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ABSTRACT

Real-world Question Answering (QA) tasks often consist of thousands of words
that represent many facts and entities. Existing models based on LSTMs require
a large number of parameters to support external memory and do not generalize
efficiently for long sequence inputs. Memory networks address these limitations
by storing information to an external memory module but must examine all inputs
in the memory. Hence, for longer sequence inputs, the intermediate memory
components proportionally scale in size, resulting in poor inference times. We
present Adaptive Memory Networks (AMN) that process input-question pairs to
dynamically construct a network architecture optimized for lower inference times.
AMN creates multiple memory banks that store entities from the input story to
answer the questions. The model learns to reason important entities from the
input text based on the question and concentrates these entities within a single
memory bank. At inference, one or few banks are used, creating a tradeoff between
accuracy and performance. AMN is enabled by first, a novel bank controller that
makes discrete decisions with high accuracy and second, the capabilities of a
dynamic framework (such as PyTorch) that allow for dynamic network sizing and
efficient variable mini-batching. In our results, we demonstrate that our model
learns to construct a varying number of memory banks based on task complexity
and achieves faster inference times for standard bAbI tasks, and modified bAbI
tasks. We solve all bAbI tasks with an average of 48% fewer entities on tasks
containing excess, unrelated information.

1 INTRODUCTION

Question Answering (QA) tasks are gaining significance due to their widespread applicability to recent
commercial applications such as chatbots, voice assistants and even medical diagnosis (Goodwin
& Harabagiu (2016)). Furthermore, many existing natural language tasks can also be re-phrased
as QA tasks. Providing faster inference times for QA tasks is crucial. Consumer device based
question-answer services have hard timeouts for answering questions. For example, Amazon Alexa,
a popular QA voice assistant, allows developers to extend the QA capabilities by adding new “Skills”
as remote services (Amazon (2017)). However, these service APIs are wrapped around hard-timeouts
of 8 seconds which includes the time to transliterate the question to text on Amazon’s servers and
the round-trip transfer time of question and the answer from the remote service, and sending the
response back to the device. Furthermore, developers are encouraged to provide a list of questions
(“utterances”) apriori at each processing step to assist QA processing (Amazon (2017)).

Modeling QA tasks with LSTMs can be computationally expensive which is undesirable especially
during inference. Memory networks, a class of deep networks with explicit addressable memory,
have recently been used to achieve state of the art results on many QA tasks. Unlike LSTMs, where
the number of parameters grows exponentially with the size of memory, memory networks are
comparably parameter efficient and can learn over longer input sequences. However, they often
require accessing all intermediate memory to answer a question. Furthermore, using focus of attention
over the intermediate state using a list of questions does not address this problem. Soft attention
based models compute a softmax over all states and hard attention models are not differentiable and
can be difficult to train over a large state space. Previous work on improving inference over memory
networks has focused on using unsupervised clustering methods to reduce the search space (Chandar
et al. (2016); Rae et al. (2016)). Here, the memory importance is not learned and the performance of
nearest-neighbor style algorithms is often comparable to a softmax operation over memories.
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Figure 1: Overview of Adaptive memory networks. Multiple memory banks are created based on the
story and input entities are moved in them based on their relevance to the question. Inference is per-
formed on a single (or less than all) banks most relevant to the question(s).

To provide faster inference for long sequence-based inputs, we present Adaptive Memory Networks
(AMN), that constructs a memory network on-the-fly based on the input. Like past approaches to
addressing external memory, AMN constructs the memory nodes dynamically. However, distinct
from past approaches, AMN constructs a memory architecture with network properties that are
decided dynamically based on the input story. Given a list of possible questions, our model computes
and stores the entities from the input story in a memory bank. The entities represent the hidden state
of each word in the story while a memory bank is a collection of entities that are similar w.r.t the
question. As the number of entities grow, our network learns to construct new memory banks and
copies entities that are more relevant towards a single bank. Entities may reside in different bank
depending on their distance from the question. Hence, by limiting the decoding step to a dynamic
number of constructed memory banks, AMN achieves lower inference times. AMN is an end-to-end
trained model with dynamic learned parameters for memory bank creation and movement of entities.

Figure 1 demonstrates a simple QA task where AMN constructs two memory banks based on the
input. During inference only the entities in the left bank are considered reducing inference times. To
realize its goals, AMN introduces a novel bank controller that uses reparameterization trick to make
discrete decisions with high accuracy while maintaining differentiability. Finally, AMN also models
sentence structures on-the-fly and propagates update information for all entities that allows it to solve
all 20 bAbI tasks.

2 RELATED WORK

Memory Networks: Memory networks store the entire input sequence in memory and perform a
softmax over hidden states to update the controller (Weston et al. (2014);Sukhbaatar et al. (2015)).
DMN+ connects memory to input tokens and updates them sequentially (Xiong et al. (2016)). For
inputs that consist of large number of tokens or entities, these methods can be expensive during
inference. AMN stores entities with tied weights in different memory banks. By controlling the
number of memory banks, AMN achieves low inference times with reasonable accuracy. Nearest
neighbor methods have also been explored over memory networks. For example, Hierarchical
Memory Networks separates the input memory into groups using the MIPS algorithm (Chandar et al.
(2016)) . However, using MIPS is as slow as a softmax operation, so the authors propose using an
approximate MIPS that gives inferior performance. In contrast, AMN is end to end differentiable,
and reasons which entities are important and constructs a network with dynamic depth.

Neural Turing Machine (NTM) consists of a memory bank and a differentiable controller that learns
to read and write to specific locations (Graves et al. (2014)). In contrast to NTMs, AMN memory
bank controller is more coarse grained and the network learns to store entities in memory banks
instead of specific locations. AMN uses a discrete bank controller that gives improved performance
for bank controller actions over NTM’s mechanisms. However, like NTMs, our design is consistent
with the modeling studies of working memory by (Hazy et al. (2006)) where the brain performs robust
memory maintenance and may maintain multiple working representations for individual working
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tasks. Sparse access memory uses approximate nearest neighbors (ANN) to reduce memory usage
in NTMs (Rae et al. (2016)). However, ANNs are not differentiable. AMN, uses a input specific
memory organization that does not create sparse structures. This limits access during inference to
specific entities reducing inference times.

Graph-based networks, (GG-NNs, Li et al. (2015) and GGT-NNs, Johnson (2017)) use nodes with
tied weights that are updated based on gated-graph state updates with shared weights over edges.
However, unlike AMN, they require strong supervision over the input and teacher forcing to learn
the graph structure. Furthermore, the cost of building and training these models is expensive and if
every edge is considered at every time-step the amount of computation grows at the order of O(N3)
where N represents the number of nodes/entities. AMN does not use strong supervision but can solve
tasks that require transitive logic by modeling sentence walks on the fly. EntNet constructs dynamic
networks based on entities with tied weights for each entity (Henaff et al. (2017)). A key-value update
system allows it to update relevant (learned) entities. However, Entnet uses soft-attention during
inference to attend to all entities that incur high inference costs. To summarize, majority of the past
work on memory networks uses softmax over memory nodes, where each node may represent input
or an entity. In contrast, AMN learns to organize memory into various memory banks and performs
decode over fewer entities reducing inference times.

Conditional Computation & Efficient Inference: AMN is also related to the work on conditional
computation which allows part of networks to be active during inference improving computational
efficiency (Bengio et al. (2015)). Recently, this has been often accomplished using a gated mixture of
experts (Eigen et al. (2013); Shazeer et al. (2017)). AMN conditionally attends to entities in initial
banks during inference improving performance. For faster inference using CNNs, pruning (Le Cun
et al. (1989); Han et al. (2016)), low rank approximations (Denton et al. (2014)), quantization and
binarization (Rastegari et al. (2016)) and other tricks to improve GEMM performance (Vanhoucke
et al. (2011)) have been explored. For sequence based inputs, pruning and compression has been
explored (Giles & Omlin (1994); See et al. (2016)). However, compression results in irregular sparsity
that reduces memory costs but may not reduce computation costs. Adaptive computation time (Graves
(2016)) learns the number of steps required for inferring the output and this can also be used to reduce
inference times (Figurnov et al. (2016)). AMN uses memory networks with dynamic number of
banks to reduce computation costs.

Dynamic networks: Dynamic neural networks that change structure during inference have recently
been possible due to newer frameworks such as Dynet and PyTorch. Existing work on pruning can
be implemented using these frameworks to reduce inference times dynamically like dynamic deep
network demonstrates (Liu & Deng (2017)). AMN utilizes the dynamic architecture abilities to
construct an input dependent memory network of variable memory bank depth and the dynamic
batching feature to process a variable number of entities. Furthermore, unlike past work that requires
an apriori number of fixed memory slots, AMN constructs them on-the-fly based on the input. The
learnable discrete decision-making process can be extended to other dynamic networks which often
rely on REINFORCE to make such decisions (Liu & Deng (2017)).

Neuroscience: Our network construction is inspired by work on working memory representations.
There is sufficient evidence for multiple, working memory representations in the human brain (Hazy
et al. (2006)). Semantic memory (Tulving et al. (1972)), describes a hierarchical organization starting
with relevant facts at the lowest level and progressively more complex and distant concepts at higher
levels. AMN constructs entities from the input stories and stores the most relevant entities based on
the question in the lowest level memory bank. Progressively higher level memory banks represent
distant concepts (and not necessarily higher level concepts for AMN). Other work demonstrates
organization of human memory in terms of “priority structure” where attention is a gate-keeper of
working memory-guided by executive control’s goals, plans, and intentions as in Watzl (2017), similar
in spirit to AMN’s question guided network construction.

3 DIFFERENTIABLE ADAPTIVE MEMORY MODULE

In this section, we describe the design process and motivation of our memory module. Our memory
network architecture is created during inference time for every story. The architecture consists of

3



Under review as a conference paper at ICLR 2018

different memory banks and each memory bank stores entities from the input story. Hence, a memory
entity represents the hidden state of each entity (each word in our case) from the input story while
a memory bank is a collection of entities. Intuitively, each memory bank stores entities that have a
similar distance score from the question.

At a high level, entities are gradually and recurrently copied through memory banks to filter out
irrelevant nodes such that in the final inference stage, fewer entities are considered by the decoder.
Note that the word filter implies a discrete decision and that recurrence implies time. If we were to
perform a strict cut off and remove entities that appear to be irrelevant at each time step, learning
the reasoning logic that requires previous entities that were cut off would not be possible. Thus,
smoothed discretization is required.

We design filtering to be a two-stage pseudo-continuous process to simulate discrete cut offs
(Πmove,Πnew), while keeping reference history. The overall memory (M ) consists of multiple
memory banks. A memory bank is a collection or group of entities (m0...l), where m0 denotes the
initial and most general bank and ml denotes the most relevant bank. Note that |l| is input dependent
and learned. First, entities are moved from m0 gradually towards ml based off of their individual
relevance to the question and second, if ml becomes too saturated, ml+1 is created. Operations in the
external memory allowing for such dynamic restructuring and entity updates are described below.
Note that these operations still maintain end to end differentiability.

1. Memory bank creation (Πnew), which creates a new memory bank depending on the current
states of entities mi. If the entropy, or information contained (explained below), of mi is
too high, Πnew(mi) will learn to create a new memory bank mi+1 to reduce entropy.

2. Moving entities across banks (Πmove), which determines which entities are relevant to the
current question and move such entities to further (higher importance) memory banks.

3. Adding/Updating entities in a bank (Πau), which adds entities that are not yet encountered
to the first memory bank m0 or if the entity is already in m0, the operation updates the entity
state.

4. Propagating changes across entities (Πprop), which updates the entity states in memory
banks based on node current states Πprop(M) and their semantic relationships. This is to
communicate transitive logic.

Both Πnew,Πmove require a discrete decision (refer to section 4.2.1.), and in particular, for Πnew

we introduce the notion of entropy. That is to say if mi contains too many nodes (the entropy
becomes too high), the memory module will learn to create a new bank mi+1 and move nodes to
mi+1 to reduce entropy. By creating more memory banks, the model spreads out the concentration of
information which in turn better discretizes nodes according to relevance.

4 ADAPTIVE MEMORY NETWORKS

A high-level overview is shown in Figure 2, followed by a mathematical detail of the model’s modules.
Our model adopts the encoder-decoder framework with an augmented adaptive memory module. For
an overview of the algorithm, refer to Section A.1.

Notation and Problem Statement: Given a story represented by N input sentences (or state-
ments), i.e., (l1, · · · , lN ), and a question q, our goal is to generate an answer a. Each sentence l is a
sequence of N words, denoted as (w1, · · · , wNs), and a question is a sequence of Nq words denoted
as (w1, · · · , wNq ). Throughout the model we refer to entities; these can be interpreted as a 3-tuple of
ew = (word ID wi, hidden state w, question relevance strength s). Scalars, vectors, matrices, and dot
products are denoted by lower-case letters, boldface lower-case letters and boldface capital letters,
and angled brackets respectively.

4.1 ENCODER

The input to the model, starting with the encoder, are story-question input pairs. On a macro level,
sentences l1...N are processed. On a micro level, words w1...Ns are processed within sentences.
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Figure 2: Adaptive memory networks.

For each wi ∈ li, the encoder maps wi to a hidden representation and a question relevance strength
∈ [0, 1]. The word ID of wi is passed through a standard embedding layer and then encoded through
an accumulation GRU. The accumulation GRU captures the entity states through time by adding the
output of each GRU time step to its respective word, stored in a lookup matrix. The initial states of
ew are set to this GRU output. Meanwhile, the question is also embedded and encoded in the same
manner sans accumulation.

In the following, the subscripts i, j are used to iterate through the total number of words in a statement
and question respectively, D stores the accumulation GRU output, and wi is a GRU encoding output.
The last output of the GRU will be referred to as wN ,wNq for statements and questions.

ui, uj = EMBED(wii), EMBED(wij) (1)
wi = GRU(ui,wi−1) (2)

D[i] += wi (3)
wj = GRU(uj ,wj−1) (4)

To compute the question relevance strength s ∈ [0, 1] for each word, the model uses GRU-like
equations. The node strengths are first initialized to Xavier normal and the inputs are the current
word states win, the question state wNq , and when applicable, the previous strength. Sentences are
processed each time step t.

zt = σ(Uzw
in +WzwNq +Xzs

t−1) (5)

rt = 1− σ(Ur〈st−1,wNq 〉) (6)

s̃t = σ(Whw
in +Uh(r

t � st−1)) (7)

st = zt � st−1 + (1− zt)� s̃t (8)

In particular, equation (6) shows where the model learns to lower the strengths of nodes that are
not related the question. First, a dot product between the current word states and question state are
computed for similarity (high correlation), then it is subtracted from a 1 to obtain the dissimilarity.
We refer to these operations as SGRU (Strength GRU) in Algorithm 1.

4.2 ADAPTIVE MEMORY MODULE

The adaptive memory module recurrently restructures entities in a question relevant manner so the
decoder can then consider fewer entities (namely, the question relevant entities) to generate an answer.
The following operations are performed once per sentence.

4.2.1 MEMORY BANK CONTROLLER

As mentioned earlier, discrete decisions are difficult for neural networks to learn so we designed a
specific memory bank controller Πctrl for binary decision making. The model takes ideas from the
reparameterization trick and uses custom backpropagation to maintain differentiability.

In particular, the adaptive memory module needs to make two discrete decisions on a {0, 1} basis,
one in Πnew to create a new memory bank and the other in Πmove to move nodes to a different
memory bank. The model uses a scalar p ∈ {0, 1} to parameterize a Bernoulli distribution where
the realization H, is the decision the model makes. However, backpropagation through a random
node is intractable, so the model detaches H from the computation graph and introduces H as a new
node. Finally, H is used as a mask to zero out entities in the discrete decision. Meanwhile, p is kept
in the computation graph and has a special computed loss (Section 4.4). The operations below will
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be denoted as Πctrl and has two instances: one for memory bank creation Πnew and one for moving
entities across banks Πmove. In equation 9, depending on what Πctrl is used for, q is a polymorphic
function and will take on a different operation and ∗ will be a different input. Examples of such are
given in their respective sections (4.2.2.1, 4.2.2.2).

p = q(∗) (9) H = Bernoulli(p) (10)

4.2.2 MEMORY BANK OPERATIONS

1. Memory bank creation Πnew: To determine when a new memory bank is created, in other
words, if the current memory bank becomes too saturated, the memory bank controller
(4.2.1.) will make a discrete decision to create a new memory bank. Here, q (eq 9) is a
fully connected layer and the input is the concatenation of all the current memory bank mi’s
entity states [w0...wi] ∈ R1,n|ew|. Intuitively, q will learn a continuous decision that is later
discretized by eq 10 based on entity states and the number of entities. Note this is only
performed for the last memory bank.

Πnew([w0...wi]) =

{
M.new() if 1(Πctrl([w0...wi])) else
pass

(11)

2. Moving entities through memory banks: Similar to Πnew, individual entities’ relevance
scores are passed into the bank controller to determine H as the input. The relevance score
is computed by multiplying an entity state by its respective relevance ∈ Rn,|ew|. Here, q
has a slight modification and is the identity function. Note that this operation can only be
performed if there is a memory bank to move nodes to, namely if mi+1 exists. Additionally,
each bank has a set property where it cannot contain duplicate nodes, but the same node can
exist in two different memory banks.

Πmove(si ∗ wi) = m.add(1(Πctrl(si ∗ wi))) ∀i ∈ m (12)

3. Adding/Updating entities in a bank: Recall that entities are initially set to the output of
D. However, as additional sentences are processed, new entities and their hidden states are
observed. In the case of a new entity ew, the entity is added to the first memory bank m0. If
the entity already exists in m0, then ew’s corresponding hidden state is updated through a
GRU. This procedure is done for all memory banks.

Πau([w0...wi]) =

{
m0.add(eiw) if eiw 6∈ m0 else
wt+1

i = GRU(wN ,wt
i) ∀m ∈M (13)

4. Propagating updates to related entities: So far, entities exist as a bag of words model and
the sentence structure is not maintained. This can make it difficult to solve tasks that require
transitive reasoning over multiple entities. To track sentence structure information, we
model semantic relationships as a directed graph stored in adjacency matrix A. As sentences
are processed word by word, a directed graph is drawn progressively from w0...wi...wN . If
sentence lk’s path contains nodes already in the current directed graph, lk will include said
nodes in its path. After lk is added to A, the model propagates the new update hidden state
information ai among all node states using a GRU. ai for each node i is equal to the sum of
the incoming edges’ node hidden states.
Additionally, we add a particular emphasis on lk to simulate recency. At face value, one
propagation step of A will only have a reachability of its immediate neighbor, so to reach all
nodes, A is raised to a consecutive power r to reach and update each intermediate node. r
can be either the longest path in A or a set parameter. Again, this is done within a memory
bank for all memory banks. For entities that have migrated to another bank, the update
for these entities is a no-op but propagation information as per the sentence structure is
maintained. A single iteration is shown below:
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a = (Ar)T [w0...wi] (14) wt = GRU(a,wt−1) (15)

When nodes are transferred across banks, A is still preserved. If intermediate nodes are
removed from a path, a transitive closure is drawn if possible.

After these steps are finished at the end of a sentence, namely, the memory unit has reasoned through
how large (number of memory banks) the memory should be and which entities are relevant at the
current point in the story, all entities are passed through the strength modified GRU (4.1, eq 5-8) to
recompute their question relevance (relevance score).

4.3 DECODE

After all sentences l1...N are ingested, the decode portion of the network learns to interpret the results
from the memory banks. The network iterates through the memory banks using a standard attention
mechanism. To force the network to understand the question importance weighting, the model uses an
exponential function d to weight important memory banks higher. Cm are the hidden states contained
in memory m, sm are the relevance strengths of memory bank m, wNq is the question hidden state,
ps is the attention score, r, h are learned weight masks, g are the accumulated states, and l is the final
logits prediction. During inference, fewer memory banks are considered.

Cm = sm · [w0, ...wi] ∀i ∈ m (16)
ps = Softmax(〈Cm,wNq 〉) (17)

g += d(〈Cm, ps〉) (18)

L̂ = r(PReLU(h(g) + wNq ) if m is last (19)

4.4 LOSS

Loss is comprised of two parts, answer loss, which is computed from the given annotations, and
secondary loss (from Πnew, Πmove), which is computed from sentence and story features at each
sentence time step l0...N . Answer loss is standard cross entropy at the end of the story after lN is
processed.

Lp(L̂) = CrossEntropy(L̂,L)

After each sentence li, the node relevance sli is enforced by computing the expected relevance E[sli ].
E[s] is determined by nodes that are connected to the answer node a in a directed graph; words that
are connected to a are relevant to a. They are then weighted with a deterministic function of distance
from a.

Ls(s) = DKL(sli ||E[sli ])
Additionally, bank creation is kept in check by constraining pli w.r.t. the expected number of
memory banks. The expected number of memory banks can be thought of as a geometric distribution
∼ Geometric(p̂li) parameterized by p̂li , a hyperparameter. Typically, at each sentence step p̂ is
raised to the inverse power of the current sentence step to reflect the amount of information ingested.
Intuitively, this loss ensures banks are created when a memory bank contains too many nodes. On the
other hand, the learned mask q (eq. 9) enables the model to weight certain nodes a higher entropy to
prompt bank creation. Through these two dependencies, the model is able to simulate bank creation
as a function of the number of nodes and the type of nodes in a given memory bank.

Lb(pli) = DKL(pli ||p̂
1

β|li| )

All components combined, the final loss is given in the following equation

Ltotal = Lp(L̂) +

|ln|∑
i=1

(Li
s(s) + Li

b(p))

5 EVALUATION

In this section, we evaluate AMN accuracy and inference times on the bAbI dataset Weston et al.
(2015) and extended bAbI tasks dataset. We compare our performance with Entnet (Henaff et al.
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(2017)), which recently achieved state of the art results on the bAbi dataset. For accuracy measure-
ments, we also compare with DMN+ and encoder-decoder methods. Finally we discuss the time
trade offs between AMN and current SOTA methods. The portion regarding inference times are not
inclusive of story ingestion. We summarize our experiments results as follows:

• We are able to solve all bAbi tasks using AMN. Furthermore, AMN is able to reason
important entities and propagate them to the final memory bank allowing for 48% fewer
entities examined during inference.

• We construct extended bAbI tasks to evaluate AMN behavior. First, we extend Task 1 for
multiple questions in order to gauge performance in a more robust manner. For example, if
a reasonable set of questions are asked (where reasonable means that collectively they do
not require all entities to answer implying entities can be filtered out), will the model still
sufficiently reason through entities. We find that our network is able to reason useful entities
for both tasks and store them in the final memory bank. Furthermore, we also scale bAbI for
a large number of entities and find that AMN provides additional benefits at scale since only
relevant entities are stored in the final memory bank.

5.1 EXPERIMENT SETTINGS

We implement our network in PyTorch (Paszke et al. (2017)). We initialize our model using Xavier
initialization, and the word embeddings utilize random uniform initialization ranging from −

√
3 to√

3. The learning rate is set as 0.001 initially and updated with a learning rate scheduler. E[s] contains
nodes in the connected components of A containing the answer node a which has relevance scores
sampled from a Gaussian distribution centered at 0.75 with a variance of 0.05 (capped at 1). Nodes
that are not in the connected component containing a are similarly sampled from a Gaussian centered
from 0.3 with a variance of 0.1 (capped at 0). p̂li is initially set to 0.8 and β varies depending on the
story length from 0.1 ≤ β ≤ 0.25. Note that for transitive tasks, p̂li is set to 0.2. We train our models
using the Adam optimizer (Kingma & Ba, 2014).

5.2 BABI DATASET

The bAbI task suite consists of 20 reasoning tasks that include deduction, induction, path finding
etc. Results are from the following parameters: ≤ 200 epochs, best of 10 runs. Table 1 shows the
accuracy and Table 4 shows the inference performance in terms of the number of entities examined.
A task is considered passed if the error rate is less than 5%.

We find that AMN creates 1− 6 memory banks for different tasks. We also find that 8 tasks can be
solved by looking at just one memory bank and 14 tasks can be solved with half the total number
of memory banks. Lastly, all tasks can be solved by examining less than or equal the total number
of entities (e ∈ M ≤ |V |+ ε)1. Tasks that cannot be solved in fewer than half the memory banks
either require additional entities due to transitive logic or have multiple questions. For transitive logic,
additional banks could be required as an relevant nodes may be in a further bank. However, this
still avoids scanning all banks. In the case of multiple questions, all nodes may become necessary
to construct all answers. We provide additional evaluation in Appendix to examine memory bank
behavior for certain tasks.

Inference performance Table 4 shows the number of banks created and required to solve a task,
as well as the ratio of entities examined to solve the task. Table 3 shows the complexity of AMN
and other SOTA models. Entnet uses an empirically selected parameter, typically set to the number
of vocabulary words. GGT-NN uses the number of vocabulary words and creates new k new nodes
intermittently per sentence step.

For tasks where nodes are easily separable where nodes are clearly irrelevant to the question(s),
AMN is able to successfully reduce the number of nodes examined. However for tasks that require
more information, such as counting (Task 7), the model is still able to obtain the correct answer

1The entities used to construct an answer and pass the task are examined as the sum of all entities across the
M which is usually O(|V |). However, this is within an error margin of 6% more entities on some experiments,
and thus we included an ε term.
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Task AMN Entnet DMN+ MemN2N EncDec
1 - Single Supporting Fact 0.0 0.0 0.0 0.0 52.0
2 - Two Supporting Facts 2.1 0.1 0.3 0.3 66.1
3 - Three Supporting Facts 4.7 4.1 1.1 2.1 71.9
4 - Two Arg. Relations 0.0 0.0 0.0 0.0 29.2
5 - Three Arg. Relations 2.7 0.3 0.5 0.8 14.3
6 - Yes/No Questions 3.1 0.2 0.0 0.1 31.0
7 - Counting 0.0 0.0 2.4 2.0 21.8
8 - Lists/Sets 0.0 0.5 0.0 0.9 27.6
9 - Simple Negation 1.3 0.1 0.0 0.3 36.4
10 - Indefinite Knowledge 1.2 0.6 0.0 0.0 36.4
11 - Basic Coreference 2.7 0.3 0.0 0.1 31.7
12 - Conjunction 2.2 0.0 0.0 0.0 35.0
13 - Compound Coref. 4.6 1.3 0.0 0.0 6.80
14 - Time Reasoning 2.1 0.0 0.2 0.1 67.2
15 - Basic Deduction 1.8 0.0 0.0 0.0 62.2
16 - Basic Induction 4.2 0.0 45.3 51.8 54.0
17 - Positional Reasoning 4.3 0.5 4.2 18.6 43.1
18 - Size Reasoning 2.0 0.3 2.1 5.3 6.60
19 - Path Finding 2.4 2.3 0.0 2.3 89.6
20 - Agents Motivations 0.0 0.0 0.0 0.0 2.30
No. of failed tasks (>5%) 0 0 5 6 20

Table 1: Performance comparison of various models in terms of test error rate (%) and the number of
failed tasks on the bAbI dataset. The bold task scores are where AMN can solve the task using only 1
memory bank.

Task Created Banks (Rounded Average) Required Banks Ratio ( e∈M|V | )
1 - Single Supporting Fact 3 1 0.22
2 - Two Supporting Facts 5 1 0.41
4 - Two Arg. Relations 2 1 0.70
7 - Counting 5 2 0.81
10 - Indefinite Knowledge 1 1 1.00
11 - Basic Coreference 3 1 0.43
12 - Conjunction 2 1 0.37
14 - Time Reasoning 3 1 0.60
15 - Basic Deduction 1 1 1.00
16 - Basic Induction 2 2 1.06
17 - Positional Reasoning 1 1 1.00
18 - Size Reasoning 3 2 0.82
19 - Path Finding 2 2 1.05
20 - Agents Motivations 2 1 0.26
Extended bAbi
1 - Single Supporting Fact, 100 Entities 6 1 .13
1 - Single Supporting, Multiple Questions 3 1 .38

Table 2: Memory bank analysis of indicative tasks.

without using all entities. Lastly, transitive logic tasks where information is difficult to separate due
to dependencies of entities, the model creates very few banks (1 or 2) and uses all nodes to correctly
generate an answer. We note that in the instance where the model only creates one bank, it is very
sparse, containing only one or two entities.

Because variations in computation times in text are minute, the number of entities required to construct
an answer are of more interest as they directly correspond to the number of computations required.
Additionally, due to various implementations of current models, their run times can significantly vary.
However, for the comparison of inference times, AMN’s decoder and EntNet’s decoder are highly
similar and contain roughly the same number of operations.

5.3 EXTENDED BABI TASKS

We extend the bAbI tasks by adding additional entities and sentences and adding multiple questions
for a single story, for Task 1.

9
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Scaled Task 1: We increase the the number of entities to 100 entities in the task generation system
instead of existing 38. We also extend the story length to 90 to ensure new entities are referenced. We
find that AMN creates 6 memory banks and the ratio of entities in the final banks versus the overall
entities drops to 0.13 given the excess entities that are not referenced in the questions.

Multiple questions: We also augment the tasks with multiple questions to understand if AMN
can handle when a story has multiple questions associated with it. We extend our model to handle
multiple questions at once to limit re-generating the network for every question. To do so, we modify
bAbi to generate several questions per story for tasks that do not currently have multiple questions.
For single supporting fact (Task 1), the model creates 3 banks and requires 1 bank to successfully
pass the task. Furthermore, the ratio of entities required to pass the task only increases by 0.16 for a
total of 0.38.

6 CONCLUSION AND FUTURE WORK

In this paper, we present Adaptive Memory Network that learns to adaptively organize the memory
to answer questions with lower inference times. Unlike NTMs which learn to read and write at
individual memory locations, Adaptive Memory Network demonstrates a novel design where the
learned memory management is coarse-grained that is easier to train.Through our experiments, we
demonstrate that AMN can learn to reason, construct, and sort memory banks based on relevance
over the question set.

AMN architecture is generic and can be extended to other types of tasks where the input sequence
can be separated into different entities. In the future, we plan to evaluate AMN over such tasks to
evaluate AMN generality. We also plan to experiment with larger scale datasets (beyond bAbI, such
as a document with question pairs) that have a large number of entities to further explore scalability.
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Method Complexity
Entnet (Henaff et al. (2017)) O(|V |)
GGT-NN (Johnson (2017)) O(|V |+ kS)

AMN (ours) O(α|V |)) : 0 < α < 1 + ε

Table 3: Comparison of decode complexity for AMN, Entnet and GGT-NN.

A APPENDIX

A.1 ALGORITHM

We describe our overall algorithm in pseudo-code in this section. We follow the notation as described
in the paper.

Algorithm 1 AMN(S,q, a)

1: M← Ø
2: for sentence s ∈ S do
3: for word w ∈ s do
4: D← ENCODE(w,q)
5: end for
6: nmi

← SGRU(D)
7: for memory bank mi ∈M do
8: mi ← Πau(mi,D)
9: mi ← Πprop(mi)

10: mi+1 ← Πmove(mi,nmi)
11: nmi

← SGRU(D,nmi
)

12: if i = |M| and Πnew(mi) then
13: M, p← [M,mi+1]
14: Repeat 8 to 11 once
15: end if
16: end for
17: end for
18: â← DECODE(M,q)

A.2 DECODE OVERHEAD

We compare the computations costs during the decode operation during inference for solving the
extended bAbi task. We compute the overheads for AMN Entnet (Henaff et al. (2017)) and GGT-NN.
Table 3 gives the decode comparisons between AMN, Entnet and GGT-NN. Here, |V | represents to
the total number of entities for all networks. GGT-NN can dynamically create nodes and k k is hyper
parameter the new nodes created for S sentences in input story. α is the percent of entities stored in
the final bank w.r.t to the total entities for AMN.

We compare the wall clock execution times for three tasks within bAbI for 1000 examples/task. We
compare the wall-clock times for three tasks. We compare the inference times of considering all
banks (and entities) versus the just looking at the passing banks as required by AMN. We find that
AMN requires fewer banks and as a consequence fewer entities and saves inference times.

Task Created Banks Required Banks Baseline (All banks) AMN (Required banks)
1 - Single Supporting Fact 3 1 2.15 s 0.6 s
2 - Two Supporting Facts 5 1 15.8 s 3.2 s
7 - Counting 5 2 21 s 6.0 s

Table 4: Memory bank wall clock times for representative tasks for 1000 examples (time in secs).

A.3 MEMORY BANK BEHAVIOR

In this section, we understand memory bank behavior of AMN. Figure 3 shows the memory banks and
the entity creation for a single story example, for some of the tasks from bAbI. Depending upon the
task, and distance from the question AMN creates variable number of memory banks. The heatmap
demonstrates how entities are copied across memory banks. Grey blocks indicate absence of those
banks.
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Figure 3: Heat map showing distribution of entities across various memory banks for simple bAbI tasks. The
x-axis shows the task IDs (refer to Table 1 for task details for each ID.)

t = 0t = 0 t = 1t = 1 t = 2t = 2

AA A2A2 A3A3

Figure 4: Propagation in AMN (shown for a single memory bank across time).
A.4 PROPAGATION EXAMPLE

In this section, we explain propagation with an example. Figure 4 shows how propagation happens
after every time step. The nodes represent entities corresponding to words in a sentence. As sentences
are processed word by word, a directed graph is drawn progressively from w0...wi...wN . If sentence
lk’s path contains nodes already in the current directed graph, lk will include said nodes in the its
path. After lk is added to A, the model propagates the new update hidden state information ai among
all node states using a GRU. ai for each node i is equal to the sum of the incoming edges’ node
hidden states. Additionally, we add a particular emphasis on lk to simulate recency. At face value,
one propagation step of A will only have a reachability of its immediate neighbor, so to reach all
nodes, A is raised to a consecutive power r to reach and update each intermediate node. r can be
either the longest path in A or a set parameter.
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