
Published as a conference paper at ICLR 2018

RESIDUAL CONNECTIONS ENCOURAGE ITERATIVE IN-
FERENCE

Stanisław Jastrzębski1,2,∗, Devansh Arpit2,∗, Nicolas Ballas3, Vikas Verma5,
Tong Che2 & Yoshua Bengio2,6

1 Jagiellonian University, Cracow, Poland
2 MILA, Université de Montréal, Canada
3 Facebook, Montreal, Canada
4 University of Bonn, Bonn, Germany
5 Aalto University, Finland
6 CIFAR Senior Fellow
∗ Equal Contribution

ABSTRACT

Residual networks (Resnets) have become a prominent architecture in deep learn-
ing. However, a comprehensive understanding of Resnets is still a topic of ongoing
research. A recent view argues that Resnets perform iterative refinement of fea-
tures. We attempt to further expose properties of this aspect. To this end, we study
Resnets both analytically and empirically. We formalize the notion of iterative re-
finement in Resnets by showing that residual connections naturally encourage fea-
tures of residual blocks to move along the negative gradient of loss as we go from
one block to the next. In addition, our empirical analysis suggests that Resnets are
able to perform both representation learning and iterative refinement. In general,
a Resnet block tends to concentrate representation learning behavior in the first
few layers while higher layers perform iterative refinement of features. Finally
we observe that sharing residual layers naively leads to representation explosion
and counterintuitively, overfitting, and we show that simple existing strategies can
help alleviating this problem.

1 INTRODUCTION

Traditionally, deep neural network architectures (e.g. VGG Simonyan & Zisserman (2014), AlexNet
Krizhevsky et al. (2012), etc.) have been compositional in nature, meaning a hidden layer applies an
affine transformation followed by non-linearity, with a different transformation at each layer. How-
ever, a major problem with deep architectures has been that of vanishing and exploding gradients.
To address this problem, solutions like better activations (ReLU Nair & Hinton (2010)), weight
initialization methods Glorot & Bengio (2010); He et al. (2015) and normalization methods Ioffe
& Szegedy (2015); Arpit et al. (2016) have been proposed. Nonetheless, training compositional
networks deeper than 15− 20 layers remains a challenging task.

Recently, residual networks (Resnets He et al. (2016a)) were introduced to tackle these issues and
are considered a breakthrough in deep learning because of their ability to learn very deep networks
and achieve state-of-the-art performance. Besides this, performance of Resnets are generally found
to remain largely unaffected by removing individual residual blocks or shuffling adjacent blocks
Veit et al. (2016). These attributes of Resnets stem from the fact that residual blocks transform
representations additively instead of compositionally (like traditional deep networks). This additive
framework along with the aforementioned attributes has given rise to two school of thoughts about
Resnets– the ensemble view where they are thought to learn an exponential ensemble of shallower
models Veit et al. (2016), and the unrolled iterative estimation view Liao & Poggio (2016); Greff
et al. (2016), where Resnet layers are thought to iteratively refine representations instead of learning
new ones. While the success of Resnets may be attributed partly to both these views, our work takes

1

Published as a conference paper at ICLR 2018

steps towards achieving a deeper understanding of Resnets in terms of its iterative feature refinement
perspective. Our contributions are as follows:

1. We study Resnets analytically and provide a formal view of iterative feature refinement using
Taylor’s expansion, showing that for any loss function, a residual block naturally encourages rep-
resentations to move along the negative gradient of the loss with respect to hidden representations.
Each residual block is therefore encouraged to take a gradient step in order to minimize the loss in
the hidden representation space. We empirically confirm this by measuring the cosine between the
output of a residual block and the gradient of loss with respect to the hidden representations prior to
the application of the residual block.

2. We empirically observe that Resnet blocks can perform both hierarchical representation learn-
ing (where each block discovers a different representation) and iterative feature refinement (where
each block improves slightly but keeps the semantics of the representation of the previous layer).
Specifically in Resnets, lower residual blocks learn to perform representation learning, meaning that
they change representations significantly and removing these blocks can sometimes drastically hurt
prediction performance. The higher blocks on the other hand essentially learn to perform iterative
inference– minimizing the loss function by moving the hidden representation along the negative
gradient direction. In the presence of shortcut connections1, representation learning is dominantly
performed by the shortcut connection layer and most of residual blocks tend to perform iterative
feature refinement.

3. The iterative refinement view suggests that deep networks can potentially leverage intensive
parameter sharing for the layer performing iterative inference. But sharing large number of residual
blocks without loss of performance has not been successfully achieved yet. Towards this end we
study two ways of reusing residual blocks: 1. Sharing residual blocks during training; 2. Unrolling
a residual block for more steps that it was trained to unroll. We find that training Resnet with
naively shared blocks leads to bad performance. We expose reasons for this failure and investigate a
preliminary fix for this problem.

2 BACKGROUND AND RELATED WORK

Residual Networks and their analysis:

Recently, several papers have investigated the behavior of Resnets (He et al., 2016a). In (Veit et al.,
2016; Littwin & Wolf, 2016), authors argue that Resnets are an ensemble of relatively shallow net-
works. This is based on the unraveled view of Resnets where there exist an exponential number of
paths between the input and prediction layer. Further, observations that shuffling and dropping of
residual blocks do not affect performance significantly also support this claim. Other works discuss
the possibility that residual networks are approximating recurrent networks (Liao & Poggio, 2016;
Greff et al., 2016). This view is in part supported by the observation that the mathematical formu-
lation of Resnets bares similarity to LSTM (Hochreiter & Schmidhuber, 1997), and that successive
layers cooperate and preserve the feature identity. Resnets have also been studied from the perspec-
tive of boosting theory Huang et al. (2017). In this work the authors propose to learn Resnets in a
layerwise manner using a local classifier.

Our work has critical differences compared with the aforementioned studies. Most importantly we
focus on a precise definition of iterative inference. In particular, we show that a residual block
approximate a gradient descent step in the activation space. Our work can also be seen as relating
the gap between the boosting and iterative inference interpretations since having a residual block
whose output is aligned with negative gradient of loss is similar to how gradient boosting models
work.

Iterative refinement and weight sharing:

Humans frequently perform predictions with iterative refinement based on the level of difficulty of
the task at hand. A leading hypothesis regarding the nature of information processing that happens in
the visual cortex is that it performs fast feedforward inference (Thorpe et al., 1996) for easy stimuli
or when quick response time is needed, and performs iterative refinement of prediction for complex

1A shortcut connection is a convolution layer between residual blocks useful for changing the hidden space
dimension (see He et al. (2016a) for instance).

2

Published as a conference paper at ICLR 2018

stimuli (Vanmarcke et al., 2016). The latter is thought to be done by lateral connections within
individual layers in the brain that iteratively act upon the current state of the layer to update it. This
mechanism allows the brain to make fine grained predictions on complex tasks. A characteristic
attribute of this mechanism is the recursive application of the lateral connections which can be
thought of as shared weights in a recurrent model. The above views suggest that it is desirable to
have deep network models that perform parameter sharing in order to make the iterative inference
view complete.

3 ITERATIVE INFERENCE IN RESNETS

Our goal in this section is to formalize the notion of iterative inference in Resnets. We study the
properties of representations that residual blocks tend to learn, as a result of being additive in nature,
in contrast to traditional compositional networks. Specifically, we consider Resnet architectures (see
figure 1) where the first hidden layer is a convolution layer, which is followed by L residual blocks
which may or may not have shortcut connections in between residual blocks.

Figure 1: A typical residual
network architecture.

A residual block applied on a representation hi transforms the rep-
resentation as,

hi+1 = hi + Fi(hi) (1)

Consider L such residual blocks stacked on top of each other fol-
lowed by a loss function. Then, we can Taylor expand any given
loss function L recursively as,

L(hL) = L(hL−1 + FL−1(hL−1)) (2)

= L(hL−1) + FL−1(hL−1).
∂L(hL−1)

∂hL−1
(3)

+O(F 2
L−1(hL−1))

Here we have Taylor expanded the loss function around hL−1. We
can similarly expand the loss function recursively around hL−2 and
so on until hi and get,

L(hL) = L(hi) +

L−1∑
j=i

Fj(hj).
∂L(hj)

∂hj
+O(F 2

j (hj)) (4)

Notice we have explicitly only written the first order terms of each
expansion. The rest of the terms are absorbed in the higher order
terms O(.). Further, the first order term is a good approximation when the magnitude of Fj is small
enough. In other cases, the higher order terms come into effect as well.

Thus in part, the loss equivalently minimizes the dot product between F (hi) and ∂L(hi)
∂hi

, which can

be achieved by making F (hi) point in the opposite half space to that of ∂L(hi)
∂hi

. In other words,

hi +F (hi) approximately moves hi in the same half space as that of −∂L(hi)
∂hi

. The overall training
criteria can then be seen as approximately minimizing the dot product between these 2 terms along
a path in the h space between hi and hL such that loss gradually reduces as we take steps from
hi to hL. The above analysis is justified in practice, as Resnets’ top layers output Fj has small
magnitude (Greff et al., 2016), which we also report in Fig. 2.

Given our analysis we formalize iterative inference in Resnets as moving down the energy (loss)
surface. It is also worth noting the resemblance of the function of a residual block to stochastic
gradient descent. We make a more formal argument in the appendix.

4 EMPIRICAL ANALYSIS

Experiments are performed on CIFAR-10 (Krizhevsky & Hinton, 2009) and CIFAR-100 (see ap-
pendix) using the original Resnet architecture He et al. (2016b) and two other architectures that we

3

Published as a conference paper at ICLR 2018

0 10 20 30 40 50

Residual block index

0.1
0.2
0.3
0.4

||F
(h

)||
 /

||h
||

Original Resnet on CIFAR-10
train
validation

0 2 4 6 8
Residual block index

0.5
1.0
1.5
2.0

||F
(h

)||
 /

||h
||

Single Representation Resnet on CIFAR-10
train
validation

0 5 10 15 20 25 30

Residual block index
0

1

2

||F
(h

)||
 /

||h
||

Avg-Pooling Resnet on CIFAR-10
train
validation

0 2 4 6 8 10 12

Residual block index

0.2

0.4

0.6

||F
(h

)||
 /

||h
||

wResnet on CIFAR-10
train
validation

Figure 2: Average ratio of `2 norm of output of residual block to the norm of the input of resid-
ual block for (left to right) original Resnet, single representation Resnet, avg-pooling Resnet, and
wideResnet on CIFAR-10. (Train and validation curves are overlapping.)

0 10 20 30 40 50
Residual block index

0.92
0.94
0.96
0.98
1.00

Ac
cu

ra
cy

Original Resnet on CIFAR-10
validation accuracy (no layer dropped)
train accuracy (no layer dropped)
validation accuracy
train accuracy

0 2 4 6 8
Residual block index

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Single Representation Resnet on CIFAR-10

validation accuracy (no layer dropped)
train accuracy (no layer dropped)
validation accuracy
train accuracy

0 5 10 15 20 25 30

Residual block index

0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Avg-Pooling Resnet on CIFAR-10

validation accuracy (no layer dropped)
train accuracy (no layer dropped)
validation accuracy
train accuracy

0 2 4 6 8 10 12

Residual block index

0.85
0.90
0.95

Ac
cu

ra
cy

wResnet on CIFAR-10

validation accuracy (no layer dropped)
train accuracy (no layer dropped)
validation accuracy
train accuracy

Figure 3: Final prediction accuracy when individual residual blocks are dropped for (left to right)
original Resnet, single representation Resnet, avg-pooling Resnet, and wideResnet on CIFAR-10.

0 10 20 30 40 50
Residual block index

0.125
0.100
0.075
0.050
0.025
0.000

co
sin

e
lo

ss

Original Resnet on CIFAR-10

train
validation

0 2 4 6 8
Residual block index

0.04
0.03
0.02
0.01

co
sin

e
lo

ss

Single Representation Resnet on CIFAR-10
train
validation

0 5 10 15 20 25 30
Residual block index

0.10
0.08
0.06
0.04
0.02
0.00

co
sin

e
lo

ss

Avg-Pooling Resnet on CIFAR-10

train
validation

0 2 4 6 8 10 12

Residual block index

0.06
0.04
0.02

co
sin

e
lo

ss

wResnet on CIFAR-10

train
validation

Figure 4: Average cos loss between residual block F (hi) and ∂L(hi)
∂hi

for (left to right) original
Resnet, single representation Resnet, avg-pooling Resnet, and wideResnet on CIFAR-10.

0 25 50 75 100 125 150 175 200

Epochs

0.2
0.4
0.6
0.8

ia
cc

Original Resnet on CIFAR-10

0 20 40 60 80 100

Epochs

0.2
0.4
0.6
0.8

ia
cc

Single Representation Resnet on CIFAR-10

0 20 40 60 80 100

Epochs
0.2
0.4
0.6
0.8

ia
cc

Avg-Pooling Resnet on CIFAR-10

0 20 40 60 80

Epochs

0.4

0.6

0.8

ia
cc

wResnet on CIFAR-10

Figure 5: Prediction accuracy when plugging classifier after hidden states in the last stage of
Resnets(if any) during training for (left to right) original Resnet, single representation Resnet, avg-
pooling Resnet, and wideResnet on CIFAR-10. (Blue to red spectrum denotes lower to higher
residual blocks)

introduce for the purpose of our analysis (described below). Our main goal is to validate that resid-
ual networks perform iterative refinement as discussed above, showing its various consequences.
Specifically, we set out to empirically answer the following questions:

• Do residual blocks in Resnets behave similarly to each other or is there a distinction be-
tween blocks that perform iterative refinement vs. representation learning?

• Is the cosine between ∂L(hi)
∂hi

and Fi(hi) negative in residual networks?
• What kind of samples do residual blocks target?
• What happens when layers are shared in Resnets?

Resnet architectures: We use the following four architectures for our analysis:

1. Original Resnet-110 architecture: This is the same architecture as used in He et al. (2016b) start-
ing with a 3 × 3 convolution layer with 16 filters followed by 54 residual blocks in three different
stages (of 18 blocks each with 16, 32 and 64 filters respectively) each separated by a shortcut con-
nections (1 × 1 convolution layers that allow change in the hidden space dimensionality) inserted
after the 18th and 36th residual blocks such that the 3 stages have hidden space of height-width
32× 32, 16× 16 and 8× 8. The model has a total of 1, 742, 762 parameters.

2. Single representation Resnet: This architecture starts with a 3 × 3 convolution layer with 100
filters. This is followed by 10 residual blocks such that all hidden representations have the same
height and width of 32 × 32 and 100 filters are used in all the convolution layers in residual blocks
as well.

4

Published as a conference paper at ICLR 2018

3. Avg-pooling Resnet: This architecture repeats the residual blocks of the single representation
Resnet (described above) three times such that there is a 2 × 2 average pooling layer after each set
of 10 residual blocks that reduces the height and width after each stage by half. Also, in contrast
to single representation architecture, it uses 150 filters in all convolution layers. This is followed
by the classification block as in the single representation Resnet. It has 12, 201, 310 parameters.
We call this architecture the avg-pooling architecture. We also ran experiments with max pooling
instead of average pooling but do not report results because they were similar except that max pool
acts more non-linearly compared with average pooling, and hence the metrics from max pooling are
more similar to those from original Resnet.

4. Wide Resnet: This architecture starts with a 3× 3 convolution layer followed by 3 stages of four
residual blocks with 160, 320 and 640 number of filters respectively, and 3 × 3 kernel size in all
convolution layers. This model has a total of 45,732,842 parameters.

Experimental details: For all architectures, we use He-normal weight initializa-
tion as suggested in He et al. (2015), and biases are initialized to 0. For resid-
ual blocks, we use BatchNorm→ReLU→Conv→BatchNorm→ReLU→Conv as sug-
gested in He et al. (2016b). The classifier is composed of the following elements:
BatchNorm→ReLU→AveragePool(8,8)→Flatten→Fully-Connected-Layer(#classes)→Softmax.
This model has 1, 829, 210 parameters. For all experiments for single representation and pooling
Resnet architectures, we use SGD with momentum 0.9 and train for 200 epochs and 100 epochs
(respectively) with learning rate 0.1 until epoch 40, 0.02 until 60, 0.004 until 80 and 0.0008
afterwards. For the original Resnet we use SGD with momentum 0.9 and train for 300 epochs with
learning rate 0.1 until epoch 80, 0.01 until 120, 0.001 until 200, 0.00001 until 240 and 0.000011
afterwards. We use data augmentation (horizontal flipping and translation) during training of all
architectures. For the wide Resnet architecture, we train the model with with learning rate 0.1 until
epoch 60 and 0.02 until 100 epochs.

Note: All experiments on CIFAR-100 are reported in the appendix. In addition, we also record the
metrics reported in sections 4.1 and 4.2 as a function of epochs (shown in the appendix due to space
limitations). The conclusions are similar to what is reported below.

4.1 COSINE LOSS OF RESIDUAL BLOCKS

In this experiment we directly validate our theoretical prediction about Resnets minimizing the
dot product between gradient of loss and block output. To this end compute the cosine loss

Fi(hi).
∂L(hi)

∂hi

‖Fi(hi)‖2‖
∂L(hi)

∂hi
‖2

. A negative cosine loss and small Fi(.) together suggest that Fi(.) is refining

features by moving them in the half space of −∂L(hi)
∂hi

, thus reducing the loss value for the corre-
sponding data samples. Figure 4 shows the cosine loss for CIFAR-10 on train and validation sets.
These figures show that cosine loss is consistently negative for all residual blocks but especially
for the higher residual blocks. Also, notice for deeper architectures (original Resnet and pooling
Resnet), the higher blocks achieve more negative cosine loss and are thus more iterative in nature.
Further, since the higher residual blocks make smaller changes to representation (figure 2), the first
order Taylor’s term becomes dominant and hence these blocks effectively move samples in the half
space of the negative cosine loss thus reducing loss value of prediction. This result formalizes the
sense in which residual blocks perform iterative refinement of features– move representations in the
half space of −∂L(hi)

∂hi
.

4.2 REPRESENTATION LEARNING VS. FEATURE REFINEMENT

In this section, we are interested in investigating the behavior of residual layers in terms of repre-
sentation learning vs. refinement of features. To this end, we perform the following experiments.

1. `2 ratio ‖Fi(hi)‖2/‖hi‖2: A residual block Fi(.) transforms representation as hi+1 = hi +
Fi(hi). For every such block in a Resnet, we measure the `2 ratio of ‖Fi(hi)‖2/‖hi‖2 averaged
across samples. This ratio directly shows how significantly Fi(.) changes the representation hi; a
large change can be argued to be a necessary condition for layer to perform representation learning.
Figure 2 shows the `2 ratio for CIFAR-10 on train and validation sets. For single representation

5

Published as a conference paper at ICLR 2018

Resnet and pooling Resnet, the first few residual blocks (especially the first residual block) changes
representations significantly (up to twice the norm of the original representation), while the rest of
the higher blocks are relatively much less significant and this effect is monotonic as we go to higher
blocks. However this effect is not as drastic in the original Resnet and wide Resnet architectures
which have two 1× 1 (shortcut) convolution layers, thus adding up to a total of 3 convolution layers
in the main path of the residual network (notice there exists only one convolution layer in the main
path for the other two architectures). This suggests that residual blocks in general tend to learn to
refine features but in the case when the network lacks enough compositional layers in the main path,
lower residual blocks are forced to change representations significantly, as a proxy for the absence
of compositional layers. Additionally, small `2 ratio justifies first order approximation used to derive
our main result in Sec. 3.

2. Effect of dropping residual layer on accuracy: We drop individual residual blocks from trained
Resnets and make predictions using the rest of network on validation set. This analysis shows
the significance of individual residual blocks towards the final accuracy that is achieved using all
the residual blocks. Note, dropping individual residual blocks is possible because adjacent blocks
operate in the same feature space. Figure 3 shows the result of dropping individual residual blocks.
As one would expect given above analysis, dropping the first few residual layers (especially the first)
for single representation Resnet and pooling Resnet leads to catastrophic performance drop while
dropping most of the higher residual layers have minimal effect on performance. On the other hand,
performance drops are not drastic for the original Resnet and wide Resnet architecture, which is in
agreement with the observations in `2 ratio experiments above.

In another set of experiments, we measure validation accuracy after individual residual block during
the training process. This set of experiments is achieved by plugging the classifier right after each
residual block in the last stage of hidden representation (i.e., after the last shortcut connection, if
any). This is shown in figure 5. The figures show that accuracy increases very gradually when
adding more residual blocks in the last stage of all architectures.

4.3 BORDERLINE EXAMPLES

In this section we investigate which samples get correctly classified after the application of a residual
block. Individual residual blocks in general lead to small improvements in performance. Intuitively,
since these layers move representations minimally (as shown by previous analysis), the samples that
lead to these minor accuracy jump should be near the decision boundary but getting misclassified
by a slight margin. To confirm this intuition, we focus on borderline examples, defined as examples
that require less than 10% probability change to flip prediction to, or from the correct class. We
measure loss, accuracy and entropy over borderline examples over last 5 blocks of the network using
the network final classifier. Experiment is performed on CIFAR-10 using Resnet-110 architecture.

Fig 6 shows evolution of loss and accuracy on three groups of examples: borderline examples,
already correctly classified and the whole dataset. While overall accuracy and loss remains similar
across the top residual blocks, we observe that a significant chunk of borderline examples gets
corrected by the immediate next residual block. This exposes the qualitative nature of examples
that these feature refinement layers focus on, which is further reinforced by the fact that entropy
decreases for all considered subsets. We also note that while train loss drops uniformly across
layers, test sets loss increases after last block. Correcting this phenomenon could lead to improved
generalization in Resnets, which we leave for future work.

4.4 UNROLLING RESIDUAL NETWORK

A fundamental requirement for a procedure to be truly iterative is to apply the same function. In
this section we explore what happens when we unroll the last block of a trained residual network for
more steps than it was trained for. Our main goal is to investigate if iterative inference generalizes
to more steps than it was trained on. We focus on the same model as discussed in previous section,
Resnet-110, and unroll the last residual block for 20 extra steps. Naively unrolling the network
leads to activation explosion (we observe similar behavior in Sec. 4.5). To control for that effect,
we added a scaling factor on the output of the last residual blocks. We hypothesize that controlling
the scale limits the drift of the activation through the unrolled layer, i.e. they remains in a given
neighbourhood on which the network is well behaved. Similarly to Sec. 4.3 we track evolution of

6

Published as a conference paper at ICLR 2018

14 15 16 17 18
block id

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train borderline
train correct
train all
test borderline
test correct
test all

14 15 16 17 18
block id

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
g

lo
ss

14 15 16 17 18
block id

0.0

0.5

1.0

1.5

2.0

en
tro

py

Figure 6: Accuracy, loss and entropy for last 5 blocks of Resnet-110. Performance on bordeline
examples improves at the expense of performance (loss) of already correctly classified points (cor-
rect). This happens because last block output is encouraged by training to be negatively correlated
(around −0.1 cosine) with gradient of the loss.

19 22 25 28 31 34 37
block id

0.44

0.46

0.48

0.50

0.52

0.54

ac
cu

ra
cy

19 22 25 28 31 34 37
block id

0.785

0.790

0.795

0.800

0.805
lo

g
lo

ss

19 22 25 28 31 34 37
block id

0.82

0.83

0.84

0.85

0.86

0.87

en
tro

py

train borderline
test borderline
train all
test all0.94

0.95

0.96

0.97

0.98

0.99

1.00

10 3

10 2

10 1

0.01

0.02

0.03

0.04

0.05

Figure 7: Accuracy, loss and entropy for Resnet-110 with last block unrolled for 20 additional steps
(with appropriate scaling). Borderline examples are corrected and overall performance accuracy
improves. Note different scales for train and test. Curves are averaged over 4 runs.

loss and accuracy on three groups of examples: borderline examples, already correctly classified
and the whole dataset. Experiments are repeated 4 times, and results are averaged.

We first investigate how unrolling blocks impact loss and accuracy. Loss on train set improved
uniformly from 0.0012 to 0.001, while it increased on test set. There are on average 51 borderline
examples in test set2, on which performance is improved from 43% to 53%, which yields slight
improvement in accuracy on test set. Next we shift our attention to cosine loss. We observe that
cosine loss remains negative on the first two steps without rescaling, and all steps after scaling.
Figure 7 shows evolution of loss and accuracy on the three groups of examples: borderline examples,
already correctly classified and the whole dataset. Cosine loss and `2 ratio for each block are
reported in Appendix E.

To summarize, unrolling residual network to more steps than it was trained on improves both loss
on train set, and maintains (in given neighbourhood) negative cosine loss on both train and test set.

4.5 SHARING RESIDUAL LAYERS

Our results suggest that top residual blocks should be shareable, because they perform similar it-
erative refinement. We consider a shared version of Resnet-110 model, where in each stage we
share all the residual blocks from the 5th block. All shared Resnets in this section have therefore
a similar number of parameters as Resnet-38. Contrary to (Liao & Poggio, 2016) we observe that
naively sharing the higher (iterative refinement) residual blocks of a Resnets in general leads to bad
performance3 (especially for deeper Resnets).

First, we compare the unshared and shared version of Resnet-110. The shared version uses approx-
imately 3 times less parameters. In Fig. 8, we report the train and validation performances of the
Resnet-110. We observe that naively sharing parameters of the top residual blocks leads both to

2All examples from train set have confident predictions by last block in the residual network.
3 (Liao & Poggio, 2016) compared shallow Resnets with shared network having more residual blocks.

7

Published as a conference paper at ICLR 2018

0 50 100 150 200
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Resnet-110
Resnet-38
Resnet-110 naive sharing

0 50 100 150 200
Epoch

0

500

1000

1500

2000

2500

3000

Gr
ad

ie
nt

 n
or

m
 ra

tio

0 8 16 24 32 40 48 53
Block index

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

||h
i||

1

Resnet-110
Resnet-110 naive sharing

Figure 8: Resnet-110 with naively shared top 13 layers of each block compared with unshared
Resnet-38. Left plot present training and validation curves, shared Resnet-110 heavily overfits.
In the right plot we track gradient norm ratio between first block in first and last stage of resnet
(i.e. r = || ∂L∂h1

||/ ∂L
∂h1+2n

||). Significantly larger ratio in the naive sharing model suggests, that the
overfitting is caused by early layers dominating learning. Metrics are tracked on train (solid line)
and validation data (dashed line)

.

0 25 50 75 100 125 150 175
Epoch

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

BN gamma 0.1 init
naive
unshare BN stats
unshare BN + gamma 0.1 init

0 25 50 75 100 125 150 175
Epoch

10

20

30

40

50

60

70

80

L 1
 n

or
m

 o
f l

as
t s

ta
te

Figure 9: Ablation study of different strategies to remedy sharing leading to overfitting phenomenon
in Residual Networks. Left figure shows effect on training and test accuracy. Right figure studies
norm explosion. All components are important, but it is most crucial to unshare BN statistics.

overfitting (given similar training accuracy, the shared Resnet-110 has significantly lower validation
performances) and underfitting (worse training accuracy than Resnet-110). We also compared our
shared model with a Resnet-38 that has a similar number of parameters and observe worse validation
performances, while achieving similar training accuracy.

We notice that sharing layers make the layer activations explode during the forward propagation at
initialization due to the repeated application of the same operation (Fig 8, right). Consequently, the
norm of the gradients also explodes at initialization (Fig. 8, center).

To address this issue we introduce a variant of recurrent batch normalization (Cooijmans et al.,
2016), which proposes to initialize γ to 0.1 and unshare statistics for every step. On top of this strat-
egy, we also unshare γ and β parameters. Tab. 1 shows that using our strategy alleviates explosion
problem and leads to small improvement over baseline with similar number of parameters. We also
perform an ablation to study, see Figure. 9 (left), which show that all additions to naive strategy are
necessary and drastically reduce the initial activation explosion. Finally, we observe a similar trend
for cosine loss, intermediate accuracy, and `2 ratio for the shared Resnet as for the unshared Resnet
discussed in the previous Sections. Full results are reported in Appendix D.

Unshared Batch Normalization strategy therefore mitigates this exploding activation problem. This
problem, leading to exploding gradient in our case, appears frequently in recurrent neural net-
work. This suggests that future unrolled Resnets should use insights from research on recurrent
networks optimization, including careful initialization (Henaff et al., 2016) and parametrization
changes (Hochreiter & Schmidhuber, 1997).

8

Published as a conference paper at ICLR 2018

Model CIFAR10 CIFAR100 Parameters

Resnet-32 1.53 / 7.14 12.62 / 30.08 467k-473k
Resnet-38 1.20 / 6.99 10.04 / 29.66 565k-571k
Resnet-110-UBN 0.63 / 6.62 7.75 / 29.94 570k-576k
Resnet-146-UBN 0.68 / 6.82 7.21 / 29.49 573k-579k
Resnet-182-UBN 0.48 / 6.97 6.42 / 29.33 576k-581k

Resnet-56 0.58 / 6.53 5.19 / 28.99 857k-863k
Resnet-110 0.22 / 6.13 1.26 / 27.54 1734k-1740k

Table 1: Train and test error of Resnet sharing top layers blocks (while using unshared both statistics
and β, γ in Batch Normalization) denoted as UBN (Unshared Batch Normalization) compared to
baseline Resnet of varying depth. Training Resnet with unrolled layers can bring additional gain of
0.3%, while adding marginal amount of extra parameters. Runs are repeated 4 times.

5 CONCLUSION

Our main contribution is formalizing the view of iterative refinement in Resnets and showing analyt-
ically that residual blocks naturally encourage representations to move in the half space of negative
loss gradient, thus implementing a gradient descent in the activation space (each block reduces loss
and improves accuracy). We validate theory experimentally on a wide range of Resnet architectures.

We further explored two forms of sharing blocks in Resnet. We show that Resnet can be unrolled
to more steps than it was trained on. Next, we found that counterintuitively training residual blocks
with shared blocks leads to overfitting. While we propose a variant of batch normalization to mitigate
it, we leave further investigation of this phenomena for future work. We hope that our developed
formal view, and practical results, will aid analysis of other models employing iterative inference
and residual connections.

ACKNOWLEDGEMENTS

We acknowledge the computing resources provided by ComputeCanada and CalculQuebec. SJ was
supported by Grant No. DI 2014/016644 from Ministry of Science and Higher Education, Poland.
DA was supported by IVADO.

REFERENCES

D. Arpit, Y. Zhou, B. U Kota, and V. Govindaraju. Normalization propagation: A parametric tech-
nique for removing internal covariate shift in deep networks. ICML, 2016.

Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron Courville. Recurrent
batch normalization. arXiv preprint arXiv:1603.09025, 2016.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Aistats, 2010.

K. Greff, R. Srivastava, and J. Schmidhuber. Highway and residual networks learn unrolled iterative
estimation. arXiV, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In ICCV, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016a.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV, 2016b.

M. Henaff, A. Szlam, and Y. LeCun. Recurrent orthogonal networks and long-memory tasks. In
ICML, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 1997.

9

Published as a conference paper at ICLR 2018

Furong Huang, Jordan Ash, John Langford, and Robert Schapire. Learning deep resnet blocks
sequentially using boosting theory. arXiv preprint arXiv:1706.04964, 2017.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. In NIPS, 2012.

Q. Liao and T. Poggio. Bridging the gaps between residual learning, recurrent neural networks and
visual cortex. arXiV, 2016.

E. Littwin and L. Wolf. The loss surface of residual networks: Ensembles and the role of batch
normalization. arXiV, 2016.

V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML,
2010.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv, 2014.

S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system. Nature, 1996.

S. Vanmarcke, F. Calders, and F. Wagemans. The time-course of ultrarapid categorization: The
influence of scene congruency and top-down processing. i-Perception, 2016.

A. Veit, M. Wilber, and S. Belongie. Residual networks are exponential ensembles of relatively
shallow networks. arXiV, 2016.

10

Published as a conference paper at ICLR 2018

Appendices
A FURTHER ANALYSIS

A.1 A SIDE-EFFECT OF MOVING IN THE HALF SPACE OF −∂L(ho)
∂ho

Let ho = Wx + b be the output of the first layer (convolution) of a ResNet. In this analysis we
show that if ho moves in the half space of −∂L(ho)

∂ho
, then it is equivalent to updating the parameters

of the convolution layer using a gradient update step. To see this, consider the change in ho from
updating parameters using gradient descent with step size η. This is given by,

∆ho = (W − η ∂L
∂W

)x + (b− η ∂L
∂b

)− (Wx + b) (5)

= −η ∂L
∂W

x− η ∂L
∂b

(6)

= −η ∂L
∂ho

(
∂ho

∂W
x +

∂ho

∂b

)
(7)

= −η ∂L
∂ho

(
‖x‖2 + 1

)
(8)

∝ − ∂L
∂ho

(9)

Thus, moving ho in the half space of − ∂L
∂ho

has the same effect as that achieved by updating the
parameters W,b using gradient descent. Although we found this insight interesting, we don’t build
upon it in this paper. We leave this as a future work.

B ANALYSIS ON CIFAR-100

Here we report the experiments as done in sections 4.2 and 4.1, for CIFAR-100 dataset. The plots are
shown in figures 10, 11 and 12. The conclusions are same as reported in the main text for CIFAR-10.

C ANALYSIS OF INTERMEDIATE METRICS ON CIFAR-10 AND CIFAR-100

Here we plot the accuracy, cosine loss and `2 ratio metrics corresponding to each individual residual
block on validation during the training process for CIFAR-10 (figures 13, 14, 5) and CIFAR-100
(figures 15, 16, 17). These plots are recorded only for the residual blocks in the last space for each
architecture (this is because otherwise the dimensions of the output of the residual block and the
classifier will not match). In the case of cosine loss after individual residual block, this set of exper-
iments is achieved by plugging the classifier right after each hidden representation and measuring
the cosine between the gradient w.r.t. hidden representation and the corresponding residual block’s
output.

We find that the accuracy after individual residual blocks increases gradually as we move from from
lower to higher residua blocks. Cosine loss on the other hand consistently remains negative for all
architectures. Finally `2 ratio tends to increase for residual blocks as training progresses.

D ITERATIVE INFERENCE IN SHARED RESNET

In this section we extend results from Sec. 4.5. We report cosine loss, intermediate accuracy, and `2
ratio for naively shared Resnet in Fig. 19, and with unshared batch normalization in Fig. ??.

11

Published as a conference paper at ICLR 2018

0 10 20 30 40 50
Residual block index

0.15

0.10

0.05

0.00

co
sin

e
lo

ss

Original Resnet on CIFAR-100

train
validation

0 2 4 6 8
Residual block index

0.04
0.03
0.02
0.01

co
sin

e
lo

ss

Single Representation Resnet on CIFAR-100

train
validation

0 5 10 15 20 25 30

Residual block index

0.08
0.06
0.04
0.02

co
sin

e
lo

ss

Avg-Pooling Resnet on CIFAR-100

train
validation

0 2 4 6 8 10 12
Residual block index

0.06
0.05
0.04
0.03
0.02
0.01

co
sin

e
lo

ss

wResnet on CIFAR-100
train
validation

Figure 10: Average cos loss between residual block F (hi) and ∂L(hi)
∂hi

for (left to right) original
Resnet, single representation Resnet, avg-pooling Resnet, and wideResnet on CIFAR-100.

0 10 20 30 40 50
Residual block index

0.1

0.2

0.3

||F
(h

)||
 /

||h
||

Original Resnet on CIFAR-100
train
validation

0 2 4 6 8

Residual block index

0.5

1.0

1.5

||F
(h

)||
 /

||h
||

Single Representation Resnet on CIFAR-100
train
validation

0 5 10 15 20 25 30

Residual block index

0.25
0.50
0.75
1.00
1.25

||F
(h

)||
 /

||h
||

Avg-Pooling Resnet on CIFAR-100
train
validation

0 2 4 6 8 10 12
Residual block index

0.1
0.2
0.3
0.4
0.5
0.6

||F
(h

)||
 /

||h
||

wResnet on CIFAR-100
train
validation

Figure 11: Average ratio of `2 norm of output of residual block to the norm of the input of resid-
ual block for (left to right) original Resnet, single representation Resnet, avg-pooling Resnet, and
wideResnet on CIFAR-100. (Train and validation curves are overlapping.)

0 10 20 30 40 50
Residual block index

0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Original Resnet on CIFAR-100

validation accuracy (no layer dropped)
train accuracy (no layer dropped)
validation accuracy
train accuracy

0 2 4 6 8
Residual block index

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Single Representation Resnet on CIFAR-100

validation accuracy (no layer dropped)
train accuracy (no layer dropped)
validation accuracy
train accuracy

0 5 10 15 20 25 30

Residual block index

0.6

0.8

1.0

Ac
cu

ra
cy

Avg-Pooling Resnet on CIFAR-100

validation accuracy (no layer dropped)
train accuracy (no layer dropped)
validation accuracy
train accuracy

0 2 4 6 8 10 12

Residual block index
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

wResnet on CIFAR-100

validation accuracy (no layer dropped)
train accuracy (no layer dropped)
validation accuracy
train accuracy

Figure 12: Final prediction accuracy when individual residual blocks are dropped for (left to right)
original Resnet, single representation Resnet, avg-pooling Resnet, and wideResnet on CIFAR-100.

0 25 50 75 100125150 175 200

Epochs

0.100
0.075
0.050
0.025
0.000

co
s_

lo
ss

Original Resnet on CIFAR-10

0 20 40 60 80 100
Epochs

0.08
0.06
0.04
0.02
0.00

co
s_

lo
ss

Single Representation Resnet on CIFAR-10

0 20 40 60 80 100
Epochs

0.100
0.075
0.050
0.025
0.000

co
s_

lo
ss

Avg-Pooling Resnet on CIFAR-10

0 20 40 60 80
Epochs

0.100
0.075
0.050
0.025
0.000
0.025

co
s_

lo
ss

wResnet on CIFAR-10

Figure 13: Average cos loss between residual block F (hi) and ∂L(hi)
∂hi

during training for (left to
right) original Resnet, single representation Resnet, avg-pooling Resnet, and wideResnet on CIFAR-
10. (Blue to red spectrum denotes lower to higher residual blocks)

0 25 50 75 100 125 150 175 200

Epochs

0.05
0.10
0.15
0.20

||F
(h

)||
 /

||h
||

Original Resnet on CIFAR-10

0 20 40 60 80 100

Epochs

0.2
0.4
0.6
0.8

||F
(h

)||
 /

||h
||

Single Representation Resnet on CIFAR-10

0 20 40 60 80 100
Epochs

0.06
0.08
0.10
0.12
0.14
0.16

||F
(h

)||
 /

||h
||

Avg-Pooling Resnet on CIFAR-10

0 20 40 60 80
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

||F
(h

)||
 /

||h
||

wResnet on CIFAR-10

Figure 14: Average ratio of `2 norm of output of residual block to the norm of the input of residual
block during training for (left to right) original Resnet, single representation Resnet, avg-pooling
Resnet, and wideResnet on CIFAR-10. (Blue to red spectrum denotes lower to higher residual
blocks)

12

Published as a conference paper at ICLR 2018

0 25 50 75 100 125 150 175

Epochs
0.06
0.04
0.02
0.00
0.02
0.04

co
s_

lo
ss

Original Resnet on CIFAR-100

0 20 40 60 80 100
Epochs

0.05
0.04
0.03
0.02
0.01

co
s_

lo
ss

Single Representation Resnet on CIFAR-100

0 20 40 60 80 100

Epochs

0.05
0.00
0.05
0.10

co
s_

lo
ss

Avg-Pooling Resnet on CIFAR-100

0 20 40 60 80
Epochs

0.075
0.050
0.025
0.000
0.025

co
s_

lo
ss

wResnet on CIFAR-100

Figure 15: Average cos loss between residual block F (hi) and ∂L(hi)
∂hi

during training for (left to
right) original Resnet, single representation Resnet, avg-pooling Resnet, and wideResnet on CIFAR-
100. (Blue to red spectrum denotes lower to higher residual blocks)

0 25 50 75 100 125 150 175

Epochs

0.05
0.10
0.15
0.20
0.25
0.30

||F
(h

)||
 /

||h
||

Original Resnet on CIFAR-100

0 20 40 60 80 100

Epochs

0.2
0.3
0.4
0.5

||F
(h

)||
 /

||h
||

Single Representation Resnet on CIFAR-100

0 20 40 60 80 100

Epochs

0.10

0.15

0.20

||F
(h

)||
 /

||h
||

Avg-Pooling Resnet on CIFAR-100

0 20 40 60 80
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

||F
(h

)||
 /

||h
||

wResnet on CIFAR-100

Figure 16: Average ratio of `2 norm of output of residual block to the norm of the input of residual
block during training for (left to right) original Resnet, single representation Resnet, avg-pooling
Resnet, and wideResnet on CIFAR-100. (Blue to red spectrum denotes lower to higher residual
blocks)

0 25 50 75 100 125 150 175
Epochs

0.0
0.2
0.4
0.6

ia
cc

Original Resnet on CIFAR-100

0 20 40 60 80 100

Epochs
0.0
0.2
0.4
0.6

ia
cc

Single Representation Resnet on CIFAR-100

0 20 40 60 80 100

Epochs

0.2
0.4
0.6
0.8

ia
cc

Avg-Pooling Resnet on CIFAR-100

0 20 40 60 80

Epochs

0.2
0.4
0.6

ia
cc

wResnet on CIFAR-100

Figure 17: Prediction accuracy when plugging classifier after hidden states in the last stage of
Resnets(if any) during training for (left to right) original Resnet, single representation Resnet, avg-
pooling Resnet, and wideResnet on CIFAR-100. (Blue to red spectrum denotes lower to higher
residual blocks)

0 25 50 75 100125150175200
Epoch

-0.1

-0.075

-0.05

-0.025

0.0

0.025

0.05

co
sin

e
lo

ss

0 25 50 75 100125150175200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2

0 25 50 75 100125150175200
Epoch

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

ResNet-110 shared + UBN

Figure 18: Cosine loss, `2 ratio, and intermediate accuracy for shared Resnet-110 with unshared
Batch Normalization (described in Sec. 4.5). Each curve represents different block in Resnet. Red
is closest to output.

13

Published as a conference paper at ICLR 2018

0 25 50 75 100125150175200
Epoch

-0.1

-0.05

0.0

0.05

co
sin

e
lo

ss

0 25 50 75 100125150175200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

2

0 25 50 75 100125150175200
Epoch

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

ResNet-110 shared

Figure 19: Cosine loss, `2 ratio, and intermediate accuracy for naively shared Resnet-110. Each
curve represents different block in Resnet. Red is closest to output.

0 3 6 9 121518212427303336
block id

-0.15

-0.125

-0.1

-0.075

-0.05

-0.025

0.0

co
sin

e
lo

ss

0 3 6 9 121518212427303336
block id

0.2

0.4

0.6

0.8

1.0

1.2

2

Resnet-110

0 3 6 9 121518212427303336
block id

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

co
sin

e
lo

ss

0 3 6 9 121518212427303336
block id

0.0

0.1

0.2

0.3

0.4

2

Resnet-110 + scaling

Figure 20: First figure show that cosine loss in Resnet-110 after unrolling generalizes to more steps
than it was trained on. Second plot shows evolution of `2 ratio for Resnet-110. Third plot reports
cosine loss Resnet-110 with scaled version of final block, as considered in Sec. 4.4. Rightmost plots
reports `2 ratio for scaled Resnet-110. Vertical line in plots indicates number of steps network was
trained on.

E UNROLLING RESIDUAL NETWORKS

In this section we report additional results for unrolling residual network. Figure 20 shows evolution
of cosine loss an `2 ratio for Resnet-110 with unrolled last block for 20 additional steps.

14

	Introduction
	Background and Related Work
	Iterative inference in Resnets
	Empirical Analysis
	Cosine Loss of Residual Blocks
	Representation Learning vs. Feature Refinement
	Borderline Examples
	Unrolling Residual Network
	Sharing Residual Layers

	Conclusion
	Further Analysis
	A side-effect of moving in the half space of -L(ho)ho

	Analysis on CIFAR-100
	Analysis of intermediate metrics on CIFAR-10 and CIFAR-100
	Iterative inference in shared Resnet
	Unrolling residual networks

