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Abstract

Knowledge Distillation (KD) in large language
models (LLMs) which involves training a small
model to mimic the behaviour of a large
model by matching their output distribution,
has shown remarkable improvement in perfor-
mance and efficiency over standard fine-tuning.
Despite the great success of these methods, dis-
tilled student models are still suffering from
catastrophic mis-calibration due to the over-
confident nature of the teacher model. In this
paper, we present a comprehensive study on
the importance and necessity of re-calibration
during soft-label-based distillation. We further
propose a soft-label-based Calibrated Offline
knowledge Distillation (COD) pipeline that can
effectively determine to what extent different
token probability should be reduced or raised,
resulting in a consistent distillation of a reliable
model. Specifically, we start by re-calibrating
the token probability distribution generated by
the teacher model, by reducing the probabil-
ity of over-confident tokens and raising the
under-confident ones. Then we train a student
model to fit the calibrated distribution. We con-
duct extensive experiments on both in-domain
and out-of-domain settings by comparing cali-
brated distillation with non-calibrated distilla-
tion and standard fin-tuning over three popular
open-sourced language model family (Llama-
1, Llama-2, and OpenLlama). Experimental
results demonstrate that re-calibration before
distillation can greatly improve the reliability
of the model (by 4.3% expected calibration er-
ror on average) and generally further boost the
downstream performance (by 2.5% accuracy
on average).

1 Introduction

With the rapid development of large language mod-
els (LLMs), the number of powerful pre-trained
models has been skyrocketing, and the paradigm
of pretrain-then-finetune has become a common
method for people to adapt pre-trained models
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Figure 1: The position-wise confidence with its actual
accuracy of pre-trained model and fine-tuned model.
Fine-tuned models always be much over-confident on
Top-1 token.

for downstream tasks (Wei et al., 2022). On top
of that, recent studies show that knowledge dis-
tillation from fine-tuned large models can poten-
tially achieve better performance than standard fine-
tuning (Gu et al., 2023; Agarwal et al., 2024), ren-
dering distillation a promising alternative in the
scenarios of small model training. Nevertheless,
despite the consistently improved performance on
downstream tasks, these methods can still bring
catastrophic mis-calibration problems (OpenAl,
2023) due to the over-confident nature of fine-tuned
models. Calibration is one of the most important
indicators beyond accuracy which provides a con-
fidence measure to the model’s predictions (Guo
et al., 2017). In LLMs, confidence is exactly the
probability for each generated token. As LLMs
have been widely adopted in our daily lives now, it
is crucial to understand the extent to which we can
trust the answers they generate. In other words, the
probability corresponding to the predicted token
should reflect its ground truth correctness likeli-
hood. As an example, recent hallucination detec-
tion methods rely on model prediction confidence
as a significant indicator of potential hallucina-
tion (Zhang et al., 2023; Varshney et al., 2023).
If the model is incapable of giving accurate confi-
dence levels, people may fail to detect hallucina-



tions due to the model’s over-confidence, or peo-
ple may falsely identify hallucinations due to the
model’s under-confidence. This brings significant
challenges for the deployment of LLMs in real-
world applications.

In the process of searching for better ways to
alleviate mis-calibration during distillation, we dis-
cover that both fine-tuned large and small models
tend to be over-confident on the top-1 token and
under-confident on top 2-5 tokens by employing a
position-wise comparison on model predicted con-
fidence and its actual accuracy as shown in Figure
1. The downside is clear from the depiction, as
distillation by mimicking the not-well-calibrated
distribution will result in a student model with great
mis-calibration. In that case, re-calibration before
distillation provides a promising way to adjust the
teacher output probability distribution while pre-
serving the ability of larger teacher models.

Motivated by this phenomenon, in this paper,
we delve deeply into how re-calibration can affect
the calibration and performance of distillation and
first propose an efficient soft-label-based calibrated
offline knowledge distillation pipeline for large lan-
guage models named COD. Different from much
previous hard distillation methods which utilize
data generated from ChatGPT and then fine-tune
student models on the generated data, our method
utilizes logits of the teacher model and optimizes
the student model using distribution match. Our
pipeline mainly contains four steps as shown in
Figure 2:

(1) Teacher Building: We first use domain data
to supervised fine-tune a relatively large teacher
model which is white-box to us.

(2) Efficient Data Generation: After obtaining
the teacher model, we then let the teacher model
generate the probability distribution for each to-
ken of the training dataset, and only keep the top-5
tokens for each token entry. This not only saves
much disk space but also makes our pipeline fully
compatible with GPT-3.5 series (text-davinci-003)
which can only return top-5 token probabilities.
(3) Re-calibration: By pre-selecting a smooth-
ing coefficient on validation set that can achieve
best expected calibration error (ECE) score, we re-
calibrate and normalize the Top-5 token probability
of the teacher model in an offline manner.

(4) Distribution Matching: Finally, the soft la-
beled data are collected to teach student models.
To be specific, we retrieve the 5 tokens of student
model that corresponding to the top-5 tokens of

the teacher model and optimize the student models
by minimizing the Kullback-Leibler Divergence
(KLD) (Kullback and Leibler, 1951) between the
two probability distribution.

We conduct extensive experiments to compare
distillation with and without re-calibration by em-
ploying several common baselines, demonstrating
that catastrophic mis-calibration exists in both fine-
tuning and distillation w/o re-calibration methods.
On top of that, we explore how to pre-define a good
smoothing coefficient which helps to determine to
what extent different token probability should be
reduced or raised in our COD method in order to
distill a well-calibrated student model. Our ex-
periments are based on Llama 1, Llama 2, and
Open-Llama family (Touvron et al., 2023; Geng
and Liu, 2023) since they are considered as most
advanced open-sourced models so far and have a
flexible range of model sizes. The results show that
re-calibration can consistently improve the reliabil-
ity of the distilled student model as well as improve
the performance on downstream tasks in both in-
domain and out-of-domain settings. Compared to
direct distillation without re-calibration, our COD
can generally improve 4.3% on ece, along with an
averaged 2.5% increase in accuracy, showing the
effectiveness of our proposed pipeline. In summary,
our key contributions include:

(i) We show the surprising effectiveness and ne-
cessity of re-calibration in improving robust-
ness to mis-calibration when compared with
direct distillation and standard fine-tuning.

(i) We proposed an efficient soft-label-based cal-
ibrated offline knowledge distillation (COD)
pipeline for large language models which
is scalable by allowing very large teacher
models (e.g. >30B) and student models to
be trained separated during distillation and
can distill more reliable and stronger student
model.

(iii)) We conducted extensive experiments to quan-
tify and analyze the benefits re-calibration
brings in order to mitigate mis-calibration.

2 Related Work
2.1 Model Calibration

Calibration is a crucial aspect of modern neural
network models, as it deals with predicting proba-
bility estimates that represent the true likelihood of
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Figure 2: The illustration and comparison of different student tuning pipelines. On Device indicates what model is
placed on GPUs during training. (a) represents a standard fine-tuning pipeline which utilize hard label for training.
(b)(c)(d) represent different distillation pipeline where (b) is under online setting which means teacher and student
are both placed on GPU during distillation. Instead, our proposed COD in (d) make it offline by storing the teacher
Top-5 distribution and further improve the pipeline by adding a re-calibration component.

correctness. It ensures that the confidence scores
produced by models align with their actual perfor-
mance. Recent studies have shown that modern
neural networks are poorly calibrated (Guo et al.,
2017), especially after fine-tuning (OpenAl, 2023)
in large language model settings. To mitigate the
issue, previous works contain unlearnable meth-
ods that heuristically manipulate the original con-
fidence in predictions (Miiller et al., 2019), and
learnable methods that rely on extra calibration
tasks which require extra data and more training
cost (Chen et al., 2023). Different from previous lit-
erature, this work aims to mitigate mis-calibration
via knowledge distillation from larger models, es-
pecially in the field of decoder-only models which
provides a new point of view to solve the problem.

2.2 Knowledge Distillation

Knowledge Distillation (KD) can be viewed as
a transfer learning that allows a weak and small
model (student model) to learn from a strong and
large model (teacher model) in order to deduce
the model size while preserving good performance.
Studies over the past years have provided impor-
tant information on how to distill encoder-only lan-
guage models (Hinton et al., 2015), but KD on
large decoder-only language models is still under-
explored. Based on whether we can access pre-
diction probability or not, ‘we categorize existing
distillation methods into two types.

2.2.1 Black-box Distillation

Black-box models refer to models that we are
unable to access their weight and prediction log-
its such as ChatGPT (Ouyang et al., 2022), and
PalLM (Chowdhery et al., 2022). Given an in-

put, we are only able to get the next token with-
out its probability distribution. Recent studies
have made the attempt to distill reasoning abil-
ity from GPT (Ho et al., 2023; Shridhar et al.,
2023) or some emergent ability such as chain-of-
thought (Hsieh et al., 2023; Li et al., 2023). How-
ever, these methods may still be categorized as the
genre of data-augmentation-and-then-fine-tuning
approaches. Different from these methods, this
study focus on models that we have access to the
output probability distribution as it can provide
richer information and lead to better performance.

2.2.2 White-box Distillation

White-box models mean the models are either fully
open-sourced such as Llama (Touvron et al., 2023)
or they can return partial probability distribution
of the generated tokens, such as code-davinci-002.
Instead of the hard token fine-tuning, white-box
distillation is typically optimized by a distribution
match between teachers and students, potentially
producing better small models given the more fine-
grained signals (Gu et al., 2023). Our work is an
extension of white-box distillation and focuses on
how white-box distillation can be improved by re-
calibrating the teacher signals.

Further, in the field of white-box distillation,
there are two different ways: online distillation and
offline distillation. Online distillation (Gu et al.,
2023; Zhou et al., 2023) involves keeping both the
teacher model and the student model on the GPU
simultaneously during training as shown in Fig-
ure 2(b). The advantage of this approach is that
we can access the teacher’s entire vocabulary distri-
bution. However, the downside is that the teacher
model occupies a significant amount of GPU mem-



ory, resulting in low optimization efficiency and
slow training speed, which can hardly scale up to
very large teacher models (i.e. > 30B).

On the other hand, offline distillation typically in-
volves generating distribution data from the teacher
model beforehand. During optimization, only the
student model is on the GPU. The drawback of this
method is that we cannot store the probability of ev-
ery token, as it would consume too much disk space.
Instead, the top-k probabilities are kept. Aiming
to provide efficient and practical distillation algo-
rithms, our study focuses on offline distillation and
keeps the top-5 probability, which has a trade-off
between performance and resource as shown in
Figure 2(c)(d).

3 Method

As shown in Figure 2(d), our approach can be
mainly divided into four stages: teacher building,
efficient offline data generation, Re-calibration and
end with an illustration of distribution matching.

Teacher Building After receiving a train set D
for the downstream task, we first use it to fine-
tune a large teacher model by optimizing a normal
language modeling loss:

N

Loss(y1:n) = — Zlog p(yely<t)
t=1

where y1, ¥, ...y 18 a training token sequence.

Efficient Data Generation Given the train set
D and fine-tuned teacher model, we first prepare
the distillation data which contains top-5 proba-
bility in the offline setting. This is because for a
large teacher model (e.g.>10B), it is inefficient to
place both the teacher and student model on GPUs
due to the their heavy memory consumption. In
addition, retrieving the probability distribution in
advance for each token entry may occupy large
disk space. For example, given a 50,000-token
vocabulary, retrieving the full probability from a
dataset of 100,000 samples with an average length
of 2,048 requires 120 TB storage, which is highly
impractical. Given that the top-5 probability typi-
cally accounts for over 95% of the total probability
in most cases, and our method is expected to be nat-
urally extended to distillation from GPT-3 series,
we choose only to generate the top-5 probability
for further distillation.

Re-calibration After collecting the top-5 token
probability from the teacher model, we first apply
a re-calibrate on the probability distribution of the
validation set to select an optimal smoothing co-
efficient c that results in the lowest ece. Then we
re-calibrate the generated teacher probability on
the training set for further distillation by:

PT(Z) _ exp(PT(i)/c)
22 exp(Pr(j)/c)
In our setting, 7,5 = 1,...,5, representing the

Top-5 token probability.

Distribution Match After obtaining the re-
calibrated probability data Pr that contains
Pr(1), Pr(2),..., Pr(5), we use the same train-
ing data to train the student model. Instead of uti-
lizing language modeling loss on hard labels, the
probabilities of the 5 tokens that correspond to the
teacher’s top-5 of the student model are retrieved as
Pg which contains Ps(1), Ps(2), ..., Ps(5). Kull-
back-Leibler divergence is then used to measure
the loss between the teacher model and the student
model:

N

Loss(y1.n) = Z Dgr(Pr||Ps)
t=1

4 Experimental Setting

In this section, we first introduce the experiment
setting which includes datasets and metrics (§ 4.1).
The models (§ 4.2), baselines (§ 4.3), are pre-
sented in the following two subsections respec-
tively. Implementation details can be checked in
Appendix A.1.

4.1 Datasets and Evaluation Metrics

We conducted the experiments under two practi-
cal setups: (i) Direct training on individual down-
stream tasks and testing on the same task, so-called
In-Domain which has been widely used to adapt
language models to specific domains. (ii) General
training on instruction-following tasks (Instruction
tuning) and testing it on unseen downstream tasks,
which is called Out-of-Domain setting. In such
cases, we want to test the calibration ability and
performance on a general-purpose model.

e In-Domain: We conduct experiments on two
commonly used question answering tasks Com-
monsenseQA(CSQA) (Talmor et al., 2019) and
BoolQ (Clark et al., 2019), respectively. We manu-
ally split 10% data to serve as a validation set and



then measure the calibration and performance on
the corresponding test set.

e Out-of-Domain: Different from our in-domain
setting, we first train the model on Alpaca (Taori
et al, 2023), a commonly used instruction-
following dataset. Then we measure the calibration
and performance on CommonsenseQA and Open-
Book QA(OBQA) (Mihaylov et al., 2018), which
are particularly adopted to reflect the model’s con-
fidence level in terms of reasoning ability after
training on general instruction-following data.

Metrics To measure calibration, we treat the free-
text generation task as a classification task by re-
stricting the model to generate only one token. We
then obtain the highest probability choice over this
token entry from a set of candidate choices (i.e.
A/B/C/D) using arg max;c P(7), where C repre-
sents the set of candidates. We use the retrieved to-
ken probability as the predicted confidence, and its
corresponding choice to calculate accuracy by com-
paring it to the ground truth. Finally, we compute
the expected calibration error (ECE) as follows:

M
ECE = Z uj;”‘mcc(Bm) — conf(Bp)|
m=1

Here we consistently set the number of bins to 10.
To measure performance, we check whether the
prediction is an exact match of the ground truth,
and compute the final accuracy accordingly.

4.2 Language Models

We conduct all experiments on three different
model families: Llama-1, Llama-2 (Touvron et al.,
2023) and OpenLlama (Geng and Liu, 2023) as
they all have a wide range of model sizes from
small to large, which make the distillation possible.
In addition, these models have been widely used by
the community and have shown strong ability on
instruction following and reasoning tasks that make
our results more reliable and useful. For Llama-1,
we adopt Llama-1 7B as the student model and
corresponding Llama-1 33B fine-tuned model to
be the teacher. While for Llama-2, we choose 13B
model as the teacher model since 34B model is not
publicly available and 70B model requires signif-
icantly more training resources. For OpenLlama,
we choose the largest 13B model in this model
family as the teacher model.

4.3 Baselines

We set up five baseline methods and our proposed
COD pipeline as follows:

* Pre-train: The original model without any tun-
ing which has the same size as the student
model. It typically has the lowest performance
on downstream tasks.

* Teacher: The large model fine-tuned on D
with hard labels.

¢ Fine-tune: The small model fine-tuned on D
with hard labels, which has the same size as
the student model.

* Distill 78 w/o Re-calibration: The distilled model
by preserving the original teacher-generated
probability distribution without re-calibration.

e Distill 78 w/ Label Smoothing’ The distilled
model by re-calibrating the original teacher-
generated probability distribution using Label
Smoothing.

* Distill 78 wycop: The distilled model by
re-calibrating the original teacher-generated
probability distribution using our proposed
COD pipeline.

S Experiment Results

To establish the importance of re-calibration dur-
ing distillation and the superiority of COD pipeline
over standard distillation and fine-tuning, we first
compare the calibration ability of pre-training,
fine-tuning, and distillation with and without re-
calibration on two in-domain tasks. We show that,
with COD, distillation can generally improve both
the calibration and performance on downstream
tasks compared with other distillation pipelines and
standard fine-tuning. Finally, we extend the results
to out-of-domain settings. The overall results are
shown in Table 1.

5.1 In-Domain Results

As shown in the left part of Table 1, we evaluate the
calibration and performance of several baselines
and our COD pipeline on the CSQA and BoolQ
test set. We conclude the following findings:

e Fine-tuning lead to catastrophic mis-
calibration: We observe that fine-tuned models
generally exhibit worse calibration compared to
pre-trained counterparts. For example, both the



IN-DOMAIN OUT-OF-DOMAIN
Commonsense QA BoolQ Alpaca — Commonsense QA Alpaca — OBQA
| ECE | Acct ECE| Acct | ECE| Acc ECE|l  Acct
| LLAMA 1:33B — 7B
Pre-train 75 0.042 28.1% 0.425 61.3% 0.039 27.8% 0.04 27.2%
Teacher 338 0.102 82.4% 0.077 89.7% 0.186 69.2% 0.202 64.4%
Fine-tune 75 0.118 79.9% 0.065 82.5% 0.125 48.2% 0.219 43.4%
Distill 78 w/o Re-calibration 0.094 78.9% 0.04 85.3% 0.053 43.1% 0.181 39.8%
Distill 78 w/ Label Smoothing 0.091 78.1% 0.190 85.3% 0.052 43.9% 0.19 37.6%
Distill 78 w/ cop 0.029 80.8% 0.04 85.7% 0.046 50.0% 0.071 47.2%
COD to w/o Re-calibration | 1659 T1.9% To% To.4% To.7% T6.9% 1% T7.4%
| LLAMA 2 : 13B* — 7B
Pre-train 75 0.1 36.6% 0.386 57.2% 0.1 36.6% 0.125 44.7%
Teacher 138 0.12 81.6% 0.068 89.7% 0.208 65.7% 0.287 58.3%
Fine-tune 7 0.14 76.8% 0.084 87.5% 0.212 50.0% 0.301 45.6%
Distill 78 w/o Re-calibration 0.109 80.0% 0.04 85.3% 0.077 50.9% 0.125 46.6%
Distill 78 w/ Label Smoothing 0.103 80.4% 0.039 87.5% 0.075 51.1% 0.162 47.6%
Distill w/ cop 0.063 80.3% 0.014 87.9% 0.055 51.4% 0.081 49.5%
COD to w/o Re-calibration | 146% T0.3% T2.6% To.6% 2.2% T0.5% T4.4% T2.9%
| OPENLLAMA : 13B — 7B
Pre-train 75 0.075 20.8% 0.359 58.5% 0.075 20.8% 0.008 28.4%
Teacher 138 0.132 78.5% 0.075 87.6 0.167 49.5% 0.134 50%
Fine-tune 75 0.105 75.0% 0.036 81.5% 0.216 28.3% 0.161 30.4%
Distill 78 w/o Re-calibration 0.092 75.2% 0.062 83.8% 0.097 27.7% 0.137 29.8%
Distill 78 w/ Label Smoothing 0.096 74.5% 0.033 83.3% 0.041 29.2% 0.142 29.8%
Distill 78 w/ cop 0.050 77.2% 0.027 84.7% 0.029 30.5% 0.082 30.8%
COD to w/o Re-calibration | 14.2% 2.0% T3.5% To.9% 16.8% T2.8% 15.5% T1.0%

Table 1: The overall experimental results of calibration and performance on downstream tasks under both in-domain
and out-of-domain setting. We compare pre-trained models, fine-tuned teacher and student models, and distilled
models w/ or w/o re-calibration. The 1 represents the larger the better while the | means the smaller the better. Bold
represents the best among fine-tuned and distilled student models. Gray represents the statistics presented are for
reference only and should not be used for comparison purposes. The model sizes are all specified in the subscripts.
*: We use 13B teacher model for Llama 2 family as its 34B version is still not publicly available and its 70B version

requires significantly more resources.

fine-tuned student model and teacher have higher
ece values than the pre-train 7B model on CSQA
of three model settings.

It is also observed that pre-train models that de-
viate significantly from random guess performance
tend to show larger mis-calibration. This is because
these models have not been fine-tuned on the spe-
cific dataset and is supposed to produce random
guess probability. When high accuracy is observed,
there would be a mismatch between its prediction
and true likelihood, leading to large mis-calibration
rate.

e Direct distillation brings bad calibration as
well: Furthermore, distilled models without re-
calibration show varied calibration ability and per-
formance. For in-domain tasks, the distilled Llama-
1 and Llama-2 7B without re-calibration have ece
values of 9.4% and 10.9% on CSQA, 4.0% and
4.0% on BoolQ respectively, a mis-calibration level
similar to fine-tuned models. And distilled model
of OpenLlama shows even worse calibration than

fine-tuned models on BoolQ, indicating bad cali-
bration ability of distillation without re-calibration
under in-domain setting. While for performance,
direct distillation generally has an improvement
over standard fine-tuning, but on some settings
such as Llama-1 on CSQA, it also shows worse per-
formance than fine-tuning. This finding suggests
that distillation without re-calibration does not con-
sistently lead to good calibration and performance,
demonstrating that matching mis-calibrated teacher
distribution cannot result in a well-calibrated stu-
dent model and verifying our motivation.

o Re-calibration before distillation can greatly
improve the calibration ability: In contrast, dis-
tilled models with re-calibration, particularly our
proposed COD pipeline, demonstrate significantly
better calibration, achieving the lowest ece scores
across all tasks, with an improvement up to 13%
over the fine-tuning models of the same size. This
suggests that COD effectively adjusts the model’s
confidence levels to match its prediction accuracy.
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the Y-axis is the accuracy within each bin.

In such cases, the model’s overconfident issue is
mitigated. Another baseline, distillation with label
smoothing, also improves calibration but doesn’t
reach the efficacy levels of COD, as COD considers
an optimal smoothing coefficient on the validation
set, we further analyze the effectiveness of the opti-
mal smoothing coefficient in Section 6.1.

On top of calibration, distilled models with re-
calibration also show consistently improved per-
formance on downstream tasks. Specifically, COD
has an averaged improvement of 2.5% accuracy
over non-calibrated baselines, indicating it not only
makes well-calibrated confidence in its predictions
but also has a more accurate prediction, underscor-
ing the importance of re-calibration in distillation
processes.

5.2 Out-of-Domain Results

The out-of-domain experiment statistics as shown
in the right part of Table 1 indicate that the general
trends observed in in-domain settings hold true in
out-of-domain settings as well.

When models are fine-tuned on instruction fol-
lowing tasks and then applied to out-of-domain
tasks, they also exhibit a poor level of calibration,
indicated by higher ece values. This trend is consis-
tent with the in-domain findings, which means that
current general-purpose models suffer from great
mis-calibration in many of their downstream tasks,
making them unreliable to be deployed in real-
world applications. For instance, the fine-tuned 7B
model shows 3x-13 X increased ece values in the
out-of-domain tasks compared to the pre-trained
models.

Distilled models without re-calibration show
some improvement in calibration over fine-tuned
models, but this improvement is not strong and con-

sistent. For example, the distillation for Llama-1
and Llama-2 models without re-calibration does
show reduced ece values compared to their fine-
tuned counterparts on out-of-domain settings, how-
ever, these values are not low enough to indicate
strong calibration. This is especially evident with
the OpenLlama model, which, despite being dis-
tilled, displays worse calibration on BoolQ than
fine-tuned models, highlighting the limitations of
distillation without re-calibration in out-of-domain
settings.

In contrast, COD pipeline consistently out-
performs both the standard distillation and fine-
tuning approaches in terms of calibration on out-of-
domain tasks. They achieve the lowest ece val-
ues across all out-of-domain tasks across three
model families, indicating that the re-calibration
process within COD is effective even when applied
to general instruction tuning and tested on unseen
real-world tasks. This suggests that COD is a ro-
bust pipeline for solving mis-calibration issues and
improving performance under real-world out-of-
domain settings.

6 Additional Experiments and Analysis

6.1 Visualization on Calibration

In addition to metric-based analysis, we also draw
a reliability diagram for better visualization and
compare the mis-calibration of each model. As
shown in Figure 3, each sub-plot contains a reliabil-
ity diagram for pre-trained Llama-1-7B, fine-tuned
Llama-1-33B, fine-tuned Llama-1-7B, and three
distilled methods from left to right. A perfectly
calibrated model would have a straight diagonal
line from the bottom left to the top right of such a
diagram, indicating that confidence level is exactly
consistent with actual accuracy. The reliability dia-
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Figure 4: Left shows the comparison of different
smoothing coefficient on the validation set, while the
right part demonstrates its corresponding calibration ef-
fect on the test set.

grams are divided into 10 bins based on the model’s
confidence. The bars represent the accuracy within
each bin, and the colors indicate whether the model
is under-confident (red) or over-confident (green)
within each bin. The class-wise expected calibra-
tion error at the top of each plot provides a quan-
titative measure of calibration, with a lower score
indicating better calibration. The figure indicates
that the pre-trained model exhibits bad calibration
as it deviates from the perfect calibration line a lot.
Since it has not been fine-tuned for this specific
task, it predicts probabilities only range from 0.2
to 0.4. After fine-tuning, the model shows catas-
trophic mis-calibration where it introduced a de-
gree of over-confidence and under-confidence in
the model’s predictions. The fine-tuned model’s
bars now frequently rise below the perfect cali-
bration line, indicating that it often predicts with
higher confidence than is warranted by its actual
accuracy. However, we also observe that the large
teacher model (33B) is more calibrated than the
small model (7B) and the direct distilled model can
reach slightly better calibration. While for distilla-
tion with COD pipeline, the under-confident and
over-confident are noticeably less than fine-tuned
models and distilled models without re-calibration,
as evidenced by a smaller area of red bar and green
bar and its proximity to the perfect calibration line.

6.2 Effectiveness of Smoothing Coefficient in
COD

As discussed in the COD pipeline, we pre-select
an smoothing coefficient that reach a lowest ece
score based on the validation set as shown in the
left part of Figure 4. We first divide the interval
from O to 1 by a step of 0.1, as a coefficient of 1
already compressed the token probability a lot and
the therefore coefficient of 0.1 will even enlarge
the probability of over-confident tokens. We fur-

ther locate a smaller interval that contains potential
optimal value and use a smaller step of 0.02 to find
the best smoothing coefficient. We further compare
COD distillation with the selected optimal smooth-
ing coefficient and other different smoothing coef-
ficient as shown in the right part of Figure 4. COD
with optimal smoothing coefficient do outperform
those with other levels of smoothing coefficient
with a large margin, indicating the effectiveness of
selecting such optimal smoothing coefficient.

6.3 Comparison to Post-calibration after
Training

We also compare our COD method with some post-
calibration techniques such as temperature scaling
after direct distillation and fine-tuning. These post-
calibration are often regard as poorer performance
than consider re-calibration during training and
will compress the final prediction probability a lot
which make the confidence non-differentiable. For
example, direct distilled OpenLlama on Alpaca af-
ter post temprature scaling still have a 30% ece
higher than its COD counterparts and with its high-
est confidence reduced to 60%.

7 Conclusion

In conclusion, this study presents a novel Offline
knowledge Distillation with Re-calibration (COD)
approach for large language models (LLMs), em-
phasizing the importance of re-calibration in knowl-
edge distillation. The COD pipeline effectively
addresses the issue of mis-calibration in distilled
models, consistently leading to more reliable and
accurate student models. Through comprehensive
experiments, it’s shown that re-calibration prior to
distillation significantly improves model reliabil-
ity and performance in both in-domain and out-of-
domain settings. The research contributes to the un-
derstanding of the mis-calibration issue in current
LLM tuning methods and offers a robust method
for enhancing their performance and calibration
ability, proving particularly useful in scenarios in-
volving large teacher models.

8 Impact Statement

This paper presents work whose goal is to advance
the field of Machine Learning. We address the
critical issue of catastrophic mis-calibration in cur-
rent training pipelines (supervised fine-tuning and
knowledge distillation) and propose a pipeline to
obtain a more reliable model. There are many po-



tential societal consequences of our work, none
which we feel must be specifically highlighted here.

9 Limitations

It is shown that our Calibrated Offline Knowledge
Distillation (COD) demonstrates superior calibra-
tion ability and performance over direct distillation
and standard fine-tuning methods. However, de-
spite these exciting results, there are still some
limitations to our current work, as well as potential
opportunities for future research.

Extend to Large Teacher Model : Due to the
resource limitation, our largest teacher model is
Llama 33B which is not very large but already
achieving exciting results by distillation to a 7B
student model. We expect that by employing large
teacher model such as 70B can lead to better cali-
bration ability and performance since large model
learn a better distribution. However, we are unable
to explore how very large teacher perform due to
resource limitation.

Top-K Chosen in Offline Distillation: Another
limitation of this work is that it does not provide
a rigorous study on how many token probability
to choose for one entry is optimal for knowledge
distillation in large language models. Currently, we
consistently choose the top-5 token probability to
retrieve because of the following reasons: (1) We
suppose the top-5 token probability already contain
most of the information (i.e. sum of top-5 probabil-
ity is close to 1) for the whole distribution and top-5
will not consume tremendous disk space (2) Cur-
rent strong gray-box models like text-davinci-003
from OpenAl can only return the top-5 probability
for each token entry, so that our method can be
extend to the data generated by these models.

However, how many token probability to use
is optimal could be an important area for further
exploration and development.
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‘ FINE-TUNED ‘ DISTILLATION W/O RE-CALIBRATION ‘ DISTILLATION W/ COD

Question ‘ Which city is farther north, Oslo or Helsinki?

Correct Answer ‘ Helsinki

Generated [BSIG is farther north than Helsinki. | [@8I8 is farther north than Helsinki. | Oslo is farther north than Helsinki.
Confidence 0.73 — over-confident 0.79 — over-confident

Question \ Is Donald Trump a Neo-con American politician and businessman for the Republicans, with a long and varied career?
Correct Answer | No

Generated Yes. | W& | Wes.

Confidence 0.91 — over-confident 0.85 — over-confident

Table 2: A case study on how fine-tuned model and distilled model without re-calibration tend to over-confident on
the wrong answer with high confidence. While distillation with COD though output a wrong answer but it produce
low confidence to show its uncertainty.

A Detailed Experimental Setting

A.1 Implementation Details

We train our models on 8 GPU (RTX A6000 48G) using the Adam optimizer and cosine annealing
scheduler with a warmup ratio of 0.03. For fine-tuning, we utilize LMFlow (Diao et al., 2023) package to
obtain a well fine-tuned model by a standard 3-epoch training. For question-answering tasks, we follow
Shum et al. (2023)’s format and fine-tune the model in a zero-shot setting. For out-of-domain tasks, we
directly follow Alpaca’s (Taori et al., 2023) setting to obtain the fine-tuned model. Finally, for distillation,
the batch size is set to 32 on each gpu and we train our model for 3 epochs, the last checkpoint is used for
evaluation since it has the best performance.

B Additional Analysis
B.1 Case Study

We further conduct a case study to see whether re-calibration indeed helps mitigate mis-calibration in
real-world question answering. As shown in Table 2, we ask the models that use three different tuning
methods on Alpaca a question: which city is farther north, Oslo or Helsinki? The correct
answer is Helsinki and the wrong answer is Oslo. From the output confidence, we can see that fine-tuned
models and distillation w/o re-calibration give high confidence in the wrong answer, which is far from
satisfactory for real-world settings, especially when additional post-processing procedures were expected
to be applied to filter wrong answer by identifying unconfident responses. In comparison, distillation with
COD greatly mitigates this mis-calibration by producing a confidence around 50% which indicate the
model is not sure about the generated answer, allowing systems to filter those undesirable answers by a
hard confidence threshold.
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