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ABSTRACT

Bayesian phylogenetic inference is currently done via Markov chain Monte Carlo
with simple mechanisms for proposing new states, which hinders exploration effi-
ciency and often requires long runs to deliver accurate posterior estimates. In this
paper we present an alternative approach: a variational framework for Bayesian
phylogenetic analysis. We approximate the true posterior using an expressive
graphical model for tree distributions, called a subsplit Bayesian network, together
with appropriate branch length distributions. We train the variational approxima-
tion via stochastic gradient ascent and adopt multi-sample based gradient estima-
tors for different latent variables separately to handle the composite latent space
of phylogenetic models. We show that our structured variational approximations
are flexible enough to provide comparable posterior estimation to MCMC, while
requiring less computation due to a more efficient tree exploration mechanism en-
abled by variational inference. Moreover, the variational approximations can be
readily used for further statistical analysis such as marginal likelihood estimation
for model comparison via importance sampling. Experiments on both synthetic
data and real data Bayesian phylogenetic inference problems demonstrate the ef-
fectiveness and efficiency of our methods.

1 INTRODUCTION

Bayesian phylogenetic inference is an essential tool in modern evolutionary biology. Given an align-
ment of nucleotide or amino acid sequences and appropriate prior distributions, Bayesian methods
provide principled ways to assess the phylogenetic uncertainty by positing and approximating a
posterior distribution on phylogenetic trees (Huelsenbeck et all 2001)). In addition to uncertainty
quantification, Bayesian methods enable integrating out tree uncertainty in order to get more con-
fident estimates of parameters of interest, such as factors in the transmission of Ebolavirus (Dudas
et al.,2017). Bayesian methods also allow complex substitution models (Lartillot & Philippe},|2004),
which are important in elucidating deep phylogenetic relationships (Feuda et al., 2017).

Ever since its introduction to the phylogenetic community in the 1990s, Bayesian phylogenetic infer-
ence has been dominated by random-walk Markov chain Monte Carlo (MCMC) approaches (Yang
& Rannala, [1997; Mau et al., |[1999; Huelsenbeck & Ronquist, 2001). However, this approach is
fundamentally limited by the complexities of tree space. A typical MCMC method for phylogenetic
inference involves two steps in each iteration: first, a new tree is proposed by randomly perturbing
the current tree, and second, the tree is accepted or rejected according to the Metropolis-Hastings
acceptance probability. Any such random walk algorithm faces obstacles in the phylogenetic case,
in which the high-posterior trees are a tiny fraction of the combinatorially exploding number of
trees. Thus, major modifications of trees are likely to be rejected, restricting MCMC tree move-
ment to local modifications that may have difficulty moving between multiple peaks in the posterior
distribution (Whidden & Matsen IV| 2015). Although recent MCMC methods for distributions
on Euclidean space use intelligent proposal mechanisms such as Hamiltonian Monte Carlo (Neal,
2011)), it is not straightforward to extend such algorithms to the composite structure of tree space,
which includes both tree topology (discrete object) and branch lengths (continuous positive vector)
(Dinh et al.,[2017).
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Variational inference (VI) is an alternative approximate inference method for Bayesian analysis
which is gaining in popularity (Jordan et al.| [1999; Wainwright & Jordan, 2008} Blei et al., [2017).
Unlike MCMC methods that sample from the posterior, VI selects the best candidate from a family
of tractable distributions to minimize a statistical distance measure to the target posterior, usually
the Kullback-Leibler (KL) divergence. By reformulating the inference problem into an optimization
problem, VI tends to be faster and easier to scale to large data (via stochastic gradient descent)
(Blei et al., |2017). However, VI can also introduce a large bias if the variational distribution is
insufficiently flexible. The success of variational methods, therefore, relies on having appropriate
tractable variational distributions and efficient training procedures.

To our knowledge, there have been no previous variational formulations of Bayesian phylogenetic
inference. This has been due to the lack of an appropriate family of approximating distributions on
phylogenetic trees. However the prospects for variational inference have changed recently with the
introduction of subsplit Bayesian networks (SBNs) (Zhang & Matsen 1V| 2018)), which provide a
family of flexible distributions on tree topologies (i.e. trees without branch lengths). SBNs build on
previous work (Hohna & Drummond, [2012; [Larget, [2013)), but in contrast to these previous efforts,
SBNss are sufficiently flexible for real Bayesian phylogenetic posteriors (Zhang & Matsen IV, [2018).

In this paper, we develop a general variational inference framework for Bayesian phylogenetics. We
show that SBNs, when combined with appropriate approximations for the branch length distribu-
tion, can provide flexible variational approximations over the joint latent space of phylogenetic trees
with branch lengths. We use recently-proposed unbiased gradient estimators for the discrete and
continuous components separately to enable efficient stochastic gradient ascent. We also leverage
the similarity of local structures among trees to reduce the complexity of the variational parameteri-
zation for the branch length distributions and provide an extension to better capture the between-tree
variation. Finally, we demonstrate the effectiveness and efficiency of our methods on both synthetic
data and a benchmark of challenging real data Bayesian phylogenetic inference problems.

2 BACKGROUND

Phylogenetic Posterior A phylogenetic tree is described by a tree topology 7 and associated non-
negative branch lengths q. The tree topology 7 represents the evolutionary diversification of the
species. It is a bifurcating tree with IV leaves, each of which has a label corresponding to one of
the observed species. The internal nodes of 7 represent the unobserved characters (e.g. DNA bases)
of the ancestral species. A continuous-time Markov model is often used to describe the transition
probabilities of the characters along the branches of the tree. Let Y = {Y7,Ys,..., Yy} € QV<XM
be the observed sequences (with characters in €2) of length M over IV species. The probability of
each site observation Y; is defined as the marginal distribution over the leaves

p(Yi|T> q) = ZU(GZ) H Pafbaf) <qu) (1

(u,v)EE(T)

where p is the root node (or any internal node if the tree is unrooted and the Markov model is
time reversible), a’ ranges over all extensions of Y; to the internal nodes with a’, being the assigned
character of node u, E(7) denotes the set of edges of 7, P;;(t) denotes the transition probability from
character ¢ to character j across an edge of length ¢ and 7 is the stationary distribution of the Markov
model. Assuming different sites are identically distributed and evolve independently, the likelihood
of observing the entire sequence set Y is p(Y'|7, q) = Hfil p(Y;|T, q@). The phylogenetic likelihood
for each site in equation [I] can be evaluated efficiently through the pruning algorithm (Felsenstein|
2003), also known as the sum-product algorithm in probabilistic graphical models (Strimmer &
Moulton, [2000; Koller & Friedmanl [2009; Hohna et al.,[2014). Given a proper prior distribution with
density p(7, q) imposed on the tree topologies and the branch lengths, the phylogenetic posterior
p(7,q|Y") is proportional to the joint density

_ p(Y|r,q)p(7,q)

where p(Y') is the intractable normalizing constant.

o« p(Y|7,q)p(7, q)

Subsplit Bayesian Networks We now review subsplit Bayesian networks (Zhang & Matsen 1V}
2018)) and the flexible distributions on tree topologies they provide. Let X be the set of leaf labels.
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Figure 1: A simple subsplit Bayesian network for a leaf set that contains 4 species. Left: A leaf label
set X’ of 4 species, each label corresponds to a DNA sequence. Middle (left): Examples of (rooted)
phylogenetic trees that are hypothesized to model the evolutionary history of the species. Middle
(right): The corresponding SBN assignments for the trees. For ease of illustration, subsplit (W, Z)
is represented as % in the graph. The dashed gray subgraphs represent fake splitting processes
where splits are deterministically assigned, and are used purely to complement the networks such

that the overall network has a fixed structure. Right: The SBN for these examples.

We call a nonempty subset of X’ a clade. Let > be a total order on clades (e.g., lexicographical order).
A subsplit (W, Z) of a clade X is an ordered pair of disjoint subclades of X such that WU Z = X
and W > Z. A subsplit Bayesian network By on a leaf set X of size N is a Bayesian network whose
nodes take on subsplit or singleton clade values that represent the local topological structure of trees
(Figure [T). Following the splitting processes (see the solid dark subgraphs in Figure [I] middle
right), rooted trees have unique subsplit decompositions and hence can be uniquely represented as
compatible SBN assignments. Given the subsplit decomposition of a rooted tree 7 = {s1, s2,...},
where s, is the root subsplit and {s; };~1 are other subsplits, the SBN tree probability is

Peon(T = 7) = p(S1 = 51) [ [ p(Si = il S, = 5x,)
i>1

where S; denotes the subsplit- or singleton-clade-valued random variables at node ¢ and ; is the
index set of the parents of .S;. The Bayesian network formulation of SBNs enjoys many benefits: i)
Sfexibility. The expressiveness of SBNs is freely adjustable by changing the dependency structures
between nodes, allowing for a wide range of flexible distributions; ii) normality. SBN-induced
distributions are all naturally normalized if the associated conditional probability tables (CPTs) are
consistent, which is a common property of Bayesian networks. The SBN framework also generalizes
to unrooted trees, which are the most common type of trees in phylogenetics. Concretely, unrooted
trees can be viewed as rooted trees with unobserved roots. Marginalizing out the unobserved root
node S7, we have the SBN probability estimates for unrooted trees

Pan(T" =7) = > p(S1 = s1) [[ p(Si = 5i[Sr, = 5x,)

S1~T i>1
where ~ means all root subsplits that are compatible with 7.

To reduce model complexity and encourage generalization, the same set of CPTs for parent-child
subsplit pairs is shared across the SBN network, regardless of their locations. Similar to weight
sharing used in convolutional networks (LeCun et al.l |1998) for detecting translationally-invariant
structure of images (e.g., edges, corners), this heuristic parameter sharing used in SBNs is for iden-
tifying conditional splitting patterns of phylogenetic trees. See|Zhang & Matsen IV|(2018)) for more
detailed discussion on SBNs.

3  VARIATIONAL PHYLOGENETIC INFERENCE VIA SBNS

The flexible and tractable tree topology distributions provided by SBNs serve as an essential building
block to perform variational inference (Jordan et al.,{1999) for phylogenetics. Suppose that we have
a family of approximate distributions Q(7) (e.g., SBNs) over phylogenetic tree topologies, where
¢ denotes the corresponding variational parameters (e.g., CPTs for SBNs). For each tree 7, we
posit another family of densities Q).;(g|7) over the branch lengths, where 1 is the branch length
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variational parameters. We then combine these distributions and use the product

Qo (7,q) = Qp(T)Qy(q|T)

as our variational approximation. Inference now amounts to finding the member of this family that
minimizes the Kullback-Leibler (KL) divergence to the exact posterior,

¢",¢" = argmin Dk 1, (Qg.4 (7, @)| p(7, q|Y)) )

s

which is equivalent to maximizing the evidence lower bound (ELBO),

100:9) = Byt (ZZDPED) gy

As the ELBO is based on a single-sample estimate of the evidence, it heavily penalizes samples
that fail to explain the observed sequences. As a result, the variational approximation tends to cover
only the high-probability areas of the true posterior. This effect can be minimized by averaging over
K > 1 samples when estimating the evidence (Burda et al.l 2016; Mnih & Rezende, 2016)), which
leads to tighter lower bounds

K

o =S o S <o)

where Qg o (T 15, Qg (7, q'); the tightness of the lower bounds improves as the
number of samples K increases (Burda et al., | 2016). We will use multi-sample lower bounds in the
sequel and refer to them as lower bounds for short.

1:K 1K)

3.1 VARIATIONAL PARAMETERIZATION

The CPTs in SBNs are, in general, associated with all possible parent-child subsplit pairs. Therefore,
in principle a full parameterization requires an exponentially increasing number of parameters. In
practice, however, we can find a sufficiently large subsplit support of CPTs (i.e. where the associated
conditional probabilities are allowed to be nonzero) that covers favorable subsplit pairs from trees in
the high-probability areas of the true posterior. In this paper, we will mostly focus on the variational
approach and assume the support of CPTs is available, although in our experiments we find that
a simple bootstrap-based approach does provide a reasonable CPT support estimate for real data.
We leave the development of more sophisticated methods for finding the support of CPTs to future
work.

Now denote the set of root subsplits in the support as S,. and the set of parent-child subsplit pairs in
the support as Sy, |pa- The CPTs are defined according to the following equations

exp(ds,) ex(d)
= S; = 8|S, =1t) =
Ses, ep(on)) P ) e b (6

where S.|; denotes the set of child subsplits for parent subsplit ¢.

p(S1 =51) =

We use the Log-normal distribution Lognormal (s, o2) as our variational approximation for branch
lengths to accommodate their non-negative nature in phylogenetic models. Instead of a naive param-
eterization for each edge on each tree (which would require a large number of parameters when the
high-probability areas of the posterior are diffuse), we use an amortized set of parameters over the
shared local structures among trees. A simple choice of such local structures is the split, a bipartition
(X1, X2) of the leaf labels X (i.e. X1 U Xo = X, X1 N X2 = (), and each edge of a phylogenetic
tree naturally corresponds to a split, the bipartition that consists of the leaf labels from both sides of
the edge. Note that a split can be viewed as a root subsplit. We then assign u(-, ), o(-,-) for each
split (-, -) in S,.. We denote the corresponding split of edge e of tree 7 as e/7.

A Simple Independent Approximation Given a phylogenetic tree 7, we start with a simple model
that assumes the branch lengths for the edges of the tree are independently distributed. The approx-
imate density Q.+ (gq|7), therefore, has the form

Qulalr) = [ »"=™ (qe | wle,7),0(e,7)),  ple,m) =L, ole,m) =4, @
e€E(T)



Published as a conference paper at ICLR 2019

Capturing Between-Tree Branch Length Variation

The above approximation equation [ implicitly assumes

that the branch lengths in different trees have the same 11/
distribution if they correspond to the same split, which

fails to account for between-tree variation. To capture this
variation, one can use a more sophisticated parameteriza-

tion that allows other tree-dependent terms for the varia-
tional parameters i and o. Specifically, we use additional

local structure associated with each edge as follows:

ule,7)

Figure 2: Branch length parameteriza-
tion using primary subsplit pairs, which
is the sum of parameters for a split and
its neighboring subsplit pairs. Edge e
represents a split (W, Z). Parameteriza-
tion for the variance is the same as for
the mean.

Definition 1 (primary subsplit pair) Ler e be an edge
of a phylogenetic tree T which represents a split e/T =
(W, Z). Assume that at least one of W or Z, say W,
contains more than one leaf label and denote its sub-
split as (W1, Ws). We call the parent-child subsplit pair
(W1, W2)|(W, Z) a primary subsplit pair.

We assign additional parameters for each primary subsplit pair. Denoting the primary subsplit pair(s)
of edge e in tree T as e//T, we then simply sum all variational parameters associated with e to form
the mean and variance parameters for the corresponding branch length (Figure[2):

ple, ) = 5/7 + Z Ve, ole )= ¢g/7— + Z (O
s€e)/T s€e)T
This modifies the density in equation [ by adding contributions from primary subsplit pairs and
hence allows for more flexible between-tree approximations. Note that the above structured param-
eterizations of branch length distributions also enable joint learning across tree topologies.

3.2 STOCHASTIC GRADIENT ESTIMATORS AND THE VBPI ALGORITHM

In practice, the lower bound is usually maximized via stochastic gradient ascent (SGA). However,
the naive stochastic gradient estimator obtained by differentiating the lower bound has very large
variance and is impractical for our purpose. Fortunately, various variance reduction techniques have
been introduced in recent years including the control variate (Paisley et al.,[2012; Ranganath et al.,
20145 [Mnih & Gregor, |2014; Mnih & Rezende, [2016) for general latent variables and the reparam-
eterization trick (Kingma & Welling, [2014) for continuous latent variables. In the following, we
apply these techniques to different components of our latent variables and derive efficient gradient
estimators with much lower variance, respectively. In addition, we also consider a stable gradient
estimator based on an alternative variational objective. See Appendix [A]for derivations.

The VIMCO Estimator Let fy (7,q) = %. The stochastic lower bound with K

samples is L' (¢, %) = log (% Zfil T (T8 qz)> Mnih & Rezende|(2016) propose a localized
learning signal strategy that significantly reduces the variance of the naive gradient estimator by
utilizing the independence between the multiple samples and the regularity of the learning signal,

which estimates the gradient as follows
K

VoLX(9,9) = Eq, i, gy D (LE_j(6,9) = ) VologQu(r)  (5)
j=1

where

F K o PK 1 i i ; - =]

Lij (o) = L (p, ) —log o | D fou(Ta') + fou(r77,a7)

i#]
is the per-sample local learning signal, with fg (777, q~7) being some estimate of fou(m?,d7)
. J al

for sample j using the rest of samples (e.g., the geometric mean), and w’ = —feeTa) g he

I few(thd)
self-normalized importance weight. This gives the following VIMCO estimator

K
VoL (¢) = Y (LI (6.9) — 0 ) Vo log Qo(r/) with 77,7 £ Quu(r. @)- (©)

j=1
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The Reparameterization Trick The VIMCO estimator also works for the branch length gradient.
However, as branch lengths are continuous latent variables, we can use the reparameterization trick
to estimate the gradient. Because the Log-normal distribution has a simple reparameterization, q ~
Lognormal(p, 02) < g = exp(u + o€), € ~ N(0, 1), we can rewrite the lower bound:

Y79, gy (€77))p(77, g (€7]77))
Qo (77)Qy (g9 (€7 [77)]77)

K
1
LK(¢, ’l[)) = ]Equys(Tl:K’El:K) log ? E . p(
]:

where gy, (€|7) = exp(ftp,+ + 0y, - © €). Then the gradient of the lower bound w.r.t. %) is

K

V¢LK(¢, ’lﬂ) = EQQbYE(Tl:K’El:K) Z ’II)jV¢ log f¢_y¢(’1’j,g¢(€j|7j)) (7)
j=1

Joop (T 9w (€7|77))

. S Fo (THgy (€1]71) i .
tlonﬁl Therefore, we can form the Monte Carlo estimator of the gradient

where w7 = is the same normalized importance weight as in equation equa-

K

VL (h,9p) = Y @V ylog fo.p(m7, gy(€|77)) with 77 % Qu(7), € N (0,I).  (8)
j=1

Self-normalized Importance Sampling Estimator In addition to the standard variational formu-
lation equation [2} one can reformulate the optimization problem by minimizing the reversed KL
divergence, which is equivalent to maximizing the likelihood of the variational approximation

Qo+ 4= (T,q), where ¢*, 9" = ar%bmaxi(aﬁw), L(¢, %) = Ep(r.qv) 108 Qe (1,9)- (9)

)

We can use an importance sampling estimator to compute the gradient of the objective

p(Y|T,q)p(7, q)

Vol(9:9) = Byrai) Vo log Qou(n.0) = 55Bau o o (50, (1)

VglogQe(T)

K
~ N @V log Qu(r?) with 77,¢7 £ Qg4 (7, q) (10)

j=1

with the same importance weights 17 as in equation|5| This can be viewed as a multi-sample gen-
eralization of the wake-sleep algorithm (Hinton et al., |1995) and was first used in the reweighted
wake-sleep algorithm (Bornschein & Bengiol 2015)) for training deep generative models. We there-
fore call the gradient estimator in equation |[10]the RWS estimator. Like the VIMCO estimator, the
RWS estimator also provides gradients for branch lengths. However, we find in practice that equa-
tion [§] that uses the reparameterization trick is more useful and often leads to faster convergence,
although it uses a different optimization objective. A better understanding of this phenomenon
would be an interesting subject of future research.

All stochastic gradient estimators introduced above can be used in conjunction with stochastic op-
timization methods such as SGA or some of its adaptive variants (e.g. Adam |[Kingma & Ba, [2015)
to maximize the lower bounds. See algorithm [T] in Appendix [B] for a basic variational Bayesian
phylogenetic inference (VBPI) approach.

4 EXPERIMENTS

Throughout this section we evaluate the effectiveness and efficiency of our variational framework
for inference over phylogenetic trees. The simplest SBN (the one with a full and complete binary
tree structure) is used for the phylogenetic tree topology variational distribution; we have found it to
provide sufficiently accurate approximation. For real datasets, we estimate the CPT supports from
ultrafast maximum likelihood phylogenetic bootstrap trees using UFBoot (Minh et al.,2013), which
is a fast approximate bootstrap method based on efficient heuristics. We compare the performance
of the VIMCO estimator and the RWS estimator with different variational parameterizations for
the branch length distributions, while varying the number of samples in the training objective to
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Figure 3: Comparison of multi-sample objective on approximating a challenging distribution over
unrooted phylogenetic trees with 8 leaves using VIMCO and RWS gradient estimators. Left: Ev-
idence lower bound. Middle: KL divergence. Right: Variational approximations vs ground truth
probabilities. The number in brackets specifies the number of samples used in the training objective.

see how these affect the quality of the variational approximations. For VIMCO, we use Adam
for stochastic gradient ascent with learning rate 0.001 (Kingma & Ba, [2015). For RWS, we also
use AMSGrad (Sashank et al.l 2018), a recent variant of Adam, when Adam is unstable. Results
were collected after 200,000 parameter updates. The KL divergences reported are over the discrete
collection of phylogenetic tree structures, from trained SBN distribution to the ground truth, and a
low KL divergence means a high quality approximation of the distribution of trees.

4.1 SIMULATED SCENARIOS

To empirically investigate the representative power of SBNs to approximate distributions on phylo-
genetic trees under the variational framework, we first conduct experiments on a simulated setup.
We use the space of unrooted phylogenetic trees with 8§ leaves, which contains 10395 unique trees in
total. Given an arbitrary order of trees, we generate a target distribution po(7) by drawing a sample
from the symmetric Dirichlet distributions Dir(51) of order 10395, where (3 is the concentration
parameter. The target distribution becomes more diffuse as S increases; we used 5 = 0.008 to
provide enough information for inference while allowing for adequate diffusion in the target. Note
that there are no branch lengths in this simulated model and the lower bound is

LE(¢) = Eq, (r1:x) log ii n(™) )
Qg (1K) K P Q¢(TZ) -

with the exact evidence being log(1) = 0. We then use both the VIMCO and RWS estimators to
optimize the above lower bound based on 20 and 50 samples (X). We use a slightly larger learning
rate (0.002) in AMSGrad for RWS.

Figure 3| shows the empirical performance of different methods. From the left plot, we see that the
lower bounds converge rapidly and the gaps between lower bounds and the exact model evidence
are close to zero, demonstrating the expressive power of SBNs on phylogenetic tree probability es-
timations. The evolution of KL divergences (middle plot) is consistent with the lower bounds. All
methods benefit from using more samples, with VIMCO performing better in the end and RWS
learning slightly faster at the beginningﬂ The slower start of VIMCO is partly due to the regular-
ization term in the lower bounds, which turns out to be beneficial for the overall performance since
the regularization encourages the diversity of the variational approximation and leads to more suffi-
cient exploration in the starting phase, similar to the exploring starts (ES) strategy in reinforcement
learning (Sutton & Bartol |1998)). The right plot compares the variational approximations obtained
by VIMCO and RWS, both with 50 samples, to the ground truth po(7). We see that VIMCO slightly
underestimates trees in high-probability areas as a result of the regularization effect. While RWS
provides better approximations for trees in high-probability areas, it tends to underestimate trees

! Although we use larger learning rates for RWS in this experiment, we found RWS generally learns slightly
faster than VIMCO at the beginning. See Figure[]for the real data phylogenetic inference problems in section
@where we use Adam with learning rate 0.001 for both methods.
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Figure 4: Performance on DS1. Left: KL divergence for methods that use the simple split-based
parameterization for the branch length distributions. Middle: KL divergence for methods that use
PSP. Right: Per-tree marginal likelihood estimation (in nats): VBPI vs GSS. The number in brackets
specifies the number of samples used in the training objective. MCMC results are averaged over 10
independent runs. The results for VBPI were obtained using 1000 samples and the error bar shows
one standard deviation over 100 independent runs.

in low-probability areas which deteriorates the overall performance. We expect the biases in both
approaches to be alleviated with more samples.

4.2 REAL DATA PHYLOGENETIC POSTERIOR ESTIMATION

In the second set of experiments we evaluate the proposed variational Bayesian phylogenetic in-
ference (VBPI) algorithms at estimating unrooted phylogenetic tree posteriors on 8 real datasets
commonly used to benchmark phylogenetic MCMC methods (Lakner et al.,2008; Hohna & Drum-
mond, 2012} |Largetl |2013; Whidden & Matsen 1V} 2015) (Table EI) ‘We concentrate on the most
challenging part of the phylogenetic model: joint learning of the tree topologies and the branch
lengths. We assume a uniform prior on the tree topology, an i.i.d. exponential prior (Exp(10))
for the branch lengths and the simple Jukes & Cantor] (1969) substitution model. We consider two
different variational parameterizations for the branch length distributions as introduced in section
[3.1] In the first case, we use the simple split-based parameterization that assigns parameters to the
splits associated with the edges of the trees. In the second case, we assign additional parameters for
the primary subsplit pairs (PSP) to better capture the between-tree variation. We form our ground
truth posterior from an extremely long MCMC run of 10 billion iterations (sampled each 1000 itera-
tions with the first 25% discarded as burn-in) using MrBayes (Ronquist et al.,2012), and gather the
support of CPTs from 10 replicates of 10000 ultrafast maximum likelihood bootstrap trees (Minh
et al.,|2013)). Following Rezende & Mohamed (2015)), we use a simple annealed version of the lower
bound which was found to provide better results. The modified bound is:

Yir'. q))p(r'. q')
Qo (%) sz(q )
where 5, € [0, 1] is an inverse temperature that follows a schedule 3; = min(0.001, ¢£/100000),

going from 0.001 to 1 after 100000 iterations. We use Adam with learning rate 0.001 to train the
variational approximations using VIMCO and RWS estimators with 10 and 20 samples.

LKt(qb,’(/J) Equw(lK 1K 10g< Z[p

Figure [ (left and middle plots) shows the resulting KL divergence to the ground truth on DS1 as a
function of the number of parameter updates. The results for methods that adopt the simple split-
based parameterization of variational branch length distributions are shown in the left plot. We see
that the performance of all methods improves significantly as the number of samples is increased.
The middle plot, containing the results using PSP for variational parameterization, clearly indicates
that a better modeling of between-tree variation of the branch length distributions is beneficial for all
method / number of samples combinations. Specifically, PSP enables more flexible branch length
distributions across trees which makes the learning task much easier, as shown by the considerably
smaller gaps between the methods. To benchmark the learning efficiency of VBPI, we also compare
to MrBayes 3.2.5 (Ronquist et al.,|2012), a standard MCMC implementation. We run MrBayes with
4 chains and 10 runs for two million iterations, sampling every 100 iterations. For each run, we
compute the KL divergence to the ground truth every 50000 iterations with the first 25% discarded
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Table 1: Data sets used for variational phylogenetic posterior estimation, and marginal likelihood
estimates of different methods across datasets. The marginal likelihood estimates of all variational
methods are obtained by importance sampling using 1000 samples. We run stepping-stone in Mr-
Bayes using default settings with 4 chains for 10,000,000 iterations and sampled every 100 iterations.
The results are averaged over 10 independent runs with standard deviation in brackets.

(#TAXA, MARGINAL LIKELIHOOD (NATS)
DATA SET REFERENCE #SITES)
VIMCO(10) VIMCO(20)  VIMCO(10) + PSP VIMCO(20) + PSP ss
DS HEDGES ET AL.|(1990] (27,1949)  -7108.43(0.26)  -7108.35(0.21) -7108.41(0.16) -7108.42(0.10) -7108.42(0.18)
DS2 GAREY ET AL.(1996) (29,2520) -26367.70(0.12)  -26367.71(0.09)  -26367.72(0.08) -26367.70(0.10)  -26367.57(0.48)
DS3 YANG & YODER [(2003) (36, 1812)  -33735.08(0.11) -33735.11(0.11)  -33735.10(0.09) -33735.07(0.11)  -33735.44(0.50)
DS4 HENK ET AL (2003 ] (41,1137)  -13329.90(0.31)  -13329.98(0.20)  -13329.94(0.18) -13329.93(0.22)  -13330.06(0.54)
DS5 LAKNER ET AL.[(2008) (50,378)  -8214.36(0.67)  -8214.74(0.38) -8214.61(0.38) -8214.55(0.43) -8214.51(0.28)
DS6 ZHANG & BLACKWELL|(2001) (50, 1133)  -6723.75(0.68)  -6723.71(0.65) -6724.09(0.55) -6724.34(0.45) -6724.07(0.86)
DS7 YODER & YANG|(2004) (59, 1824)  -37332.03(0.43) -37331.90(0.49)  -37331.90(0.32) -37332.03(0.23)  -37332.76(2.42)
DS8 ROSSMAN ET AL. (2001} (64,1008)  -8653.34(0.55)  -8651.54(0.80) -8650.63(0.42) -8650.55(0.46) -8649.88(1.75)

as burn-in. For a relatively fair comparison (in terms of the number of likelihood evaluations),
we compare 10 (i.e. 2-20/4) times the number of MCMC iterations with the number of 20-sample
objective VBPI iterations Although MCMC converges faster at the start, we see that VBPI methods
(especially those with PSP) quickly surpass MCMC and arrive at good approximations with much
less computation. This is because VBPI iteratively updates the approximate distribution of trees
(e.g., SBNs) which in turn allows guided exploration in the tree topology space. VBPI also provides
the same majority-rule consensus tree as the ground truth MCMC run (Figure [5]in Appendix D).

The variational approximations provided by VBPI can be readily used to perform importance sam-
pling for phylogenetic inference (more details in Appendix [C). The right plot of Figure 4] compares
VBPI using VIMCO with 20 samples and PSP to the state-of-the-art generalized stepping-stone
(GSS) (Fan et al., 2011) algorithm for estimating the marginal likelihood of trees in the 95% credi-
ble set of DS1. For GSS, we use 50 power posteriors and for each power posterior we run 1,000,000
MCMC iterations, sampling every 1000 iterations with the first 10% discarded as burn-in. The ref-
erence distribution for GSS was obtained from an independent Gamma approximation using the
maximum a posterior estimate. Table [I| shows the estimates of the marginal likelihood of the data
(i.e., model evidence) using different VIMCO approximations and one of the state-of-the-art meth-
ods, the stepping-stone (SS) algorithm (Xie et al., 2011). For each data set, all methods provide
estimates for the same marginal likelihood, with better approximation leading to lower variance.
We see that VBPI using 1000 samples is already competitive with SS using 100000 samples and
provides estimates with much less variance (hence more reproducible and reliable). Again, the extra
flexibility enabled by PSP alleviates the demand for larger number of samples used in the training
objective, making it possible to achieve high quality variational approximations with less samples.

5 DISCUSSION

In this work we introduced VBPI, a general variational framework for Bayesian phylogenetic in-
ference. By combining subsplit Bayesian networks, a recent framework that provides flexible dis-
tributions of trees, and efficient structured parameterizations for branch length distributions, VBPI
exhibits guided exploration (enabled by SBN5s) in tree space and provides competitive performance
to MCMC methods with less computation. Moreover, variational approximations provided by VBPI
can be readily used for further statistical analysis such as marginal likelihood estimation for model
comparison via importance sampling, which, compared to MCMC based methods, dramatically re-
duces the cost at test time. We report promising numerical results demonstrating the effectiveness
and efficiency of VBPI on a benchmark of real data Bayesian phylogenetic inference problems.

When the data are weak and posteriors are diffuse, support estimation of CPTs becomes challenging.
However, compared to classical MCMC approaches in phylogenetics that need to traverse the enor-
mous support of posteriors on complete trees to accurately evaluate the posterior probabilities, the
SBN parameterization in VBPI has a natural advantage in that it alleviates this issue by factorizing
the uncertainty of complete tree topologies into local structures.

*the extra factor of 2/4 is because the likelihood and the gradient can be computed together in twice the time
of a likelihood (Schadst et al.,|1998) and we run MCMC with 4 chains.
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Many topics remain for future work: constructing more flexible approximations for the branch length
distributions (e.g., using normalizing flow (Rezende & Mohamed, 2015) for within-tree approxima-
tion and deep networks for the modeling of between-tree variation), deeper investigation of support
estimation approaches in different data regimes, and efficient training algorithms for general varia-
tional inference on discrete / structured latent variables.
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A GRADIENT DERIVATION FOR THE MULTI-SAMPLE OBJECTIVES

In this section we will derive the gradient for the multi-sample objectives introduced in section
We start with the lower bound

K

Y|7-] q] Tj qj)
K<¢7’¢) :EQtp’ﬁ)(Tl:K,ql:K)lOg EZ

7-J Qw q]|7-J)

= EQ‘p’w(Tl:K’ ql:K) IOg

K
Z v q)

N \

Using the product rule and noting that V 1og f 4(77,¢7) = =V 4 log Qe (77),

K

1 o
V¢Lk(¢7 1/)) = EQ(#JP(TI:K.’ ql;K)V¢ log ? Zl f¢7,¢,(7—37qﬂ) +
‘7:

v
EQyp(riix, 1K)Z¢§(¢ < Zf‘?“/’ )
J=1
fop(m,q)
Zz 1f¢’¢(7'7 Z)

]EQ¢¢(T1K 1K)Zlog<KZf¢¢ 7q)> Vd)lodeu(Tj)

Jj=1

=EqQy(r, 1K>Z Vg log fe4(17,4°)+

K
—Eq, i, qv) 2 (L5 (6,9) =) Vi log Qu (7).

j=1
This gives the naive gradient of the lower bound w.r.t. ¢.

Using the reparameterization trick, the lower bound has the form

(Y[, gy (€ |79))p(17, gy (€1 77))
L2 (@) = Bqy o rx v log EZ Qo () Qs (9|79 [79)

:EQ¢ (1K€1K IOg Zf¢1/) 7'] g¢(€j|7']))

Since ) is not involved in the distribution with respect to which we take expectation,
K
K 1 i g (el
V¢L ((]57 ’l/)) = ]EQ(#‘E(TI:K’GI:K)qu log ? Z f¢,¢(7 ,g¢(6 ‘7‘ ))
j=1

S (77, gy (€|77)) : o
=Eq, .(r1:K 1K Vo 10g fo (77, J|d
Q¢ ( Z Zl 1f¢¢(71,g¢(e’|71)) P Og ¢1/’(T gw(e |T ))

= Eqq (1 ,et) Z W7V 10g fop(77, gy (€1]77)).
j=1

Next, we derive the gradient of the multi-sample likelihood objective used in RWS

L(p, %) = Ey(r.qv) 1og Qe 4 (T, @)
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Again, p(7, q|Y") is independent of ¢, ¢, and we have
VoL($.9) = Eprqjv) Vo 10g Qo0 (7.)

=Eq4u(ra) CM(TC(ZI«'p(;WV‘ﬁ log Qo4 (7, )

1
- MEQ¢,¢(T7¢1)JC¢,¢(T, q)Vg¢log Qg (7)
- X f¢71/’(7'jvqj)

j=1 izt foup (T ")

V¢ log Q¢(7j) with 77, ¢’ . Qo w(T, q).

K
= ijv¢ logQ¢(7j)
j=1

The second to last step uses self-normalized importance sampling with K samples. V¢E(¢, 1) can
be computed in a similar way.

B THE VARIATIONAL BAYESIAN PHYLOGENETIC INFERENCE ALGORITHM

Algorithm 1 The variational Bayesian phylogenetic inference (VBPI) algorithm.

1: ¢, < Initialize parameters

2: while not converged do

3 71, ..., 7% < Random samples from the current approximating tree distribution Qa(T)

4: €', ..., e «+ Random samples from the multivariate standard normal distribution \'(0, T)
5: g V¢7¢LK(¢, p; THE 1K) (Use any gradient estimator from section
6: @, < Update parameters using gradients g (e.g. SGA)
7: end while
8: return ¢, ¢

C IMPORTANCE SAMPLING FOR PHYLOGENETIC INFERENCE VIA
VARIATIONAL APPROXIMATIONS

In this section, we provide a detailed importance sampling procedure for marginal likelihood esti-
mation for phylogenetic inference based on the variational approximations provided by VBPIL.

C.1 ESTIMATING MARGINAL LIKELIHOOD OF TREES

For each tree 7 that is covered by the subsplit support,
L 1
Qulalr) = T p =™ (e | ule,7),0(e,7))
ecE(T)
can provide accurate approximation to the posterior of branch lengths on 7, where the mean and
variance parameters (e, 7),0(e, T) are gathered from the structured variational parameters v as

introduced in section Therefore, we can estimate the marginal likelihood of 7 using importance
sampling with Q. (g|7) being the importance distribution as follows

_ pY|r, q)p p(Y|T, q ) i
p(Y|r) = EQ-,J,(Q‘T)T i Z 00 qle with ¢/ ~ Qq(q|T)

C.2 ESTIMATING MODEL EVIDENCE

Similarly, we can estimate the marginal likelihood of the data as follows

. S id
p(Y) = ]EQ¢.¢( ) with ij qJ ~ qu,'l/:(Ta q)-

p(Y|7,q)p Zp (Y7, q7)p(7,q7)
Qe (T)Qu( (J|T K Qe (17)Qy (g7 |77)
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In our experiments, we use KX = 1000. When taking a log transformation, the above Monte Carlo
estimate is no longer unbiased (for the evidence log p(Y")). Instead, it can be viewed as one sample
Monte Carlo estimate of the lower bound

L*(¢,9) = Eq, (-5, g log 1y p(YI. @)p(r" a) <logp(Y) (1)
ewlT 0 K~ Qq¢(m")Qu(q'|T") | ~

whose tightness improves as the number of samples K increases. Therefore, with a sufficiently large
K, we can use the lower bound estimate as a proxy for Bayesian model selection.

D CONSENSUS TREE COMPARISON ON DS1
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Figure 5: A comparison of majority-rule consensus trees obtained from VBPI and ground truth
MCMC run on DS1. Left: Ground truth MCMC. Right: VBPI (10000 sampled trees). The plot is
created using the treespace (Jombart et al.| 2017) R package.

15



	Introduction
	Background
	Variational Phylogenetic Inference via SBNs
	Variational Parameterization
	Stochastic Gradient Estimators and The VBPI Algorithm

	Experiments
	Simulated Scenarios
	Real Data Phylogenetic Posterior Estimation

	Discussion
	Gradient Derivation for The Multi-sample Objectives
	The Variational Bayesian Phylogenetic Inference Algorithm
	Importance Sampling for Phylogenetic inference via Variational Approximations
	Estimating Marginal Likelihood of Trees
	Estimating Model Evidence

	Consensus Tree Comparison on DS1

