Under review as a conference paper at ICLR 2018

ITERATIVE DEEP COMPRESSION : COMPRESSING
DEEP NETWORKS FOR CLASSIFICATION AND SEMAN-
TIC SEGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning and in particular deep learning approaches have outperformed
many traditional techniques in accomplishing complex tasks such as image class-
fication (Krizhevsky et al.l 2012)), natural language processing or speech recogni-
tion (Hinton et al.,|2012)). Most of the state-of-the art deep networks have complex
architecture and use a vast number of parameters to reach this superior perfor-
mance. Though these networks use a large number of learnable parameters, those
parameters present significant redundancy (de Freitas, [2013)). Therefore, it is pos-
sible to compress the network without much affecting its accuracy by eliminating
those redundant and unimportant parameters. In this work, we propose a three
stage compression pipeline, which consists of pruning, weight sharing and quanti-
zation to compress deep neural networks. Our novel pruning technique combines
magnitude based ones with dense sparse dense Han et al.| (2016) ideas and it-
eratively finds for each layer its achievable sparsity instead of selecting a single
threshold for the whole network. Unlike previous works, where compression is
only applied on networks performing classification, we evaluate and perform com-
pression on networks for classification as well as semantic segmentation, which
is greatly useful for understanding scenes in autonomous driving. We tested our
method on LeNet-5 and FCNs, performing classification and semantic segmen-
tation, respectively. With LeNet-5 on MNIST, pruning reduces the number of
parameters by 15.3 times and storage requirement from 1.7 MB to 0.006 MB with
accuracy loss of 0.03%. With FCNS on Cityscapes, we decrease the number of pa-
rameters by 8 times and reduce the storage requirement from 537.47 MB to 18.23
MB with class-wise intersection-over-union (IoU) loss of 4.93% on the validation
data.

1 INTRODUCTION

Deep learning found its importance in different domains to solve tasks ranging from small-scale to
large-scale problems. It has remarkably achieved human-level performance in image recognition
tasks (He et al., 2016). Existing deep neural networks are very powerful but they require consid-
erable storage and memory bandwidth. For example, AlexNet by Krizhevsky et al|(2012) has 61
million parameters, which is over 100 times more than [LeCun et al.| (1989) conventional model
LeNet - 5 (LeCun et al.| |1998)). More parameters require more storage space and more computation.
This makes it difficult to deploy deep neural networks on embedded devices and mobile platforms
performing real time processing with limited memory and processing units. Still, not all weights in
a network are important and there is in fact high redundancy in these parameters (Guo et al.,[2016).
Choosing the right and important parameters is essential to do the optimization between the network
efficiency and resources used with minimal accuracy loss. While some success has been achieved
in compressing deep neural networks performing classification, it has not been studied for networks
performing semantic segmentation, where each pixel in the image is classified to a category making
it possible to recognize multiple objects in an image. Semantic segmentation is extremely relevant
for the self driving domain, where scenes have to be understood in real time, and is an important
target for compression as deep learning methods have achieved significant success on it (Wu et al.,
2016).

Under review as a conference paper at ICLR 2018

To achieve this goal, we present “iterative deep compression”: a three stage pipeline as illustrated
in figure [1] similar to “deep compression” proposed by |Han et al.| (2015). As is the case for many
pipelines in this field, first we prune the number of parameters in the network by removing redundant
and unimportant connections. To the remaining connections, we apply weight sharing so that the
same weight can be shared by multiple connections across the network. Thus, only the shared
weights and the indices mapping each remaining weight to its shared weight need to be stored.
Finally, we apply quantization to reduce the number of bits required to store these shared weights.

Pruning

Weight
Achievable sparsity determination sharing

Find shared weights

Sparse layer

Quantization

Train network Evaluate network
l Quantize weights
. Compressed
Original Jf L
network Pruned Generate codebook Shared network
Threshold calculation network network
l Quantize index
Prune codebook
Prune weights

I ! .

Refing codebook

N R J

Figure 1: Three stage pipeline: pruning, weight sharing and quantization.

Our major contribution is the development of a pruning method that combines magnitude pruning
with ideas from dense sparse dense (Han et al [2016). That is done by iteratively finding for each
layer its achievable sparsity instead of selecting a single threshold for the whole network and then
applying dense sparse retraining while pruning. Moreover, we also investigate several options for
weight sharing, such as sharing weights within layer and across the layers, examining the impact
of each on network performance. We also explore different clustering techniques comparing their
optimal number of clusters and resulting network performance.

In this work we compressed two state-of-the-art deep neural network architectures. The first per-
forms classification on MNIST dataset (LeCun et al., |1998) while the second does semantic seg-
mentation on Cityscapes (Cordts et al.,2016). While in some stages of our pipeline we may explore
more than one technique, we always select the one performing best for our next stage.

2 RELATED WORK

In order to compress deep networks, a variety of methods have been proposed. (Chen et al.|(2015)
accomplish network compression by HashNets, where they group the parameters of the network into
hash buckets. These parameters are tuned with standard backpropagation during training, however,
their binning is pre-determined by a hash function. They exploit the inherent redundancy in neural
networks to achieve drastic reductions in model sizes. |Gong et al.| (2014)) proposed another way to
compress deep networks by vector quantization and found that the product quantization gives a good
balance between model size and accuracy. They achieve 16 - 24 times compression on the state-of-
the art CNN by classification accuracy loss of 1%. But both the compression methods consider only
fully connected layers in the network. [Lin et al.|(2013) attempted to reduce the number of param-
eters by global average pooling the feature maps from the last convolutional layer of the network.
Hubara et al| (2016)) recently proposed binarized neural networks, where they use binary weights
and activations during training. This bit wise operations substantially improve power-efficiency, but
on the cost of accuracy loss.

Under review as a conference paper at ICLR 2018

Our work is based on the idea of network pruning. It helps to reduce both network complexity
and over fitting (Hubara et al.,2016)). Hassibi & Stork](1993)) perform network pruning by using the
information from second derivatives of the loss function and propose that such pruning is more accu-
rate than magnitude based pruning, where smaller magnitude weights are eliminated. Their method
does not require retraining the network after pruning, however, it is computationally expensive for
large networks. Han et al.| (2015) proposed magnitude based pruning while simultaneously retrain-
ing the network. They significantly reduce the number of parameters in the network without much
impacting the accuracy, however, there is always the risk of deleting the important parameters. (Guo
et al.| (2016) incorporate connection splicing in order to avoid incorrect pruning. In their splicing
operation they enable the recovery of pruned connections if they are found important at any time, but
they do not account for correlation between weights (Yang et al., 2016b). Recently,|Han et al.[(2015]))
proposed a deep compression pipeline. First they prune the unimportant connections based on their
magnitude, then perform quantization to enforce weight sharing and finally apply Huffman encoding
for lossless data compression. Their experiment on AlexNet reduced the number of parameters by
9x without loss of accuracy. Because of their significant effectiveness, our work is partly inspired
by their work. However, we contribute to this work by improving the weight sharing technique and
introducing dynamic threshold calculation for pruning. We also contribute to the work by [Han et al.
(2016) on dense sparse dense training by calculating the achievable sparsity in each layer.

3 METHOD

In this section we present our compression pipeline also depicted in figure [I] with its Pruning,
Weight Sharing and Quantization steps.

Pruning, From Dense to Sparse: The objective of the pruning technique is to identify and remove
unimportant and redundant weights that would least affect the performance of the network. For this,
we use the simple heuristic of quantifying the importance of weights using their absolute values
(Han et al., 2015). In other words, the bigger the absolute weight value, the more important it is.
But it is crucial to select one threshold weight value below which all the weights could be considered
unimportant. We start with a pre-trained fully connected network. One approach is to choose a single
threshold value for the entire network. However, this does not take into account the difference in the
weight distribution across the layers. For example, as depicted in figure[2] the weight distribution of
two different dense layers of the LeNet architecture differs. Therefore, we select the threshold value
layerwise which means a different threshold value for each layer. To select the threshold values we
introduced a hyper parameter to the network, the sparsity. This is the starting sparsity, initialized to
100% for each layer. It gives the percentage of weights of the network that are pruned, that is, set
to 0 (Han et all [2016). We determine the sparsity for each layer using algorithm [I]. We start from
output to first convolutional layer. This process gives the approximate value of achievable sparsity
in each layer without much impacting the accuracy of the network.

12000 - - ‘ .
10000
8000
w w
g s
2 £ 6000
2 g
g g
4000 [
2000
-05 -04 -03 -02 -01 00 0l 02 03 04 e 04 —0.2 0.0 0.2 0.4
weight_distribution weight_distribution
Weightdistribution of second dense layer Weight distribution of first dense layer

Figure 2: Weight distribution of two different dense layers of LeNet architecture.

1

SOOI A WN

e
B WP =

15
16
17

Under review as a conference paper at ICLR 2018

Algorithm 1: Determine achievable sparsity in a layer

Input: error_tolerance, Starting_Sparsityy, for each layer defaults to 100, pre-trained
network
Output: Achieved sparsity in each layer
foreach trainable layer L from n to 1 do
Sparsityy, < Starting_Sparsityy, ;
Prune the weights in layer L up to defined sparsity Sparsityy, ;
t+0;
current_errory; <— computed error with the modified network ;
while current_error; > error_tolerance do
Train the model ;
Prune again up to same level, Sparsityy, ;
t—t+1;
current_errory < current error of the network ;
if current_error; < current_error;_, then
\ Decrease the sparsity, Sparsityy, by 1% ;
end

end
Achieved_Sparsityy, < Sparsityy, ;

end
return Achieved_Sparsity

In this algorithm [I] first, we initialize the sparsity for each layer and receive as input the pre-trained
network and a parameter called ‘error tolerance’ for the network. Error tolerance is computed by
adding a very small degradation tolerance to baseline error of the model, where baseline error is the
error of the pre-trained network before pruning. Then, we initialize sparsity to 100% for a layer,
that is, setting all its weights to zero and then we evaluate error of the network as depicted in step
3 and 5. In step 6, we compare this error with the defined error tolerance of the network. If the
current error is more than the defined error tolerance, we train the network and again prune it at
same sparsity level. We repeat this process until the error of the network converges at that sparsity
level and it stops improving by further retraining. We decrease the sparsity in the layer by 1% after
every such convergence, as shown in step 12.

Once we got the approximated sparsity level for each layer, we start pruning our network, depicted
in algorithm [2] The achieved sparsity for each layer and the overall error tolerance of the network
are received as parameters from the last step. We also receive the original pre-trained weights and
an extra sparsity for each layer. This extra sparsity will be added to the starting sparsity found in
the previous algorithm. Then we calculate the threshold value for each layer Ap, that is needed to
make the layer Sparsity, sparse, pruning the weights of each layer. However, mistakenly pruning
important connections or over pruning could cause high accuracy loss (Guo et al., 2016). In order
to compensate the unexpected loss, we retrain the network and enable the connection recovery, that
is, a pruned value is not henceforth always zero as is done in |Han et al.| (2015), but can regain a
positive absolute value after retraining. Finding important connections in a certain network is also
extremely difficult, therefore, we conduct pruning and training iteratively and continually maintain
the old weights from the previous iteration. After each iteration, a pruning threshold is selected from
trained weights of the previous iteration. Hence, we are dynamically calculating the threshold for
each layer. After pruning, we evaluate the pruned model and compare this current error with the
defined error tolerance of the network. If the current error is greater than the error tolerance, we
retrain the network and prune it again as can be seen in step 11 and 12. All the layers of the network
are pruned and trained together because of the dependence of each layer to its previous layer. We
keep track of the error from every iteration and we stop retraining if the network converges, that
is, error is not improving any more at defined sparsity level. This error has been compared with
the error tolerance of the network as depicted in step 15. We decrease the sparsity by 1% and
again start the iterative process pruning and retraining if the current error is still less than the error
tolerance. Otherwise, it returns pruned network as can be seen in step 19. This sums up pruning
of the network where we iteratively undergo the dense sparse phase under the constraint of sparsity
and error tolerance.

—
SR I AW -

el el Sy
NN AW

18
19

Under review as a conference paper at ICLR 2018

Algorithm 2: Dynamic threshold calculation and pruning of the network

Input: error_tolerance, Achieved_Sparsity for each layer, Extra_Sparsityy, for each layer,
pre-trained network
Output: Sparse network
Sparsityy, < Achieved_Sparsity;, + Extra_Sparsityy, ;
Sparse phase(for each layer simultaneously):
Get weights W, for each layer separately ;
Calculate threshold, A, needed to obtain Sparsityy, ;
Prune iy, weight, With < 0 if With < Ap ;
Dense phase ;
t<0;
current_error; < Evaluate the network ;
do
do
Retrain the network ;
Again prune the network using, Ay, ;
current_error; < Evaluate the network ;
t+—t+1,;
while current_error;_1 > current_errory;
Decrease the Sparsityy, in each layer by 1% ;
Recalculate A\p, ;
while current_error > error_tolerance;
return pruned network

12000

10000

8000 -

Number of parameteres
o
2
3
15

o ()
- -1 0 1 2 3 - 4 -3 -2 -1 o 1 > 2
® 080 ® & & —*Random initialization 3K AN XXX XK XXX X XX X X X XX —p Before codebook pruning
900000000900 9909 > Aftercodebook pruning
Weight distribution of LeMet neural network

XK XK XK KKK X KK KKK KX XXX — Linear initialization
Weight distribution of LeNet neural network

Figure 3: Initial cluster centers by random and Figure 4: Linear initialization of clusters centers
linear centroid initializations before and after codebook pruning

Weight Sharing limits the number of effective weights to store by finding the weight values that
could be shared across multiple connections without affecting the accuracy of the network. Weights
can be shared, first, only within a layer, that is finding shared weights among the multiple connec-
tions within a layer and second, across all the layers, that is, finding shared weights among multiple
connections across all the layers. This can be done using clustering. The idea is that all the weights
that belong to one cluster share the same weight value, partitioning the n original weights into k
clusters such that n >> k. The performance of the network depends upon the quality of the clus-
tering algorithm. The value of the cluster’s centroid is assigned to all the weight values within that
cluster. So at the end we need to store only the centroid values to represent the weight values of the
network instead of storing all the weight values individually. We examine two different clustering al-
gorithms: mean shift clustering and k-means. K-means is very sensitive to the initial position of the
cluster centers (Celebi et al.|[2013)), so we examine two different initialization methods: random and
linear initialization (Han et al., 2015). The stepwise algorithm for k-means with linear initialization
is illustrated in algorithm 3]

Refinement of the shared weights As depicted in figure [3] linear initialization results in cluster
centers scattered over the entire range. However, cluster centers at the extreme ends of the distri-

ot

_o R TIAAUN A W=

Under review as a conference paper at ICLR 2018

Algorithm 3: Procedure used to find cluster centers with linear initialization

Qutput: cluster_centers
Input: starting_number_of_partitions, error_tolerance, all_weights_of_network, step_size
range < |max all_weights_of _network| + |min all weights_of _network| ;
number_of_partitions < starting_number_of_partitions ;
while current_error > error_tolerance do
number of clusters = number_of_partitions +1 ;
cluster_centers = points dividing range equally to n partitions ;
Perform k-means with these cluster_centers initialization ;
Replace all the weight values of the network with their nearest cluster center ;
Calculate current_error by evaluating the model ;
number_of_partitions <— number_of_partitions + step_size ;
end
return cluster_centers

bution represent few original weights. It could be the case, however, that those underrepresented
weight values are really important to the network’s performance. Thus we will evaluate the effects
of merging them with the other shared weights, by pruning the code book.

Pruning of the codebook To check the possibility of reducing down the number of shared weights,
we first examine the number of weights mapped to each center in the codebook. We found that
there are some codes that are being assigned to zero or very few weight values. So we prune such
codes. For this pruning, we empirically chose a fixed threshold of 25. Therefore, any code which
is assigned to less than 25 weight values would be pruned and removed from the codebook. All
the weight values assigned to such codes/cluster centers would be reassigned to next closest cluster
center. In our experiments we have observed that this does not impact much the accuracy of the
network. The cluster centers before and after codebook pruning are shown in figure]

Fine tuning of the codebook To fine tune the cluster centers we use the gradient approach (Han
et al.|[2015). First, gradients for each weight value are calculated using Theano symbolic differenti-
ation. Then, the gradients of the weight values that belong to one cluster are grouped together. All
the calculated gradients are grouped according to the cluster they belong and summed to give one
value per cluster. This value is then multiplied with the learning rate and subtracted from the cluster
centers obtained from the previous step. These new values are called fine-tuned cluster centers. Now
these fine-tuned values are used as shared weights for the network.

Quantization Quantization is performed to reduce the number of bits required to represent each
shared weight value. We use fixed point quantization to convert floating point weight values to fixed
point weight values. Fixed point implementation facilitates the potential deployment on embedded
systems (Lin et al.l 2016). Based on state-of-the-art by [Han et al.| (2015) we convert the 32-bit
floating point weight values to 8-bit fixed point values for each fully convolutional layer and to 5-bit
fixed point values for each fully connected layer. The conversion of floating point to fixed point is
done using the following formulation, where ¢o,mq: 1S the user defined bit width (Lin et al.,|2016):

Fixed point value = Floating point value x 29/ermat (1)

4 EXPERIMENTS AND RESULTS

We experimentally analyzed the three stage pipeline discussed above and applied it to some popular
pre-trained networks. In section {.1] and [£.2] we present our experiment results for LeNet-5 on
MNIST and FCN8 on cityscapes respectively.

4.1 RESULTS FOR LENET-5 ON MNIST

We trained LeNet on the training set of MNIST to accomplish the classification task. The optimizer
Adam was used to train the network. We trained the network for 15 epochs with learning rate of

Under review as a conference paper at ICLR 2018

1073. Our trained LeNet has achieved the accuracy of 99.30% on the validation set of MNIST. So,
we have 99.30% as baseline accuracy and consequently 0.70% as baseline error rate of the network.

Pruning The first step was to select the threshold used to prune the network. Table [I] gives the
comparison between our two threshold selection methods. In the first, we fixed one threshold value
for all layers while in the second we dynamically calculate a different threshold for each layer.
Dynamic threshold selection achieved substantially better results.

Table 1: Accuracy based comparison of the two different threshold selection methods

Threshold selection methods Achievable Sparsity (% of Zero Weights)
One fixed threshold 86.30 %
Different dynamically selected thresholds 93.47 %

While initializing the sparsity levels for each layer, we increased the above mentioned percentage
by 5 to 6% following our algorithm. Based on these defined sparsity levels, the initial threshold has
been calculated for each layer. We prune each layer of the network with these threshold values. A
plot of the weight distribution of second convolutional layer before and after first pruning is shown
in figure[5}

g

12000

@
o
=3

10000

-
=]
=3

@
=]
=3

8000

2
3

6000 |-

parameters

parameters
&

w
=1
S

4000

N
=1
=]

2000

=
o
o

o

o
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 —02 00 02 0.4 0.6
weight_distribution weight_distribution

Figure 5: Weight distribution of second convolutional layer of LeNet before pruning (in the left) and
after pruning (in the right)

We iteratively perform pruning and retraining using the same optimizer and learning rate on all
network weights until the current validation error of the network becomes less than the defined error
tolerance. Our pruning runs for 42 iterations in total for the whole network. Figure [6] depicts the
convergence of error rate and accuracy rate after each iteration at initialized sparsity level. As it
can be seen, after a few iterations the accuracy of the network is not improving anymore so we
decreased the sparsity level by 1% in each layer and again start iteratively pruning and retraining
at new decreased sparsity levels. In table [2| we compare layer by layer pruning results between our
method and Han et al.|(2015).

Weight Sharing Next, we applied weight sharing techniques on these remaining weights of the
network. We perform clustering on all the non-zero weights. Weight sharing further reduced the
number of weights to be stored, as depicted in table 3] where the comparison of each weight sharing
technique we explored is shown in terms of number of clusters and accuracy achieved.

So k-means clustering with linear initialization across all the layers gives the best results. We fine
tune these cluster centers by gradient approach discussed in section[3] The accuracy of the network
remained unchanged after fine tuning.

Quantization Next, we applied quantization to reduce the number of bits required to store the
tuned cluster centers. We applied 8-bit fixed point quantization for convolutional layers and 5-bit
fixed point quantization for fully connected layers. Tabled]gives the accuracy statistics and reduction
in size after each stage of pipeline.

Under review as a conference paper at ICLR 2018

Error rate

0 5

10 15
Iterations

20

(a) Convergence of error rate after each iteration of

pruning and training

100

80

70

Accuracy rate

60 |-

1] 5 10
terations

15 20

(b) Convergence of accuracy rate after each iteration

of pruning and training

Figure 6: Convergence of error rate (a) and accuracy rate (b) after each iteration of pruning and

training

Table 2: Comparison of our pruning results on LeNet-5 with that of [Han et al.{(2015)

Percentage Number of Percentase Number of
of remaining | remaining rag L.
Model | Layer arameters arameters of remaining remaining
P [ours] p [ours] parameters (Han et al.,|2015) | parameters (Han et al.,[2015)
F2 5% 250 19 % 950
LeNet-5 F1 6% 24000 8 % 32000
C2 15% 3750 12 % 3000
Cl1 50% 90 66 % 330
Total ~ 6.5% 28090 ~8 % 36280
Accuracy 99.27% 99.26 %
Storage 6 KB 44 KB
Requirement

4.2 RESULTS FOR FCN ON CITYSCAPES

We conducted second experiment on FCN (Yang et al.| [2016a) performing semantic segmentation
task on the Cityscapes dataset. Our trained FCN8 has achieved the baseline IU of 64.75% and
baseline error rate of 35.25% on the validation set of cityscapes.

Pruning In this experiment, dynamic threshold calculation is used to calculate the threshold as it
is evident from table [I] that dynamic threshold selection achieved substantially better results. We
iteratively perform the pruning and retraining operation with the same optimizer and learning rate
until the current validation error of the network becomes less than the defined error tolerance. It

Table 3: Comparison of all the weight sharing techniques discussed above

Weight sharing technique | Number of clusters found | Accuracy achieved
Mean
shift 12 99.05%
k-means with 8 98.94%
random initialization
_ k-means with lincar 24 99.14%
initialization within layers
k-means with linear
initialization across all 15 99.27%
the layers

Under review as a conference paper at ICLR 2018

Table 4: Accuracy statistics and reduction in size after each stage of pipeline

Storage requirement of | Reduction in storage

Stages of pipleline parameters (in MB) requirement (in %) Accuracy
Baseline 1.7 MB - 99.30%
Pruning 0.11 MB 93.52% 99.26%
Pruning + Weight sharing 0.008 MB 99.50% 99.28%
Pr““g‘fl ;ezvsz)%létsggﬁng * 0.007 MB 99.58% 99.27%
Pruning + Weight sharing +
Pruned codebook + Quantization 0.006 MB 99.59% 99.27%

runs for 32 iterations for the whole network. Figure [/| depicts the convergence of error rate and
accuracy rate after each iteration at initialized sparsity level. Plot of the weight distribution of first
convolutional layer before and after first pruning is shown in figure [8] Table 5| depicts the compres-
sion statistics after pruning and table [6] depicts the mean IU statistics and reduction in storage after
pruning.

60 T T T T T T 100

o1 JUPORV SRS S Sataa st

B8O |

&

70

Accuracy rate
w
k=]
Error rate

60

5 B

PR ——
e
=

" " ; " " 1 4 . . . 1 1
0 5 10 15 20 25 30 0c| 5 10 15 20 25 30

Iterations Iterations
(a) Convergence of accuracy rate after each iteration (b) Convergence of error rate after each iteration of
of pruning and training pruning and training

Figure 7: Convergence of accuracy rate (a) and error rate (b) after each iteration of pruning and
training

400

350

300

parameters
o NN
2 O o o
e e © o

parameters

w
a

o 0
=0.8 =0.6 =0.4 =0.2 0.0 0.2 0.4 0.6 0.8 =0.8 =0.6 =0.4 =0.2 0.0 0.2 0.4 0.6 0.8
weight_distribution weight_distribution

Figure 8: Weight distribution of first convolutional layer of FCN before pruning (in the left) and
after pruning (in the right)

Weight sharing To find the shared weights, we applied k-means clustering with linear initial-
ization as it achieved substantially better results in the previous experiment. To find the optimum
number of clusters, we evaluate the number of clusters ranging from 10 to 1200. Figure [9] depicts
the achieved IOU score corresponding to number of clusters found in this range. It can been seen

Under review as a conference paper at ICLR 2018

Table 5: FCN compression results after pruning

Layers Total Achieved Total Remaining
of the . non-zero non-zero
network to be b parameters __Sparsity parameters after weights after
efore pruning | in each layer . o
pruned pruning pruning in % (P)
Cl1 1792 49 % 913 51 %
C2 36928 84 % 5908 16 %
C3 73856 69 % 22895 31 %
C4 147584 69 % 45751 31 %
C5 295168 69 % 91502 31 %
C6 590080 70 % 177024 30 %
C7 590080 69 % 182924 31 %
C8 1180160 79 % 247833 21 %
C9 2359808 81 % 448363 19 %
C10 2359808 84 % 377569 16 %
Cl11 2359808 83 % 401167 17 %
C12 2359808 83 % 401167 17 %
CI13 2359808 83 % 401167 17 %
Cl4 102764544 89 % 11304099 11 %
C15 16781312 89 % 1845944 11 %
Cl6 77843 89 % 8562 11 %
C17 9747 89 % 1072 11 %
C18 3268 89 % 359 11 %
C19 4883 89 % 537 11 %
C20 3268 89 % 359 11 %
C21 3268 89 % 359 11 %
C22 3268 90 % 326 10 %
C23 3268 80 % 653 20 %
Total sparsity 134369357 86.44 % 18233102 13.56 %
12
1 "’"

10U score (in %)
[[
fa] [s:]
.-"'".:.

o
B
.”-
-

[}
[
-

=]

100 200 300 400 500 800 700 B20O 900 100011001200

Mumber of clusters

Figure 9: Number of clusters vs IOU score

that as the number of clusters increases the IOU score is improving, however, the improvement is
very slow. Due to time constraints, we did not continue with weight sharing and directly applied
quantization to the non-zero weights after pruning.

10

Under review as a conference paper at ICLR 2018

Quantization We applied 8 bit quantization to pruned weights. The size of the network reduced
from 537.47 MB to 18.23 MB as depicted in table|[6]

Table 6: Reduction in storage requirement after pruning and quantization

. . Storage requirement of | Reduction in storage
Stages of pipleline paragmeu?rs (in MB) requirement (in %g) 10U
Baseline 537.47 MB - 64.75 %
Pruning 72.93 MB 86.43% 61.25 %
Pruning + Quantization 18.23 MB 96.60% 59.82 %

5 CONCLUSION AND FUTURE WORK

Deep learning approaches have demonstrated that they can outperform many traditional techniques,
but because of their complex architecture in terms of more stacked layers and a large number of
parameters, it is challenging to deploy these deep networks on mobile devices with limited hard-
ware requiting real time predictions. This work contributes to the previous research on compression
of deep networks performing classification. Moreover, we have also presented the compression of
a network that performs semantic segmentation. We implemented a three stage deep compression
pipeline of pruning, weight sharing, and quantization. Using different sparsity levels, we calcu-
late different thresholds in each layer to perform pruning. Our “layerwise threshold” initialization
method has shown promise in providing a good trade-off between sparsity and network performance.
We also examined two different weight sharing possibilities: finding shared weights within a layer
or across all the layers of the network. We extend the previous work by [Han et al.| (2015) with k-
means using linear initialization by merging underrepresented shared weights. Finally, we quantize
these shared weights, based on state-of-the-art by [Han et al.| (2015)), in which they used fixed point
quantization. The experimental results show that our method compresses the number of parameters
in LeNet - 5 and FCN by 15.3x and 8x, respectively. We reduce the storage requirement for LeNet
from 1.7 MB to 0.007 MB and for FCN from 547 MB to 18.23 MB. The reduction in storage for the
FCN has extended network compression to more sophisticated tasks such as object detection and
segmentation.

In our work, iterative pruning is performed to get rid of unimportant connections. This process takes
35 hours for LeNet with 430180 parameters on MNIST and 42 days for FCN with approximately
134M parameters on Cityscape to reach an optimum level of sparsity and performance. While not
prohibitive, this process could be sped up by different approaches such as masking by |Guo et al.
(2016), where they have a gradient based heuristic for determining which weights do not come
back. It would also be interesting to carry out the experiment on bigger networks and datasets for
classification. Also recently, smaller deep neural network architectures, such as SqueezeNet, by
Han et al. achieved AlexNet-level accuracy on ImageNet with 50x fewer parameters and is thus
feasible to be deployed on FPGAs and other hardware with limited memory (landola et al., [2016).
Compressing already smaller deep neural networks could further reduce the number of parameters
and make them even more efficient on embedded systems.

REFERENCES

M Emre Celebi, Hassan A Kingravi, and Patricio A Vela. A comparative study of efficient initial-
ization methods for the k-means clustering algorithm. Expert systems with applications, 40(1):
200-210, 2013.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In International Conference on Machine Learning, pp.
2285-2294, 2015.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3213-3223, 2016.

11

Under review as a conference paper at ICLR 2018

Nando de Freitas. Predicting parameters in deep learning. 2013.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In
Advances In Neural Information Processing Systems, pp. 1379-1387, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Shijian Tang, Erich Elsen, Bryan Catanzaro, John
Tran, and William J Dally. Dsd: Regularizing deep neural networks with dense-sparse-dense
training flow. arXiv preprint arXiv:1607.04381, 2016.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, pp. 164-171, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82-97, 2012.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in neural information processing systems, pp. 41074115, 2016.

Forrest N Tandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and; 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Yann LeCun et al. Generalization and network design strategies. Connectionism in perspective, pp.
143-155, 1989.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization of deep convolu-
tional networks. In International Conference on Machine Learning, pp. 2849-2858, 2016.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Zifeng Wu, Chunhua Shen, and Anton van den Hengel. Wider or deeper: Revisiting the resnet
model for visual recognition. arXiv preprint arXiv:1611.10080, 2016.

Jimei Yang, Brian Price, Scott Cohen, Honglak Lee, and Ming-Hsuan Yang. Object contour detec-
tion with a fully convolutional encoder-decoder network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 193-202, 2016a.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional neural
networks using energy-aware pruning. arXiv preprint arXiv:1611.05128, 2016b.

12

	Introduction
	Related Work
	Method
	Experiments and Results
	Results for LeNet-5 on MNIST
	Results for FCN on cityscapes

	Conclusion and Future Work

