
from domain import knowledge:
Enhancing Language Models for Technical Domains

with Dynamic Token Injection

Giorgio Giannone
Microsoft Research

Technical University of Denmark
gigi@dtu.dk

Neil Tenenholtz
Microsoft Research

netenenh@microsoft.com

James Hall
Microsoft Research

jamhall@microsoft.com

Nicolo Fusi
Microsoft Research

fusi@microsoft.com

David Alvarez Melis
Microsoft Research
Harvard University

dam@seas.harvard.edu

Abstract

Large language models (LLMs) are rapidly advancing the frontier of natural lan-
guage understanding and generation. Their generalist nature, while adept at han-
dling a wide range of tasks, often lacks the depth and precision required by highly
specialized and rapidly evolving technical domains, such as genomics and engi-
neering design. Fine-tuning these models for specific domains can be effective
but requires large amounts of data and compromises their general reasoning ca-
pabilities. In this work, we introduce a scalable method to infuse specialized
knowledge into generalist language models by dynamically extending their vo-
cabulary with specialist tokens. By using a lightweight functional mapping on an
extended vocabulary and adjusting the logit distribution, we enable the model to
grasp domain-specific nuances. We demonstrate this in an application in genomics,
where we extend a standard LLM by introducing knowledge about a large set of
genes, allowing it to proficiently tackle tasks involving both textual and genetic
data. Functional alignment enables the model to handle novel gene tokens that
were never encountered during training, enabling domain-aware out-of-distribution
capabilities in generalist language models.

1 Introduction
In recent years, natural language processing has witnessed significant advancements driven by the
advent of large language models (LLMs, [5, 17, 2]). LLMs have proven to be flexible multitask
generative models, capable of adapting to new tasks and scenarios leveraging in-context learning [2]
and prompting [20]. However, in numerous scientific and engineering scenarios, there arises a
crucial requirement for domain-specific models capable of dealing with intricate concepts. Take
genomics, for instance, where we have thousands of genes that can be expressed in diverse manners
–—through sequences, names, symbols, and functionality–— and are entwined within a sophisticated
intra-domain structure. In such a field, a language-capable model proficient in handling technical
information would prove exceptionally valuable.
While prompting and in-context learning can help, such methods are expensive or require large models
to be effective. Conversely, fine-tuning alters the base model, creating a domain-specific model
that is limited by the expressivity of the finetuning set, making generalizing to out-of-distribution
concepts especially challenging. Fine-tuning may also diminish the model’s overall capability,
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leading to interference between the two regimes. As an illustration, consider the letter C in a general
LLM, where it may be closely associated with words like Computer. However, in a specialized
language model for chemistry, C represents a symbol with a high-level meaning related to Carbon.

Figure 1: Gromov-Wasserstein loss (Eq. 3)
on in- distribution genes. Our approach tends
naturally to align the specialized domain be-
fore and after adaptation. Increasing the GW
loss contribution, the fea- tures tend to be
closer and closer, enforcing full preservation
of the specialized structure.

When introducing abstract concepts characterized by com-
plex meanings, such as genes, our goal is to seamlessly
integrate these concepts into the LLM. Our particular fo-
cus is on scenarios where these rich concepts originate
externally, in domains unknown or underrepresented in
the LLM’s training data, such as genomics and chemistry.
We aspire to utilize general LLMs as robust reasoning
engines, benefiting from their extensive training data, but
making them incorporate these structure-rich concepts, en-
abling dynamic expansion of the domain knowledge when
new information emerges (e.g., new genes, pathways, or
connections).
Can we introduce specialized tokens with rich structures
in a general language model and modify a minimal set of
parameters? We answer this question in the affirmative, by
showing how this challenging task can be accomplished
using frozen LLMs, appropriate initialization, normaliza-
tion techniques, alignment of augmented embeddings, and
adapting augmented likelihood through a shared set of
learnable weights.
Contribution. Our contributions are the following: (i) We propose a scalable method to adapt
and align a frozen general language model with a specialized domain, injecting specialist external
knowledge into a general model. (ii) We introduce a functional mapping to augment the vocabulary in
a dynamic fashion, enabling out-of-distribution generalization to new concepts. (iii) We empirically
show that our model solves tasks involving general and specialized domains as well as aligns
specialized knowledge before and after adaptation.

2 Background
Domain-specialized Language Models. Language Models [5, 17, 2] excel in generating data of high
diversity for unstructured domains. However, in many specialized domains factuality and constraint
satisfaction are important, and smaller specialized models, which are easy to deploy and inexpensive
to sample, are needed. In particular, LLMs have been employed in the life sciences to translate
between text and chemistry [4, 6], biology [12], medicine [19], DNA-sequencing [15], and protein
sequences [10, 13] and folding [8].
Adaptation Techniques for Language Models. Fine-tuning involves training a pre-existing language
model on domain-specific data or tasks [5]. This process allows the model to adapt to the nuances
of the target domain, making it more proficient in domain-specific tasks. Efficient fine-tuning
methods [7] can be leveraged to greatly decrease the learned parameter count maintaining performance
at the cost of additional data and hyperparameter tuning. In-context learning [2] aims to improve
the capabilities of a model by providing additional information or examples in the prompt. Prompt-
tuning [9] techniques involve the introduction of virtual tokens or placeholders within the text. These
tokens can be used to guide the model’s attention and understanding of specific concepts or entities.
Adapting general transformers for specific tasks has been proposed in [18], where pretrained language
models are leveraged to solve novel tasks using distributional alignment and fine-tuning, extending
the ideas introduced in [11].

3 Method
We consider autoregressive language models consisting of a weight-tied embedding layer e, a LLM(;ϕ)
backbone comprised of transformer blocks, a language modeling head whose weights are shared with
the embedding layer, and then a softmax function σ computes the output distribution. Given a general
autoregressive language model [16]), standard causal language modeling can be written as:

LCLM(eg) = −x[1:] log p(x[:−1]), p(x) = σ(h(x) eTg ), h(x) = LLM(eg [x] ;ϕ), (1)
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Generalist LLM

The gene mutations .... as
prostate and pancreatic cancer. BRCA1

The gene ... can cer BR CA 1
Technical
Expertise

Generalist LLM

The gene mutations .... as
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The gene ... can cer BRCA1

BRCA1

Figure 2: Alignment and Adaptation Pipeline. We inject a new domain using a large set of specialized tokens
(gene names), augmenting the general vocabulary by up to 30%. These tokens are initialized from a domain-
specialized model. We then align the specialized embeddings and logit distribution with a lightweight adapter
layer. We train the adapter network with pairs of (text, gene) using standard causal language modeling.

where eg ∈ Rg×d is the embedding layer, x ∈ Rt×d is a sequence of t indexes that index the
embedding layer, h ∈ Rt×d is the last hidden state, and σ is the softmax function. Notice how
the embeddings weights, eg have dimensions of the vocabulary size g and the hidden size d, are
transposed in the output of the model and used to compute the logits together with the last hidden
states. Now, our goal is to inject new knowledge into the LLM by adding a large set of specialized
tokens with abstract meaning attached to them (e.g., concepts, gene names) without finetuning the
core model, instead adapting the embedding and logits layer to align the novel, specialized vocabulary
to the base, general one. This can be achieved by leveraging the following formulation, where fθ is
an embedding mapping function and eθ = [eg, fθ(es)] is the augmented vocabulary:

LCLM(eg, es, θ) = −x[1:] log pθ(x[:−1]), pθ(x) = σ(hθ(x) eTθ ), hθ(x) = LLM(eθ [x] ; ϕ̄). (2)

Here the embedding layer is augmented with s tokens using es ∈ Rs×d′
, in general of different

dimensionality than d. Then the specialized embeddings are aligned and adapted leveraging a small
network. In particular a linear layer W ∈ Rd′×d is used for dimensionality alignment, and then a
ResNet block fθ takes in input esW and output the adapted embeddings eθ = [eg, fθ(esWθ)]. The
augmented embeddings will have dimension ((g + s)× d).
Functional Alignment. Conceptually, adaptation involves a two-step procedure: dimensionality
adaptation, namely projecting the external knowledge embeddings into a space of the same dimen-
sionality as the model’s embeddings, and domain adaptation, which consists of geometrically aligning
the general and specialized domains within a single model with minimal intervention. Once learned,
the function fθ, provides a versatile mapping that aligns the augmented embedding layer with the
general model. Simultaneously, we employ the same set of weights to adjust the logit distribution, as
depicted in Figure 2.
The Gromov-Wasserstein distance [14, 1, 3] provides a notion of dissimilarity between two metric
spaces based on the correspondence of pairwise relationships within these spaces. In contrast to
traditional notions of distance between point clouds and distributions that rely entirely on pairwise
distances across collections, GW compares collections based on distances within each of the spaces,
allowing for comparison across spaces that are not a-priori aligned (e.g., of different dimensionality).
This makes GW an ideal metric for comparing datasets from heterogeneous domains, such as those
encountered in the fields of biology and genomics. In formula:

LGW(dg, ds; Γ) = min
Γ∈(p,q)

∑
ijkl

L(d(xi
g,x

k
g), d

′(xj
s,x

l
s))ΓijΓkl = min

Γ∈(p,q)

∑
ijkl

LijklΓijΓkl, (3)

where d and d′ are (potentially different) metrics, L is a loss function between pairs of distances (e.g.,
L2 loss) so that Lijkl measures the similarity between pair-wise distances across the two domains,
Γij is a coupling between item i in one domain and object j in the other, and p = Γ1n and q = ΓT 1n.
Thus, problem (3) seeks a coupling Γ between the two distributions that minimize the total alignment
cost between them, or equivalently, that maximizes their geometric agreement. In the following, we
will use this metric to quantify alignment pre- and post-adaptation (Fig. 1).
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4 Experiments
Setup. For all the experiments, we freeze the base model and augment the embedding layers with
17k tokens, each one representing one gene (10k used for training and the remaining for evaluation).
We extract a set of genes and their relative descriptions as described in [21]. We use a small one-
layer ResNet to align the specialized embeddings with the general embeddings, and use the same
weights transposed for the likelihood (recall that we consider weight-tied models). We initialize
the specialized embeddings using the hidden states of biogpt-large [12], a causal language model
specialized in biology. We normalize the specialized embeddings such that the norm of the general
and specialized embeddings are of the same average magnitude before finetuning. We then fine-tune
the functional mapping (with the LLM backbone frozen) on a small set of paired descriptions and
genes (see Fig. 3), over-weighting the cross-entropy loss by a factor of two over the specialized
vocabulary. All models are trained and evaluated on a single A100.
Evaluation. We evaluate our method on a task that we call text2gene: this task consists of providing
a textual description of a gene function and asking the model to choose between the correct gene
and random ones using the likelihood as a classification signal. Our goal is to understand if the
general vocabulary, which processes general text, and the specialized vocabulary, which processes
the genes, are aligned and can provide meaningful results in a language model. For the quantitative
evaluation, we consider binary and multiclass classification (Table 1), and top-k retrieval (Fig. 4). For
the qualitative evaluation, we measure the similarity between a common gene (BRCA1) before and
after adaptation (Fig. 5 and 6). We also plot the top-10 logits for a given target gene conditioning on
a description (Table 2). In Fig. 1 we show alignment pre- and post-adaptation, as measured by the
Gromov-Wasserstein (GW) loss, with different levels of strength for the GW loss.

Table 1: Classification accuracy leveraging the adapted likelihood pθ(x) as signal for 2 and 10 classes. IN:
genes are seen during training. OOD: genes not seen during training. We see that by leveraging the augmented
vocabulary and the adapted likelihood we can solve classification tasks for a specialized task. Leveraging the
functional approach, we are also able to deal with genes never seen during training.

text2gene
Model Size Params Loss GW Nt Init Adapter Train (IN) Val (OOD)

random (2 classes) - - - - - - - 0.500
biogpt-l 1.5B - clm - - - - 0.801
gpt2-xl 1.5B - clm - - - - 0.710
gpt2-xl 1.5B 3.8M clm 0.0 10k hidden mlp 0.994 0.930
gpt2-xl 1.5B 3.8M clm-gw 0.1 10k hidden mlp 0.996 0.934
gpt2-xl 1.5B 3.8M clm-gw 0.5 10k hidden mlp 0.993 0.937

random (10 classes) - - - - - - - 0.100
gpt2-xl 1.5B 3.8M clm 0.0 10k hidden mlp 0.99 0.755
gpt2-xl 1.5B 3.8M clm-gw 0.1 10k hidden mlp 0.988 0.763
gpt2-xl 1.5B 3.8M clm-gw 0.5 10k hidden mlp 0.985 0.772

Results. Table 1 shows the classification accuracy of different models utilizing the adapted likelihood
pθ(x), specifically for binary and 10-way classification problems. The baselines have different
initialization, adaptation strategy, and alignment weighting. For further baselines, see Table 3 in the
appendix. We measure performance for genes seen during training (IN) and those not encountered
during training (OOD). All target genes leverage the augmented vocabulary, i.e. each gene is repre-
sented as a technical token. The gpt2-xl model, when adapted with a small ResNet block and aligned
using the gw loss with different strength levels, consistently performs well for in-distribution genes.
Interestingly, the model with adaptation performs well on out-of-distribution genes (genes never seen
during training), peaking at approximately 93.7% for binary and 77.2% for 10-way classification.
These results demonstrate the effectiveness of our adaptation strategy in enhancing vocabulary and
likelihood. By aligning external knowledge, we harness the general reasoning capabilities of our
generalist model to assign a higher likelihood to the correct gene description. Notably, our functional
approach can handle out-of-distribution scenarios, where conventional fine-tuning of embeddings
would struggle without the application of extrapolation techniques and retrieval methodologies. In
Figure 4, we present the top-k accuracy results for binary classification tasks involving both in-
distribution and out-of-distribution genes, both with and without GW loss. These findings reveal that
our likelihood calibration is remarkably accurate for in-distribution genes, and it demonstrates the
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capability to identify relevant genes even in the more challenging out-of-distribution context. This
additional experimental evidence further validates the effectiveness of our approach in integrating
domain knowledge into a generalist language model.

5 Conclusion
We introduce a method that combines domain knowledge with the reasoning of generalist LLMs,
using a dynamic vocabulary and functional mapping to adapt the likelihood distribution. This
promising approach could hold the key to unlocking rich, highly structured, specialized domain
datasets for use within an LLM setting. Where in this work we focus on genes and biology, we expect
such a method to be of potential applicability broadly in natural and engineering sciences.
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A Additional Experiments

Figure 3: Binary Accuracy on in-distribution
(train) and out-of-distribution (val) genes increas-
ing the number of genes used during training, from
500 to 10000. Performance improves monoton-
ically with more data and plateaus around 5000
samples.

Figure 4: top-k accuracy for in- and out-of-
distribution evaluation sets. The in-distribution
text description is novel and genes are seen during
training. For the out-of-distribution, text and genes
are novel. We see how the likelihood is relatively
good at retrieving the relevant genes. See also 2.

Table 2: Top-10 logits (over the full vocabulary) for gene prediction on in-distribution genes. We see that, given
a target, the likelihood assigns mass in the neighbors of the correct gene, providing qualitative evidence that the
general model is able to deal with the specialized knowledge extracting the structure of the novel domain, and
not only memorizing the input/output mappings.

Target NME4 APOL1 APOL3 SERPINA5 APOD APOA4

logit 1 NME3 APOL1 APOL1 SERPINB4 LIPC APOOL
logit 2 NME4 APOL2 APOL2 SERPINB12 GPIHBP1 APCS
logit 3 NME5 APOL5 APOLD1 SERPINB13 APOA2 APOO
logit 4 NME8 APOA5 APOL5 SERPINB10 APOC1 APOA2
logit 5 NME9 APOA1 APOL3 SERPINB11 APOD APOC3
logit 6 NME7 APOL3 APOA5 SERPINA12 APOO ATIC
logit 7 NME6 APOC3 APOL6 SERPINA1 APOL2 APOC4
logit 8 NME2 ABCA1 APOA4 SERPINA3 APOL6 APOC1
logit 9 NME2P1 APOLD1 APOA2 SERPINB6 APOL4 APOLD1
logit 10 NMES1 APOL6 APOA1 SERPINB3 APOE ADIPOQ
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Table 3: Results on binary classification leveraging the adapted likelihood pθ(x). ∗ For gpt-3.5 we do not have
access to the likelihood, and we constrain the output to one token and [0, 1] for the answer. In-distribution
genes are seen during training, whereas out-of-distribution genes not seen during training. clm: causal language
modeling loss. ft: fine-tuning with supervised fine-tuning and RLHF. gw: gromov-wasserstein loss.

text2gene
Model Size Params Loss GW Nt Init Adapter Train (in) Val (out)

2 classes
random - - - - - - - 0.500
gpt2-xl 1.5B - clm - - - - 0.710
biogpt-l 1.5B - clm - - - - 0.801
llama2 7B - clm-ft - - - 0.873
llama2 13B - clm-ft - - - 0.865
gpt-3.5∗ 100B+ - clm-ft - - - in-context 0.897

gpt2-xl 1.5B 2.5M clm 0.0 10k hidden linear 0.537 0.511
gpt2-xl 1.5B 2.5M clm-gw 0.1 10k hidden linear 0.523 0.520
gpt2-xl 1.5B 3.8M clm 0.0 10k random mlp 0.530 0.517
gpt2-xl 1.5B 3.8M clm-gw 0.1 10k random mlp 0.533 0.505

gpt2-xl 1.5B 3.8M clm 0.0 10k hidden mlp 0.994 0.930
gpt2-xl 1.5B 3.8M clm-gw 0.1 10k hidden mlp 0.996 0.934
gpt2-xl 1.5B 3.8M clm-gw 0.5 10k hidden mlp 0.993 0.937
gpt2-xl 1.5B 3.8M clm-gw 1.0 10k hidden mlp 0.979 0.933

10 classes
random - - - - - - - 0.100
gpt2-xl 1.5B 3.8M clm 0.0 5k hidden mlp 0.989 0.690
gpt2-xl 1.5B 3.8M clm-gw 0.1 5k hidden mlp 0.987 0.714
gpt2-xl 1.5B 3.8M clm-gw 0.5 5k hidden mlp 0.983 0.611
gpt2-xl 1.5B 3.8M clm-gw 1.0 5k hidden mlp 0.983 0.698

gpt2-xl 1.5B 3.8M clm 0.0 10k hidden mlp 0.99 0.755
gpt2-xl 1.5B 3.8M clm-gw 0.1 10k hidden mlp 0.988 0.763
gpt2-xl 1.5B 3.8M clm-gw 0.5 10k hidden mlp 0.985 0.772
gpt2-xl 1.5B 3.8M clm-gw 1.0 10k hidden mlp 0.989 0.739
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B Qualitative Results

Figure 5: Input Alignment. Cosine Similarity between the general domain (GPT2 embeddings) and a specialized
gene name (BRCA1) w/ and w/o adaptation.

Figure 6: Output Alignment. Cosine Similarity between the general domain (GPT2 hidden states) and a
specialized gene name (BRCA1) w/ and w/o adaptation.

C Dataset

Table 4: text2gene prompt structure.

Prompt Description

Task text2gene: task prompt
Text <input_text> input text
Domain <|GENE|> domain
Gene <SPECIALIZED_TOKEN>_<target_gene> The target gene
End Token <|END|> end
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D Details

Table 5: Relevant Hyperparameters for all the models and GPT2 baselines. CE: Cross-Entropy. GW: Gromov-
Wasserstein.

Key Value

Batch size 64
Architecture gpt2-xl
Epochs 50-100
Learning rate 3e−4

Loss CE
Alignment GW
λ 0.1-10.0
Optimizer AdamW
Initialization biogpt-large
Normalization norm-based
Re-weighting ratio 1:2
Vocabulary size 50257
Technical Tokens (Train/Val) 17000 (10000/7000)
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