
Workshop track - ICLR 2018

FROM GAMEPLAY TO SYMBOLIC REASONING

Fei Wang, Tiark Rompf
Department of Computer Science
Purdue University
West Lafayette, IN 47906, USA
{wang603,tiark}@purdue.edu

ABSTRACT

Despite the recent successes of deep neural networks in various fields such as im-
age and speech recognition, natural language processing, and reinforcement learn-
ing, we still face big challenges bringing the power of numeric optimization to
symbolic reasoning. Researchers have proposed different avenues such as neural
machine translation for proof synthesis, vectorization of symbols and expressions
for representing symbolic patterns, and coupling of neural back-ends for dimen-
sionality reduction with symbolic front-ends for decision making. However, these
initial explorations are still only point solutions, and bear other shortcomings such
as lack of correctness guarantees. In this paper, we present our approach of casting
symbolic reasoning as games, and directly harnessing the power of deep reinforce-
ment learning in the style of Alpha(Go) Zero on symbolic problems. Using the
Boolean Satisfiability (SAT) problem as showcase, we demonstrate the feasibil-
ity of our method, and the advantages of modularity, efficiency, and correctness
guarantees.

1 INTRODUCTION

Deep neural networks (DNN) have experienced tremendous success in a large range of applications,
including image and speech recognition, natural language processing, and gameplay via reinforce-
ment learning. On the other hand, many discrete automated reasoning applications depend on sym-
bolic manipulation, based on conceptual abstraction, causal relationships and logical composition.
Despite the fast advances in DNN, researchers are only making baby-steps to extend the power of
DNN to symbolic reasoning, in the quest for general AI.

Researchers have proposed different avenues for applying DNN to symbolic reasoning. One simple
avenue is to cast symbolic reasoning as a neural machine translation problem, from propositions
(as sequentialized tokens) to proofs (Sekiyama et al., 2017). Using a SEQ2SEQ model, Sekiyama
et al. were able to generate many correct proofs, but some proof terms were syntactically malformed
or semantically incorrect. Another avenue is to learn how to directly manipulate symbols or apply
symbolic rewriting rules (Cai et al., 2017a;b). This method depends on encoding symbols, rewriting
rules, and parsed symbolic expressions as vectors, which are used to train a deep feed-forward
network for learning the symbolic patterns in the vectorized representations. A third avenue is
to combine a neural back-end with a symbolic front-end (Garnelo et al., 2016), hoping to bring
language-like propositional representations from classical AI to the low level symbol generation
from neural networks. In this method, the neural network is only used to generate features from
noisy data, which leaves further room to exploit neural networks for decision making.

In this paper, we present another avenue – casting symbolic reasoning problems directly as game-
play – that leverages the full decision making power of neural networks through deep reinforcement
learning (Sutton & Barto, 1998). This direction has several appealing properties. First of all, our
gameplay approach is modular, so that we can test different neural network architectures with lit-
tle adaptation, on different symbolic reasoning problems casted as games. Secondly, by following
the possible states and rules in a game, the neural networks cannot make invalid moves or generate
incorrect solutions. Lastly, our method uses neural networks for central decision making, yet still
maintains symbolic explanations of those decisions in the game setting.

1

Workshop track - ICLR 2018

We use the Boolean Satisfiability (SAT) problem as our showcase. SAT is the problem of deciding
whether a given boolean formula can be satisfied by any variable assignment. SAT was the first prob-
lem proven NP-complete, and SAT solvers serve as fundamental reasoning engines in automated the-
orem proving, program verification, and program synthesis, often extended to SAT modulo theories
(SMT). Most SAT solvers build on the Conflict Driven Clause Learning (CDCL) algorithm (Silva
et al. (2009), shown in Figure 1), which is a typical symbolic reasoning process that can be casted as
a game of controling the branching decisions. We present our results using two deep reinforcement
learning algorithms, DeepQ (Mnih et al., 2013) and Alpha(Go) Zero (Silver et al., 2017a;b), and
evaluate the quality of our methodology by comparing with a known high-performance branching
heuristics, VSIGS (variable state independent decaying sum, Moskewicz et al. (2001)).

SAT problem
in CNF format

Heuristic to pick
the next literal
to branch on

Unit propagation

Analyze
Learn clauses
backtrack

ConflictNo conflict

Choosing
branching
literals is

like playing
a game

All vars
assigned
SAT!! No vars

assigned
UNSAT!!

Figure 1: SAT solver algorithm CDCL casted as a game

2 DESIGN, EXPERIMENTS, AND RESULTS

We represent SAT problems in Conjuctive Normal Form (CNF) as sparse adjacency matrices, with
the rows being the clauses, and the columns being the variables. If a clause contains a variable, the
matrix value at the corresponding index is either (1, 0) or (0, 1), depending on the polarity of the
variable. The matrices are then fed into a simple convolutional neural network. We use the same
CNN architecture for DeepQ as in the OpenAI Baselines1, but adapted it slightly for Alpha(Go)
Zero, to mimick the model in the AlphaGo Zero paper (Silver et al., 2017b), while maintaining
the same level of model complexity. We extended the MiniSat2 SAT solver, building on the basic
SAT solving logics based on VSIGS branching heuristics. We engineered the implementation so
that it is able to act like a game environment to play with (a gym, in OpenAI terminology). The
SAT-game will ask for every branching decision and allow simulations for Monte Carlo Tree Search
(MCTS) as needed by the Alpha(Go) Zero algorithm. A simulation returns the would-be state given
a sequence of branching decisions without irreversibly changing the game state. In our experiments,
we used randomly generated 3-SAT problems (91 clauses and 20 variables, half satisfiable and half
unsatisfiable) as benchmarks (see SATLIB3).

The DeepQ algorithm tries to learn a Q value (optimal total reward) given a state and action pair
(s, a). For a tuple (s, a, r, s′) (making action a at state s reaching state s′ with reward r), it tries to
minimize the difference between Q(s, a) and r + γ ∗ maxa′Q(s′, a′), where γ is a normalization
factor and a′ represents any valid action from s′. The Alpha(Go) Zero algorithm tries to learn,
for each state s, the degree of interest (as a probability vector pi) of all valid actions, and the state
quality (v in [−1, 1]). At each state, the algorithm explores interesting actions guided by state quality
in MCTS, which provides a stronger estimation of pi and v by counting how many times each action
is used in simulation, and in the final result of the game.

We present the experimental results in Figure 2, with the x-axis showing different model checkpoints
(model-0 is the random initialization), and the y-axis showing the average number of branching deci-

1https://github.com/openai/baselines
2https://github.com/niklasso/minisat
3http://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html

2

https://github.com/openai/baselines
https://github.com/niklasso/minisat
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

Workshop track - ICLR 2018

sions needed to solve the SAT-game (the lower the better). In our experiment, the DeepQ algorithm
converged on the training set (dark blue line), but failed to generalize to the testing set (red line). On
the other hand, the Alpha(Go) Zero algorithm converged to near optimal performance on the training
set (yellow line), and generalized quite well to the testing set (green line). All converged models
outperformed MiniSat heuristics (purple and light blue). It is also worth noting that the training set
is only 32 SAT problems, while the testing set is 200 SAT problems.

 Model-0 Model-1 Model-2 Model-3 Model-4
0

5

10

15

20

25

Performance of Alpha(Go) Zero, DeepQ and MiniSAT in SAT-game

DeepQ training

DeepQ testing

Alpha(Go) Zero training

Alpha(Go) Zero testing

MiniSAT training

MiniSAT testing

a
ve

ra
g

e
 b

ra
n

ch
in

g
 d

e
ci

si
o

n
s

to
 s

o
lv

e
 S

A
T-

g
a

m
e

Figure 2: The performance of Alpha(Go) Zero, DeepQ and MiniSat in SAT-game

3 DISCUSSION AND FUTURE WORK

In this paper we evaluated our unique approach to casting symbolic reasoning as games, with the goal
of harnessing neural networks for decision making through reinforcement learning. Compared with
other approaches of combining DNN and symbolic reasoning, our approach is modular, efficient,
and guaranteed to be correct. Using SAT problems as our showcase, we compared the DeepQ
and Alpha(Go) Zero algorithms with human-engineered heuristics in MiniSat. We observed that
both reinforcement learning algorithms can converge on the training set, but only Alpha(Go) Zero
generalized to the testing set.

It is interesting to discuss why Alpha(Go) Zero outperformed DeepQ in generalization (which is
important for general AI). Our speculation is that DeeqQ learns a Q score that is very specific to
a (s, a) pair. On the contrary, Alpha(Go) Zero appears to learn a general degree of interest pi and
a relative state quality v. While DeepQ tries to condense the knowledge in one value (Q) for each
state, Alpha(Go) Zero always uses MCTS to explore a tree of local states and leverage knowledge
from many states. Arguably, Alpha(Go) Zero already reasons on an abstract and symbolic level,
by learning pi as the degree of interest, and v as the state quality, which has been described as
“intuition”, similar to how humans reason about games.

One important issue of combining DNN with symbolic reasoning is the difficulty of interfacing
between a symbolic world where most representations are sets, trees, and graphs, and the numerical
world where everything is vectors, matrices, and tensors. Many efforts (including this one) use
sparse vectors as a simple translation. However, progress in natural language processing (NLP)
might offer some alternatives, such as word embeddings (Mikolov et al., 2013; Pennington et al.,
2014) as a non-trivial way of vectorizing words in a condensed and meaningful manner. On the
other hand, progress in more advanced neural network architectures, such as TreeLSTM (Tai et al.,
2015), might facilitate the interfacing as well.

Needless to say, our SAT benchmarks are too small to be practically useful. However, we argue that
our showcase is a proof-of-concept for harnessing numerical optimization for symbolic problems.
Potential future work includes exploring methods to scale up to larger SAT problems, and addressing
other symbolic reasoning problems in this style of gameplay.

3

Workshop track - ICLR 2018

REFERENCES

Chenghao Cai, Dengfeng Ke, Yanyan Xu, and Kaile Su. Symbolic manipulation based on deep
neural networks and its application to axiom discovery. In IJCNN, pp. 2136–2143. IEEE, 2017a.

Chenghao Cai, Dengfeng Ke, Yanyan Xu, and Kaile Su. Learning of human-like algebraic rea-
soning using deep feedforward neural networks. CoRR, abs/1704.07503, 2017b. URL http:
//arxiv.org/abs/1704.07503.

Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. Towards deep symbolic reinforcement
learning. CoRR, abs/1609.05518, 2016. URL http://arxiv.org/abs/1609.05518.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In NIPS, pp. 3111–3119, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In DAC, pp. 530–535. ACM, 2001.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In EMNLP, pp. 1532–1543. ACL, 2014.

Taro Sekiyama, Akifumi Imanishi, and Kohei Suenaga. Towards proof synthesis guided by neural
machine translation for intuitionistic propositional logic. CoRR, abs/1706.06462, 2017. URL
http://arxiv.org/abs/1706.06462.

João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers.
In Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pp. 131–153. IOS Press, 2009.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. CoRR, abs/1712.01815, 2017a.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 2017b.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive com-
putation and machine learning. MIT Press, 1998.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations
from tree-structured long short-term memory networks. In ACL (1), pp. 1556–1566. The Associ-
ation for Computer Linguistics, 2015.

4

http://arxiv.org/abs/1704.07503
http://arxiv.org/abs/1704.07503
http://arxiv.org/abs/1609.05518
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1706.06462

	Introduction
	Design, Experiments, and Results
	Discussion and Future Work

