
Workshop track - ICLR 2018

CAN DEEP REINFORCEMENT LEARNING SOLVE
ERDOS-SELFRIDGE-SPENCER GAMES?

Maithra Raghu
Google Brain and Cornell University
{maithrar}@gmail.com

Alex Irpan
Google Brain

Jacob Andreas
University of California, Berkeley

Robert Kleinberg
Cornell University

Quoc V. Le
Google Brain

Jon Kleinberg
Cornell University

ABSTRACT

Deep reinforcement learning has achieved many recent successes, but our under-
standing of its strengths and limitations is hampered by the lack of rich environ-
ments in which we can fully characterize optimal behavior, and correspondingly
diagnose individual actions against such a characterization. Here we consider a
family of combinatorial games, arising from work of Erdos, Selfridge, and Spencer,
and we propose their use as environments for evaluating and comparing different
approaches to reinforcement learning. These games have a number of appealing
features: they are challenging for current learning approaches, but they form (i)
a low-dimensional, simply parametrized environment where (ii) there is a linear
closed form solution for optimal behavior from any state, and (iii) the difficulty
of the game can be tuned by changing environment parameters in an interpretable
way. We use these Erdos-Selfridge-Spencer games not only to compare different
algorithms, but test for generalization, make comparisons to supervised learning,
analyse multiagent play, and even develop a self play algorithm.

1 INTRODUCTION

Deep reinforcement learning has seen many remarkable successes over the past few years Mnih
et al. (2015); Silver et al. (2017). But developing learning algorithms that are robust across tasks and
policy representations remains a challenge. Standard benchmarks like MuJoCo and Atari provide
rich settings for experimentation, but the specifics of the underlying environments differ from each
other in multiple ways, and hence determining the principles underlying any particular form of
sub-optimal behavior is difficult. Optimal behavior in these environments is generally complex and
not fully characterized, so algorithmic success is generally associated with high scores, typically on a
copy of the training environment making it hard to analyze where errors are occurring or evaluate
generalization.

An ideal setting for studying the strengths and limitations of reinforcement learning algorithms would
be (i) a simply parametrized family of environments where (ii) optimal behavior can be completely
characterized and (iii) the environment is rich enough to support interaction and multiagent play.

To produce such a family of environments, we look in a novel direction – to a set of two-player
combinatorial games with their roots in work of Erdos and Selfridge (Erdos & Selfridge, 1973), and
placed on a general footing by Spencer (1994). Roughly speaking, these Erdos-Selfridge-Spencer
(ESS) games are games in which two players take turns selecting objects from some combinatorial
structure, with the feature that optimal strategies can be defined by potential functions derived from
conditional expectations over random future play.

These ESS games thus provide an opportunity to capture the general desiderata noted above, with a
clean characterization of optimal behavior and a set of instances that range from easy to very hard as
we sweep over a simple set of tunable parameters. We focus in particular on one of the best-known
games in this genre, Spencer’s attacker-defender game (also known as the “tenure game”; Spencer,
1994), in which — roughly speaking — an attacker advances a set of pieces up the levels of a board,

1



Workshop track - ICLR 2018

while a defender destroys subsets of these pieces to try prevent any of them from reaching the final
level (Figure 1). An instance of the game can be parametrized by two key quantities. The first is the
number of levels K, which determines both the size of the state space and the approximate length
of the game; the latter is directly related to the sparsity of win/loss signals as rewards. The second
quantity is a potential function �, whose magnitude characterizes whether the instance favors the
defender or attacker, and how much “margin of error” there is in optimal play.

The environment therefore allows us to study learning by the defender and attacker, separately or
concurrently in multiagent and self-play. In the process, we are able to develop insights about the
robustness of solutions to changes in the environment. These types of analyses have been long-
standing goals, but they have generally been approached much more abstractly, given the difficulty
in characterizing step-by-step optimality in non-trivial environments such as this one. Because we
have a move-by-move characterization of optimal play, we can go beyond simple measures of reward
based purely on win/loss outcomes and use supervised learning techniques to pinpoint the exact
location of the errors in a trajectory of play.

The main contributions of this work are thus the following:

1. We develop these combinatorial games as environments for studying the behavior of rein-
forcement learning algorithms in a setting where it is possible to characterize optimal play
and to tune the underlying difficulty using natural parameters.

2. We show how reinforcement learning algorithms in this domain are able to learn gen-
eralizable policies in addition to simply achieving high performance, and through new
combinatorial results about the domain, we are able to develop strong methods for multia-
gent play that enhance generalization.

3. Through an extension of our combinatorial results, we show how this domain lends itself to
a subtle self-play algorithm, which achieves a significant improvement in performance.

4. We can characterize optimal play at a move-by-move level and thus compare the performance
of a deep RL agent to one trained using supervised learning on move-by-move decisions.
By doing so, we discover an intriguing phenomenon: while the supervised learning agent
is more accurate on individual move decisions than the RL agent, the RL agent is better at
playing the game! We further interpret this result by defining a notion of fatal mistakes, and
showing that while the deep RL agent makes more mistakes overall, it makes fewer fatal
mistakes.

In summary, we present learning and generalization experiments for a variety of commonly used
model architectures and learning algorithms. We show that despite the superficially simple structure
of the game, it provides both significant challenges for standard reinforcement learning approaches
and a number of tools for precisely understanding those challenges.

2 ERDOS-SELFRIDGE-SPENCER ATTACKER DEFENDER GAME

We first introduce the family of Attacker-Defender Games (Spencer, 1994), a set of games with two
properties that yield a particularly attractive testbed for deep reinforcement learning: the ability to
continuously vary the difficulty of the environment through two parameters, and the existence of a
closed form solution that is expressible as a linear model.

An Attacker-Defender game involves two players: an attacker who moves pieces, and a defender who
destroys pieces. An instance of the game has a set of levels numbered from 0 to K, and N pieces that
are initialized across these levels. The attacker’s goal is to get at least one of their pieces to level K,
and the defender’s goal is to destroy all N pieces before this can happen. In each turn, the attacker
proposes a partition A;B of the pieces still in play. The defender then chooses one of the sets to
destroy and remove from play. All pieces in the other set are moved up a level. The game ends when
either one or more pieces reach level K, or when all pieces are destroyed. Figure 1 shows one turn of
play.

With this setup, varying the number of levels K or the number of pieces N changes the difficulty for
the attacker and the defender. One of the most striking aspects of the Attacker-Defender game is that
it is possible to make this trade-off precise, and en route to doing so, also identify a linear optimal
policy.

2



Workshop track - ICLR 2018

Figure 1: One turn in an ESS Attacker-Defender game. The attacker proposes a partition A;B of the current
game state, and the defender chooses one set to destroy (in this case A). Pieces in the remaining set (B) then
move up a level to form the next game state.

We start with a simple special case — rather than initializing the board with pieces placed arbitrarily,
we require the pieces to all start at level 0. In this special case, we can directly think of the game’s
difficulty in terms of the number of levels K and the number of pieces N .

Theorem 1. Consider an instance of the Attacker-Defender game with K levels and N pieces, with
all N pieces starting at level 0. Then if N < 2K , the defender can always win.

There is a simple proof of this fact: the defender simply always destroys the larger one of the sets A
or B. In this way, the number of pieces is reduced by at least a factor of two in each step; since a
piece must travel K steps in order to reach level K, and N < 2K , no piece will reach level K.

When we move to the more general case in which the board is initialized at the start of the game with
pieces placed at arbitrary levels, it will be less immediately clear how to define the “larger” one of
the sets A or B. We therefore describe a second proof of Theorem 1 that will be useful in these more
general settings. This second proof, due to Spencer (1994), uses Erdos’s probabilistic method and
proceeds as follows.

For any attacker strategy, assume the defender plays randomly. Let T be a random variable for the
number of pieces that reach level K. Then T =

P
Ti where Ti is the indicator that piece i reaches

level K. But then E [T ] =
P
E [Ti] =

P
i 2�K : as the defender is playing randomly, any piece has

probability 1=2 of advancing a level and 1=2 of being destroyed. As all the pieces start at level 0, they
must advance K levels to reach the top, which happens with probability 2�K . But now, by choice of
N , we have that

P
i 2�K = N2�K < 1. Since T is an integer random variable, E [T ] < 1 implies

that the distribution of T has nonzero mass at 0 - in other words there is some set of choices for the
defender that guarantees destroying all pieces. This means that the attacker does not have a strategy
that wins with probability 1 against random play by the defender; since the game has the property
that one player or the other must be able to force a win, it follows that the defender can force a win.
This completes the proof.

Now consider the general form of the game, in which the initial configuration can have pieces at
arbitrary levels. Thus, at any point in time, the state of the game can be described by a K-dimensional
vector S = (n0; n1; :::; nK), with ni the number of pieces at level i.

Extending the argument used in the second proof above, we note that a piece at level l has a 2�(K�l)

chance of survival under random play. This motivates the following potential function on states:

Definition 1. Potential Function: Given a game state S = (n0; n1; :::; nK), we define the potential
of the state as �(S) =

PK
i=0 ni2

�(K�i).

Note that this is a linear function on the input state, expressible as �(S) = wT �S for w a vector with
wl = 2�(K�l). We can now state the following generalization of Theorem 1, again due to Spencer
(1994).

Theorem 2 (Spencer (1994)). Consider an instance of the Attacker-Defender game that has K levels
and N pieces, with pieces placed anywhere on the board, and let the initial state be S0. Then

(a) If �(S0) < 1, the defender can always win

(b) If �(S0) � 1, the attacker can always win.

3



Workshop track - ICLR 2018

One way to prove part (a) of this theorem is by directly extending the proof of Theorem 1, with
E [T] =

P
E [Ti ] =

P
i 2� (K � l i ) wherel i is the level of piecei . After noting that

P
i 2� (K � l i ) =

� (S0) < 1 by our de�nition of the potential function and choice ofS0, we �nish off as in Theorem 1.

This de�nition of the potential function gives a natural, concrete strategy for the defender: the
defender simply destroys whichever ofA or B has higher potential. We claim that if� (S0) < 1,
then this strategy guarantees that any subsequent stateS will also have� (S) < 1. Indeed, suppose
(renaming the sets if necessary) thatA has a potential at least as high asB 's, and thatA is the set
destroyed by the defender. Since� (B ) � � (A) and� (A) + � (B ) = � (S) < 1, the next state has
potential2� (B ) (double the potential ofB as all pieces move up a level) which is also less than1.
In order to win, the attacker would need to place a piece on levelK , which would produce a set of
potential at least1. Since all sets under the defender's strategy have potential strictly less than 1, it
follows that no piece ever reaches levelK .

For � (S0) � 1, Spencer (1994) proves part (b) of the theorem by de�ning an optimal strategy for
the attacker, using a greedy algorithm to pick two setsA; B each with potential� 0:5. For our
purposes, the proof from Spencer (1994) results in an intractably large action space for the attacker;
we therefore (in Theorem 3 later in the paper) de�ne a new kind of attacker — thepre�x-attacker
— and we prove its optimality. These new combinatorial insights about the game enable us to later
perform multiagent play, and subsequently self-play.

3 RELATED WORK

The Atari benchmark (Mnih et al., 2015) is a well known set of tasks, ranging from easy to solve
(Breakout, Pong) to very dif�cult (Montezuma's Revenge). Duan et al. (2016) proposed a set of
continuous environments, implemented in the MuJoCo simulator Todorov et al. (2012). An advantage
of physics based environments is that they can be varied continuously by changing physics parameters
(Rajeswaran et al., 2016), or by randomizing rendering (Tobin et al., 2017). DeepMind Lab (Beattie
et al., 2016) is a set of 3D navigation based environments. OpenAI Gym (Brockman et al., 2016)
contains both the Atari and MuJoCo benchmarks, as well as classic control environments like Cartpole
(Stephenson, 1909) and algorithmic tasks like copying an input sequence. The dif�culty of algorithmic
tasks can be easily increased by increasing the length of the input. Our proposed benchmark merges
properties of both the algorithmic tasks and physics-based tasks, letting us increase dif�culty by
discrete changes in length or continuous changes in potential.

4 DEEPREINFORCEMENTLEARNING ON THE ATTACKER-DEFENDERGAME

From Section 2, we see that the Attacker-Defender games are a family of environments with a
dif�culty knob that can be continuously adjusted through the start state potential� (S0) and the
number of levelsK . In this section, we describe a set of baseline results on Attacker-Defender
games that motivate the exploration in the remainder of this paper. We set up the Attacker-Defender
environment as follows: the game state is represented by aK + 1 dimensional vector for levels0 to
K , with coordinatel representing the number of pieces at levell . For the defender agent, the input is
the concatenation of the partitionA; B , giving a2(K + 1) dimensional vector. The start stateS0 is
initialized randomly from a distribution over start states of a certain potential.

4.1 TRAINING A DEFENDERAGENT ON VARYING ENVIRONMENT DIFFICULTIES

We �rst look at training a defender agent against an attacker that randomly chooses between (mostly)
playing optimally, and (occasionally) playing suboptimally for exploration (with theDisjoint Support
Strategy, described in the Appendix.) Recall from the speci�cation of the potential function, in
De�nition 1 and Theorem 2, that the defender has alinear optimal policy: given an input partition
A; B , the defender simply computes� (A) � � (B ), with � (A) =

P K
i =0 ai wi , whereai is the number

of pieces inA at leveli ; � (B ) =
P K

i =0 bi wi , wherebi is the number of pieces inB at leveli ; and
wi = 2 � (K � i ) is the weighting de�ning the potential function.

When training the defender agent with RL, we have two choices of dif�culty parameters. The
potential of the start state,� (S0), changes how close to optimality the defender has to play, with

4



Workshop track - ICLR 2018

Figure 2:Training a linear network to play as the defender agent with PPO, A2C and DQN. A linear model is
theoretically expressive enough to learn the optimal policy for the defender agent. In practice, we see that for
many dif�culty settings and algorithms, RL struggles to learn the optimal policy and performs more poorly than
when using deeper models (compare to Figure 3). An exception to this is DQN which performs relatively well
on all dif�culty settings.

values close to1 giving much less leeway for mistakes in valuing the two sets. ChangingK , the
number of levels, directly affects the sparsity of the reward, with higherK resulting in longer games
and less feedback. Additionally,K also greatly increases the number of possible states and game
trajectories (see Theorem 4 in the Appendix).

4.1.1 EVALUATING DEEPRL

As the optimal policy can be expressed as a linear network, we �rst try training a linear model for the
defender agent. We evaluate Proximal Policy Optimization (PPO) (Schulman et al., 2017), Advantage
Actor Critic (A2C) (Mnih et al., 2016), and Deep Q-Networks (DQN) (Mnih et al., 2015), using the
OpenAI Baselines implementations (Hesse et al., 2017). Both PPO and A2C �nd it challenging to
learn the harder dif�culty settings of the game, and perform better with deeper networks (Figure
2). DQN performs surprisingly well, but we see some improvement in performance variance with
a deeper model. In summary, while the policy can theoretically be expressed with a linear model,
empirically we see gains in performance and a reduction in variance when using deeper networks (c.f.
Figures 3, 4.)

Having evaluated the performance of linear models, we turn to using deeper neural networks for our
policy net. (A discussion of the hyperparameters used is provided in the appendix.) Identically to
above, we evaluate PPO, A2C and DQN on varying start state potentials andK . Each algorithm is run
with 3 random seeds, and in all plots we show minimum, mean, and maximum performance. Results
are shown in Figures 3, 4. Note that all algorithms show variation in performance across different
settings of potentials andK , and show noticeable drops in performance with harder dif�culty settings.
When varying potential in Figure 3, both PPO and A2C show larger variation than DQN, though
PPO mostly matches or beats DQN in performance. When varyingK , PPO shows less variation than
DQN. A2C shows the greatest variation and worst performance out of all three methods.

5




	Introduction
	Erdos-Selfridge-Spencer Attacker Defender Game
	Related Work
	Deep Reinforcement Learning on the Attacker-Defender Game
	Training a Defender Agent on Varying Environment Difficulties
	Evaluating Deep RL


	Generalization in RL and Multiagent Learning
	Training an Attacker Agent
	Learning through Multiagent Play
	Single Agent and Multiagent Generalization Across Opponent Strategies

	Training with Self Play
	Supervised Learning vs RL
	Conclusion
	Generalizing across Start States and Opponent Strategies


