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ABSTRACT

We propose a “Learning to Select” problem that selects the best among the flexi-
ble size candidates. This makes decisions based not only on the properties of the
candidate, but also on the environment in which they belong to. For example, job
dispatching in the manufacturing factory is a typical “Learning to Select” prob-
lem. We propose Variable-Length CNN which combines the classification power
using hidden features from CNN and the idea of flexible input from Learning to
Rank algorithms. This not only can handles flexible candidates using Dynamic
Computation Graph, but also is computationally efficient because it only builds
a network with the necessary sizes to fit the situation. We applied the algorithm
to the job dispatching problem which uses the dispatching log data obtained from
the virtual fine-tuned factory. Our proposed algorithm shows considerably better
performance than other comparable algorithms.

1 INTRODUCTION AND MOTIVATION

In a very complex manufacturing factory such as semiconductor fab, each equipment should select
the next job among the candidate jobs waiting for the equipment. This kind of selection is usu-
ally called “job dispatching”, and is typically done by heuristic rules. As dispatching rules are not
perfect, next job selection is often overridden by human experts decision. The motivation of this re-
search is to devise a method for learning dispatching rule from the job dispatching log in supervised
learning manner. When seen from supervised learning point of view, job dispatching is different
from typical classification or regression in that job selection is a relative decision. In other words,
job selection is to be made by considering the entire candidate jobs. Attributes (features) of a can-
didate job do not provide enough information for selection. When selecting a job to work on next,
the situation of the factory should be considered as well as the attributes of jobs. And the number of
candidate jobs varies each time. Hence, at each moment of decision, the entire set of candidate jobs
combined with the factory situation form an instance of “selection problem”. We will call this prob-
lem as ”Learning to Select (LtoS)”. This is similar to “Learning to Rank (LtoR)” problem, however,
LtoS is a special case of LtoR in that we are interested in only the ”best” candidate, instead of full
ranking of candidates.
In the next chapter, we define the LtoS problem and distinguish it from existing problems, and then
propose Variable-Length Convolutional Neural Network, a new method to solve LtoS problem. It
is applied to the dispatching problem in the factory and confirmed that it shows much better results
than the existing methods. We conclude with the summary and the future research of this study.

2 PROBLEM DEFINITION

We present the “Learning to Select” problem in this paper. This problem is simply a matter of
choosing the best candidate among the given candidates in a specific situation. In each situation,
the number of candidates can be changed, and therefore, “Learning to Select” differs from other
problems in that it selects the best candidate among the flexible candidates each time.
In this section, we give a general description of LtoS with an example of job dispatching. At each
decision making point, the manufacturing factory status M =

{
m1,m2, ...,mD

}
is observable.

Each superscript denotes the event that the job is selected, so D is size of the whole training data.
For each factory status mk has a list of candidate jobs Jk =

(
jk1 , j

k
2 , ..., j

k
nk

)
, where nk is the size
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of candidate jobs at the event k. At each event, Jk is associated with the selected history S which
can be written as Sk =

(
sk1 , s

k
2 , ..., s

k
nk

)
. Since only one job is selected at each event, single element

of the selected history vector S is 1 and others are all 0. we combine the manufacturing factory
status M and the each candidate J to build a feature vector Xk. We define the feature pair for each
candidate Xk

i = (mk, jki ) for i = 1, ..., nk and the feature vector as Xk = (Xk
1 , X

k
2 , ..., X

k
nk
).

We want to create a selection function f that matches Sk = f(Xk) well. So the training data is{
Xk, Sk

}
k=1,...,D

.
The name “Learning to Select” came from the well-known “Learning to Rank” problem. In the case
of existing LtoR problems, the goal is to find a ranking function that sorts the given data well under
certain conditions. But the problem we have is a little bit different. It is not sorting the given data
well under certain conditions, but to find the data that will rank the highest among the data which is
same as Top-1 ranking problem. Basically this is a special case of the listwise LtoR problem, so the
problem formulation is quite similar to listwise LtoR (Cao et al., 2007). One of difference is that
the existing listwise LtoR use the refined value of the query-document pair with the feature function
before training, while we use the raw data itself to learn the features automatically during learning,
and the another point is the speciality of the training data. The training data for LtoR is generally
labeled query-document pairs, and their labels are indicated by scores ranging from 1 to 5 such as
Best match or Good match. In this case, however, the label appears as Selected or Not Selected, and
only one of the candidates has Selected label.
The LtoS problem can also be regarded as a problem of classification with two or more labels for
given data. However, it is not a general classification problem because it is necessary to classify
each subset data from whole data given by each situation, rather than classifying all possible data
into two labels. Thus, even in the case of completely identical candidates, the label can be 1 in some
situations, and in some other situations the label can be 0. Therefore, this problem seems similar to
the classification problem, but it is slightly different.
Therefore, this study defines a LtoS problem and presents a way to solve this problem much better
than existing methods. This approach combines the deep learning, which is very prominent in the
existing classification problem, and the advantage from LtoR, which is the idea that considers only
the subset of documents corresponding to the query.

3 PROPOSED APPROACH
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Figure 1: Structure of VLCNN

For the problem of classifying data into several classes, neural networks have dominated with high
performance. However, the neural networks are not an adequate answer for every problem. In the
case of this selection problem mentioned above, it seems quite similar to the classification prob-
lem, but it is a completely different problem. Therefore,the neural network for general classification
problem does not solve the selection problem well. For this reason, an algorithm specific to the
LtoS is needed, which can be motivated from LtoR algorithm in which chooses the most appro-
priate among the possible candidates each time. The most common method of LtoR is RankSVM
(Joachims, 2002; Radlinski & Joachims, 2005; Kuo et al., 2014), which learns the relationship be-
tween candidates irrespective of the number of candidates, so learning is possible even if the number

2



Under review as a conference paper at ICLR 2018

of candidates changes every moment. However, it is difficult to handle with a lot of data due to the
nature of SVM, and it is difficult to apply it to complex and data-intensive selection problems,
because the kernel must be tuned to fit complex functions. Thus RankNet, which can learn the re-
lationship between candidates and fitting complicated functions, has been proposed (Burges et al.,
2005; Liu et al., 2009). It is a structure that combines a loss function and a neural network for the
ranking problem. However, RankNet focuses on expressing the relationship between candidates for
ranking, so it cannot cope when the number of candidates changes due to nature of neural network
structure. Therefore, we propose an algorithm that is specific to LtoS problem.
The algorithm proposed in this paper can select the most suitable candidate like the classification
problem, and it is applicable even when the number of candidates changes every moment as in the
LtoR problem. It can also learn complex functions or selection rules using convolutional neural
networks as the main structure. That is, a neural network structure is required which can change
the number of inputs and outputs whenever the number of candidates changes. Similarly, in the
semantic modeling of sentences which the number of inputs can vary, an architecture, Dynamic
Convolutional Neural Network (DCNN), has been proposed to handle input sentences of varying
length (Kalchbrenner et al., 2014). The DCNN induces a feature graph over an input sentence. In
wide convolution and dynamic k-max pooling of DCNN, the subgraphs are computed from the full
induced graph, and it causes a lot of computation waste. Therefore, DCNN is not suitable as a selec-
tion problem because it extracts features from sentences and classifies them by expressing semantic
contents of sentences.
In this way, we apply Dynamic Computation Graph (DCG) (Looks et al., 2017) to use the neural
network structure that can handle candidates with varying numbers to fit the LtoS problem. DCG
makes it possible to apply the neural network to problems of various domains by computing when
the structure and size of the neural network change for every input. In our problem, DCG can change
the input and output structure of the fully used feature graph. This also reduces unnecessary com-
putations. As shown in Figure 1, the proposed structure for solving the selection problem is called
Variable Length CNN (VLCNN) by combining DCG with the above-mentioned convolutional struc-
ture.
In VLCNN, each candidate is computed by sharing the network weight of convolutional neural net-
work, and the most appropriate candidate is selected. The kernel weight sharing of CNN plays a role
of extracting common features from each candidate. In addition, by sharing parameters in fully-
connected layers for features extracted from the each candidate in the convolutional layers, each
candidate combines the common features in the same way to yield a score.The scores of each candi-
date from the fully-connected layer are the probability of being selected through soft-max function.
That is, for each candidate, a score is given using a sub neural network having the same parameters,
and the candidate is selected using the score. In these processes, DCG makes it possible to change
the structure of the full neural network according to the number of candidates in a situation where
the number of candidates changes. For this reason, this neural network becomes a neural network
structure that can select one of the changing candidates. This neural network structure is suitable for
the problem that the rules for selection are complex and the number of candidates changes at every
moment.

4 EXPERIMENT

4.1 DATA DESCRIPTION

We use the job dispatching problem in fab for the experiment. It it not only because it has the
characteristics of LtoS problem well, but also because the value of the application in practice is
quite high. As we mentioned at the beginning, job dispatching means that the equipment selects the
next job among the candidate jobs waiting for the equipment.

Since it is difficult to use actual fab data, we used data from a fine-tuned fab simulator. The
data contains both the factory status and the list of candidate jobs. Also, the properties of each job
candidates are included. The summary of data description in Table 1. The factory status has which
equipment is needs dispatching, what process the equipment is currently processing, and how many
job candidates are waiting for that equipment. Each job candidates also contains some information
such as which process the job is waiting for, how long it is currently waiting, how much time has
passed since it was entered the fab, etc. In general, the heuristic rule uses this properties to make
decision with simple equation. For example, if the waiting time is longer, or if the current process
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Table 1: Data Description: Properties of Factory Status and the Candidate Jobs.

Factory Status Candidate Jobs

Next Process
Dispatching Equipment Waiting Time
Current Process Total Process Time
# of Waiting Jobs Completeness

Location

of the equipment and the next process of the job are matched, the higher score is assigned to each
job, and the job having the highest score is selected. However, these heuristic rules are incomplete
because the manufacturing factory is very complicated, and because of this, many details are too
frequently to be unexpected occurs and it is hard to defined as a rule. Therefore, it often causes the
human expert to override it based on its rich experience. Therefore, the factory has a dispatching
log that records the dispatching information after determined by the human expert overriding. In
order to overcome this inefficient situation, we aim to learn the dispatching rule directly from the
dispatching log which reflects the human expert’s selection information.
An artificial log data from fine-tuned fab simulator contains all information in Table 1. Inside the
simulator, a complex heuristic rule is designed to make a job selection, and when a specific situation
comes, the virtual human expert overrides the decision with another rule than the one previously
defined. We limited the maximum size of job candidates are 100, and the actual number of job
candidates varies depends on fab situation. So size of the training data for each decision event is
(3 + 5× # of candidates + 1)×1 as Figure 2. Selection history log is given as a single number as in
end of Figure 2, but in actual training, we convert this single number to one-hot encoding.
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Figure 2: Structure of Sample Data

The simulator can have a maximum of 100 job candidates considering the actual physical space
constraints, and the number of job candidates will vary depending on the fab situation. In this
experiments, we generates 100K samples to train the network.

4.2 RESULTS

For the data mentioned above in 4.1 Data Description, we apply VLCNN to solve the job
dispatching problem. For comparison, we apply the common neural networks, CNN and Fully-
connected which are often used for existing classification. For fair accuracy analysis of each neural
network structure, we make each neural network as similar as possible. In addition, all neural
network structures are trained in Adam (Kingma & Ba, 2014). We also apply RankSVM, which
is one of powerful LtoR algorithms, to solve the job dispatching problem as a top-1 ranking problem.

VLCNN. In this neural network, a convolutional layer with 128 convolutional kernels that fit the
feature size and a fully connected layer with 256 hidden units are used.Since the input and output
structure of the neural network changes according to the number of changing jobs, it is possible
to select the best job among the candidate jobs. In addition, by sharing the weights in the neural
network, the same dispatching rules are applied to each job candidates to increase the accuracy
of selection.The number of parameters in this structure is a fixed number, and the number of
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parameters does not change even if the number of candidate jobs increases.

CNN. Like the VLCNN, 128 kernels and 256 hidden units are used in the convolutional
layer and the fully connected layer, respectively. Due to weight sharing of CNN, the features of
each job are extracted in the same way. However, in the conventional neural network, since the
computation graph is fixed before data feeding, the candidate job is fixed to the maximum number
of jobs. This not only wastes computational graphs, but also reduces the accuracy of selection
because all jobs in a Fab and padded parts that do not exist actually are computed. In addition, it
looks very similar to the above structure, but the number of parameters of the model increases with
the maximum number of operations.

Fully-connected. It has 128 and 256 hidden units in each of the two fully connected layers.
Like CNN, there is a waste of computational graphs. In addition, because there is no weight
sharing, it is not suitable for the problem of choosing the best job among candidate jobs. In addition,
as with CNN parameters, the parameters of the structure increase with the maximum number of jobs.

RankSVM. It is also applicable to the problem of selecting only the most suitable candidate
with a special algorithm for determining the rank of candidates. However, due to the nature of
SVM, it takes a lot of time to process a lot of data at once, and it is not free from parameter tuning
and feature extraction because it is necessary to select the kernel well in the process of fitting
complex functions including nonlinear functions.

Table 2a presents the results of various algorithmic structures. They use all raw features in
Table 1. The number next to the algorithm(i.e. CNN 128, Fc 1) in the first column of the table
indicates the number of jobs in one mini-batch and Fc means Fully-connected. In Table 2b, we
multiply the features that is the criterion of dispatching rule selection according to the situation
to the raw feature in Table 2a, and the Table 2b presents the result using it as a feature. In both
Table 2a and 2b, VLCNN has a much higher accuracy than other architectures. This is because, as
mentioned before, VLCNN can cope with variable input and output unlike other neural networks.
And also as one of the general advantages of neural network, it can fit complex dispatching rules
well. This experiment considered a case where a virtual human expert is involved in a virtual
factory simulator, but it is quite promising to be applied in actual manufacturing factories because
it achieves a much higher level of accuracy than other methodologies including the rich experience
of human expert perfectly. Since the network used in VLCNN itself is flexible, so it is possible to
express and learn more complex rule by adding sophisticated and outbreaking neural network.
From a computational point of view, unlike other neural networks where the number of parameters
increases with the maximum number of candidates, VLCNN can have a constant number of
parameters by fully sharing its weights. Also with DCG, using the internal computation method
similar to the existing neural network, it is possible to compute quickly using the GPU.

Table 2: Accuracy on Two Feature sets

(a) Raw Feature

Architecture Training Testing

VLCNN 96.34% 95.27%
RankSVM 92.34% 91.33%
CNN 1 99.32% 53.32%
CNN 128 77.88% 50.03%
Fc 1 68.86% 40.76%
Fc 128 42.13% 36.10%

(b) Product Feature

Architecture Training Testing

VLCNN 99.46% 99.37%
RankSVM 94.19% 93.94%
CNN 1 99.43% 57.85%
CNN 128 86.58% 54.13%
Fc 1 77.68% 40.97%
Fc 128 44.05% 35.14%

5 CONCLUSION

In this paper, we newly define “Learning to Select” problem and suggest VLCNN to solve the
problem. It combines the power of classification in neural network with the variability from LtoR
algorithm. For the job selection experiment, it shows better performance than other well-known
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algorithms. It also shows the computational benefit by reducing the candidates before computation.
There are many studies that can be done. It is worthwhile to apply the same job selection problem to
real factory data. This is because it will discover various new problems and development directions
of the suggested algorithm during applying real data, as well as the value of the research in the
manufacturing industry is very high.
Also, there are many other domains that can be used. Selecting the best representing object at each
frame for video is one of challenging domain that can be applied. Because we do not know how
many objects are detected every moment, it is hard to fix the input and output size of the algorithm
for selecting the best of them. For example, in order to caption a video or explain the situation of a
video, it is necessary to detect objects at every frame in the video and to select the object that best
describes the current frame. At this time, a different number of objects are detected every frame,
and the object corresponding to the current frame must be selected. However, it is difficult to select
an object by fixing the structure if the number of objects that can be selected each time is changed
even in the case of a neural network that is most representative in image or image classification.
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APPENDIX

LEARNING CURVE FOR EXPERIMENT

Figure 3a and 3b show test accuracy for each epoch when learning data with raw feature and product
feature using VLCNN. The accuracy for five different random seeds is shown, with the solid black
line representing the average and the gray area representing mean ± standard deviation. In both
cases, it is confirmed that the learning curve is smooth and the test accuracy is robust.
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Figure 3: Learning curve of VLCNN
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