baseline model which predicts an identity-mapped Dostoevsky for
the German translation of Dostoevsky.

On the quantitative side, we use the WMT test set. We find that in terms of BLEU score, an aggregate
measure, the memory-augmented GNMT is on par with the baseline GNMT, see Table 3.

To evaluate our memory-augmented model for one-shot capabilities we split the test set in two. We
take the even lines of the test set (index starting at 0) as a context set and the odd lines of the test set
as the one-shot evaluation set. While showing the context set to the model, no additional training
occurs, only memory updates are allowed. So the weights of the model do not change, but the
memory does. Since the sentences in the test set are highly-correlated to each other (they come from
paragraphs with preserved order), we expect that if we allow a one-shot capable model to use the
context set to update its memory and then evaluate it on the other half of the test set, its accuracy
will increase. For our GNMT with memory model, we passed the context set through the memory
update operations 3 times. As seen in Table 3, the context set indeed helps when evaluating on the
odd lines, increasing the BLEU score by almost 0.5. As further indication that our memory module
works properly, we also evaluate the model after showing the whole test set as a context set. Note
that this is essentially an oracle: the memory module gets to see all the correct answers, we do this
only to test and debug. As expected, this increases BLEU score dramatically, by over 8 points.

8

Published as a conference paper at ICLR 2017

5 DISCUSSION

We presented a long-term memory module that can be used for life-long learning. It is versatile, so it
can be added to different deep learning models and at different layers to give the networks one-shot
learning capability. Several parts of the presented memory module could be tuned and studied in
more detail. The update rule that averages the query with the correct key could be parametrized.
Instead of returning only the single nearest neighbor we could also return a number of them to be
processed by other layers of the network. We leave these questions for future research.

The main issue we encountered, though, is that evaluating one-shot learning is difficult, as standard
metrics do not focus on this scenario. In this work, we adapted the standard metrics to investigate
our approach. For example, in the translation task we used half of the test set as context for the other
half, and we still report the standard BLEU score. This allows us to show that our module works,
but it is only a temporary solution. Better metrics are needed to accelerate progress of one-shot and
life-long learning. Thus, we consider the present work as just a first step on the way to making deep
models learn to remember rare events through their lifetime.

REFERENCES

A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pp. 459–468, Oct 2006. doi: 10.1109/FOCS.2006.49.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/
abs/1409.0473.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple question
answering with memory networks. CoRR, abs/1506.02075, 2015. URL http://arxiv.org/
abs/1506.02075.

Sarath Chandar, Sungjin Ahn, Hugo Larochelle, Pascal Vincent, Gerald Tesauro, and Yoshua Ben-
gio. Hierarchical memory networks. arXiv preprint arXiv:1605.07427, 2016.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.
1078.

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE Trans.
Pattern Anal. Mach. Intell., 28(4):594–611, April 2006. ISSN 0162-8828. doi: 10.1109/TPAMI.
2006.79. URL http://dx.doi.org/10.1109/TPAMI.2006.79.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401,
2014. URL http://arxiv.org/abs/1410.5401.

Çaglar Gülçehre, Sarath Chandar, Kyunghyun Cho, and Yoshua Bengio. Dynamic neural turing
machine with soft and hard addressing schemes. CoRR, abs/1607.00036, 2016.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The goldilocks principle: Reading
children’s books with explicit memory representations. CoRR, abs/1511.02301, 2015.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdelrahman Mohamed, Navdeep Jaitly, An-
drew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613. ACM, 1998.

9

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1109/TPAMI.2006.79
http://arxiv.org/abs/1410.5401

Published as a conference paper at ICLR 2017

Łukasz Kaiser and Samy Bengio. Can active memory replace attention? In Advances in Neural
Information Processing Systems, (NIPS), 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Gregory Koch. Siamese neural networks for one-shot image recognition. PhD thesis, University of
Toronto, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with deep convolu-
tional neural network. In Advances in Neural Information Processing Systems, 2012.

Brenden M Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B Tenenbaum. One shot learning
of simple visual concepts. 2011.

Manjunath Kudlur Oriol Vinyals, Samy Bengio. Order matters: Sequence to sequence for sets. In
International Conference on Learning Representations (ICLR), 2016a.

Timothy Lillicrap Koray Kavukcuoglu Daan Wierstra Oriol Vinyals, Charles Blundell. Matching
networks for one shot learning. CoRR, abs/1606.04080, 2016b.

Jack W Rae, Jonathan J Hunt, Tim Harley, Ivo Danihelka, Andrew Senior, Greg Wayne, Alex
Graves, and Timothy P Lillicrap. Scaling memory-augmented neural networks with sparse reads
and writes. In Advances in Neural Information Processing Systems, (NIPS), 2016.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy P. Lillicrap. One-
shot learning with memory-augmented neural networks. CoRR, abs/1605.06065, 2016.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR, pp. 815–823, 2015.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. Weakly supervised memory
networks. CoRR, abs/1503.08895, 2015. URL http://arxiv.org/abs/1503.08895.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with neural net-
works. In Advances in Neural Information Processing Systems, pp. 3104–3112, 2014.

Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. CoRR, abs/1606.04080, 2016.

Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest neigh-
bor classification. Journal of Machine Learning Research, 10(Feb):207–244, 2009.

Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large vocabulary image
annotation. In Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI,
2011.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. CoRR, abs/1410.3916, 2014.
URL http://arxiv.org/abs/1410.3916.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation. CoRR,
abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.

Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. In ICML, 2015.

Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines. CoRR,
abs/1505.00521, 2015. URL http://arxiv.org/abs/1505.00521.

10

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1503.08895
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1505.00521

	Introduction
	Memory Module
	Using the Memory Module

	Related Work
	Experiments
	Discussion

