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Abstract

Knowledge Distillation (KD) in large language001
models (LLMs) which involves training a small002
model to mimic the behaviour of a large003
model by matching their output distribution,004
has shown remarkable improvement in perfor-005
mance and efficiency over standard fine-tuning.006
Despite the great success of these methods, dis-007
tilled student models are still suffering from008
catastrophic mis-calibration due to the over-009
confident nature of the teacher model. In this010
paper, we present a comprehensive study on011
the importance and necessity of re-calibration012
during soft-label-based distillation. We further013
propose a soft-label-based Calibrated Offline014
knowledge Distillation (COD) pipeline that can015
effectively determine to what extent different016
token probability should be reduced or raised,017
resulting in a consistent distillation of a reliable018
model. Specifically, we start by re-calibrating019
the token probability distribution generated by020
the teacher model, by reducing the probabil-021
ity of over-confident tokens and raising the022
under-confident ones. Then we train a student023
model to fit the calibrated distribution. We con-024
duct extensive experiments on both in-domain025
and out-of-domain settings by comparing cali-026
brated distillation with non-calibrated distilla-027
tion and standard fin-tuning over three popular028
open-sourced language model family (Llama-029
1, Llama-2, and OpenLlama). Experimental030
results demonstrate that re-calibration before031
distillation can greatly improve the reliability032
of the model (by 4.3% expected calibration er-033
ror on average) and generally further boost the034
downstream performance (by 2.5% accuracy035
on average).036

1 Introduction037

With the rapid development of large language mod-038

els (LLMs), the number of powerful pre-trained039

models has been skyrocketing, and the paradigm040

of pretrain-then-finetune has become a common041

method for people to adapt pre-trained models042

Figure 1: The position-wise confidence with its actual
accuracy of pre-trained model and fine-tuned model.
Fine-tuned models always be much over-confident on
Top-1 token.

for downstream tasks (Wei et al., 2022). On top 043

of that, recent studies show that knowledge dis- 044

tillation from fine-tuned large models can poten- 045

tially achieve better performance than standard fine- 046

tuning (Gu et al., 2023; Agarwal et al., 2024), ren- 047

dering distillation a promising alternative in the 048

scenarios of small model training. Nevertheless, 049

despite the consistently improved performance on 050

downstream tasks, these methods can still bring 051

catastrophic mis-calibration problems (OpenAI, 052

2023) due to the over-confident nature of fine-tuned 053

models. Calibration is one of the most important 054

indicators beyond accuracy which provides a con- 055

fidence measure to the model’s predictions (Guo 056

et al., 2017). In LLMs, confidence is exactly the 057

probability for each generated token. As LLMs 058

have been widely adopted in our daily lives now, it 059

is crucial to understand the extent to which we can 060

trust the answers they generate. In other words, the 061

probability corresponding to the predicted token 062

should reflect its ground truth correctness likeli- 063

hood. As an example, recent hallucination detec- 064

tion methods rely on model prediction confidence 065

as a significant indicator of potential hallucina- 066

tion (Zhang et al., 2023; Varshney et al., 2023). 067

If the model is incapable of giving accurate confi- 068

dence levels, people may fail to detect hallucina- 069
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tions due to the model’s over-confidence, or peo-070

ple may falsely identify hallucinations due to the071

model’s under-confidence. This brings significant072

challenges for the deployment of LLMs in real-073

world applications.074

In the process of searching for better ways to075

alleviate mis-calibration during distillation, we dis-076

cover that both fine-tuned large and small models077

tend to be over-confident on the top-1 token and078

under-confident on top 2-5 tokens by employing a079

position-wise comparison on model predicted con-080

fidence and its actual accuracy as shown in Figure081

1. The downside is clear from the depiction, as082

distillation by mimicking the not-well-calibrated083

distribution will result in a student model with great084

mis-calibration. In that case, re-calibration before085

distillation provides a promising way to adjust the086

teacher output probability distribution while pre-087

serving the ability of larger teacher models.088

Motivated by this phenomenon, in this paper,089

we delve deeply into how re-calibration can affect090

the calibration and performance of distillation and091

first propose an efficient soft-label-based calibrated092

offline knowledge distillation pipeline for large lan-093

guage models named COD. Different from much094

previous hard distillation methods which utilize095

data generated from ChatGPT and then fine-tune096

student models on the generated data, our method097

utilizes logits of the teacher model and optimizes098

the student model using distribution match. Our099

pipeline mainly contains four steps as shown in100

Figure 2:101

(1) Teacher Building: We first use domain data102

to supervised fine-tune a relatively large teacher103

model which is white-box to us.104

(2) Efficient Data Generation: After obtaining105

the teacher model, we then let the teacher model106

generate the probability distribution for each to-107

ken of the training dataset, and only keep the top-5108

tokens for each token entry. This not only saves109

much disk space but also makes our pipeline fully110

compatible with GPT-3.5 series (text-davinci-003)111

which can only return top-5 token probabilities.112

(3) Re-calibration: By pre-selecting a smooth-113

ing coefficient on validation set that can achieve114

best expected calibration error (ECE) score, we re-115

calibrate and normalize the Top-5 token probability116

of the teacher model in an offline manner.117

(4) Distribution Matching: Finally, the soft la-118

beled data are collected to teach student models.119

To be specific, we retrieve the 5 tokens of student120

model that corresponding to the top-5 tokens of121

the teacher model and optimize the student models 122

by minimizing the Kullback-Leibler Divergence 123

(KLD) (Kullback and Leibler, 1951) between the 124

two probability distribution. 125

We conduct extensive experiments to compare 126

distillation with and without re-calibration by em- 127

ploying several common baselines, demonstrating 128

that catastrophic mis-calibration exists in both fine- 129

tuning and distillation w/o re-calibration methods. 130

On top of that, we explore how to pre-define a good 131

smoothing coefficient which helps to determine to 132

what extent different token probability should be 133

reduced or raised in our COD method in order to 134

distill a well-calibrated student model. Our ex- 135

periments are based on Llama 1, Llama 2, and 136

Open-Llama family (Touvron et al., 2023; Geng 137

and Liu, 2023) since they are considered as most 138

advanced open-sourced models so far and have a 139

flexible range of model sizes. The results show that 140

re-calibration can consistently improve the reliabil- 141

ity of the distilled student model as well as improve 142

the performance on downstream tasks in both in- 143

domain and out-of-domain settings. Compared to 144

direct distillation without re-calibration, our COD 145

can generally improve 4.3% on ece, along with an 146

averaged 2.5% increase in accuracy, showing the 147

effectiveness of our proposed pipeline. In summary, 148

our key contributions include: 149

(i) We show the surprising effectiveness and ne- 150

cessity of re-calibration in improving robust- 151

ness to mis-calibration when compared with 152

direct distillation and standard fine-tuning. 153

(ii) We proposed an efficient soft-label-based cal- 154

ibrated offline knowledge distillation (COD) 155

pipeline for large language models which 156

is scalable by allowing very large teacher 157

models (e.g. >30B) and student models to 158

be trained separated during distillation and 159

can distill more reliable and stronger student 160

model. 161

(iii) We conducted extensive experiments to quan- 162

tify and analyze the benefits re-calibration 163

brings in order to mitigate mis-calibration. 164

2 Related Work 165

2.1 Model Calibration 166

Calibration is a crucial aspect of modern neural 167

network models, as it deals with predicting proba- 168

bility estimates that represent the true likelihood of 169
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Figure 2: The illustration and comparison of different student tuning pipelines. On Device indicates what model is
placed on GPUs during training. (a) represents a standard fine-tuning pipeline which utilize hard label for training.
(b)(c)(d) represent different distillation pipeline where (b) is under online setting which means teacher and student
are both placed on GPU during distillation. Instead, our proposed COD in (d) make it offline by storing the teacher
Top-5 distribution and further improve the pipeline by adding a re-calibration component.

correctness. It ensures that the confidence scores170

produced by models align with their actual perfor-171

mance. Recent studies have shown that modern172

neural networks are poorly calibrated (Guo et al.,173

2017), especially after fine-tuning (OpenAI, 2023)174

in large language model settings. To mitigate the175

issue, previous works contain unlearnable meth-176

ods that heuristically manipulate the original con-177

fidence in predictions (Müller et al., 2019), and178

learnable methods that rely on extra calibration179

tasks which require extra data and more training180

cost (Chen et al., 2023). Different from previous lit-181

erature, this work aims to mitigate mis-calibration182

via knowledge distillation from larger models, es-183

pecially in the field of decoder-only models which184

provides a new point of view to solve the problem.185

2.2 Knowledge Distillation186

Knowledge Distillation (KD) can be viewed as187

a transfer learning that allows a weak and small188

model (student model) to learn from a strong and189

large model (teacher model) in order to deduce190

the model size while preserving good performance.191

Studies over the past years have provided impor-192

tant information on how to distill encoder-only lan-193

guage models (Hinton et al., 2015), but KD on194

large decoder-only language models is still under-195

explored. Based on whether we can access pre-196

diction probability or not, ‘we categorize existing197

distillation methods into two types.198

2.2.1 Black-box Distillation199

Black-box models refer to models that we are200

unable to access their weight and prediction log-201

its such as ChatGPT (Ouyang et al., 2022), and202

PaLM (Chowdhery et al., 2022). Given an in-203

put, we are only able to get the next token with- 204

out its probability distribution. Recent studies 205

have made the attempt to distill reasoning abil- 206

ity from GPT (Ho et al., 2023; Shridhar et al., 207

2023) or some emergent ability such as chain-of- 208

thought (Hsieh et al., 2023; Li et al., 2023). How- 209

ever, these methods may still be categorized as the 210

genre of data-augmentation-and-then-fine-tuning 211

approaches. Different from these methods, this 212

study focus on models that we have access to the 213

output probability distribution as it can provide 214

richer information and lead to better performance. 215

2.2.2 White-box Distillation 216

White-box models mean the models are either fully 217

open-sourced such as Llama (Touvron et al., 2023) 218

or they can return partial probability distribution 219

of the generated tokens, such as code-davinci-002. 220

Instead of the hard token fine-tuning, white-box 221

distillation is typically optimized by a distribution 222

match between teachers and students, potentially 223

producing better small models given the more fine- 224

grained signals (Gu et al., 2023). Our work is an 225

extension of white-box distillation and focuses on 226

how white-box distillation can be improved by re- 227

calibrating the teacher signals. 228

Further, in the field of white-box distillation, 229

there are two different ways: online distillation and 230

offline distillation. Online distillation (Gu et al., 231

2023; Zhou et al., 2023) involves keeping both the 232

teacher model and the student model on the GPU 233

simultaneously during training as shown in Fig- 234

ure 2(b). The advantage of this approach is that 235

we can access the teacher’s entire vocabulary distri- 236

bution. However, the downside is that the teacher 237

model occupies a significant amount of GPU mem- 238
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ory, resulting in low optimization efficiency and239

slow training speed, which can hardly scale up to240

very large teacher models (i.e. > 30B).241

On the other hand, offline distillation typically in-242

volves generating distribution data from the teacher243

model beforehand. During optimization, only the244

student model is on the GPU. The drawback of this245

method is that we cannot store the probability of ev-246

ery token, as it would consume too much disk space.247

Instead, the top-k probabilities are kept. Aiming248

to provide efficient and practical distillation algo-249

rithms, our study focuses on offline distillation and250

keeps the top-5 probability, which has a trade-off251

between performance and resource as shown in252

Figure 2(c)(d).253

3 Method254

As shown in Figure 2(d), our approach can be255

mainly divided into four stages: teacher building,256

efficient offline data generation, Re-calibration and257

end with an illustration of distribution matching.258

Teacher Building After receiving a train set D
for the downstream task, we first use it to fine-
tune a large teacher model by optimizing a normal
language modeling loss:

Loss(y1:N ) = −
N∑
t=1

log p(yt|y<t)

where y1, y2, ...yN is a training token sequence.259

Efficient Data Generation Given the train set260

D and fine-tuned teacher model, we first prepare261

the distillation data which contains top-5 proba-262

bility in the offline setting. This is because for a263

large teacher model (e.g.>10B), it is inefficient to264

place both the teacher and student model on GPUs265

due to the their heavy memory consumption. In266

addition, retrieving the probability distribution in267

advance for each token entry may occupy large268

disk space. For example, given a 50,000-token269

vocabulary, retrieving the full probability from a270

dataset of 100,000 samples with an average length271

of 2,048 requires 120 TB storage, which is highly272

impractical. Given that the top-5 probability typi-273

cally accounts for over 95% of the total probability274

in most cases, and our method is expected to be nat-275

urally extended to distillation from GPT-3 series,276

we choose only to generate the top-5 probability277

for further distillation.278

Re-calibration After collecting the top-5 token
probability from the teacher model, we first apply
a re-calibrate on the probability distribution of the
validation set to select an optimal smoothing co-
efficient c that results in the lowest ece. Then we
re-calibrate the generated teacher probability on
the training set for further distillation by:

PT (i) =
exp(PT (i)/c)∑
j exp(PT (j)/c)

In our setting, i, j = 1, . . . , 5, representing the 279

Top-5 token probability. 280

Distribution Match After obtaining the re-
calibrated probability data PT that contains
PT (1), PT (2), . . . , PT (5), we use the same train-
ing data to train the student model. Instead of uti-
lizing language modeling loss on hard labels, the
probabilities of the 5 tokens that correspond to the
teacher’s top-5 of the student model are retrieved as
PS which contains PS(1), PS(2), ..., PS(5). Kull-
back–Leibler divergence is then used to measure
the loss between the teacher model and the student
model:

Loss(y1:N ) =

N∑
t=1

DKL(PT ||PS)

4 Experimental Setting 281

In this section, we first introduce the experiment 282

setting which includes datasets and metrics (§ 4.1). 283

The models (§ 4.2), baselines (§ 4.3), are pre- 284

sented in the following two subsections respec- 285

tively. Implementation details can be checked in 286

Appendix A.1. 287

4.1 Datasets and Evaluation Metrics 288

We conducted the experiments under two practi- 289

cal setups: (i) Direct training on individual down- 290

stream tasks and testing on the same task, so-called 291

In-Domain which has been widely used to adapt 292

language models to specific domains. (ii) General 293

training on instruction-following tasks (Instruction 294

tuning) and testing it on unseen downstream tasks, 295

which is called Out-of-Domain setting. In such 296

cases, we want to test the calibration ability and 297

performance on a general-purpose model. 298

• In-Domain: We conduct experiments on two 299

commonly used question answering tasks Com- 300

monsenseQA(CSQA) (Talmor et al., 2019) and 301

BoolQ (Clark et al., 2019), respectively. We manu- 302

ally split 10% data to serve as a validation set and 303
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then measure the calibration and performance on304

the corresponding test set.305

• Out-of-Domain: Different from our in-domain306

setting, we first train the model on Alpaca (Taori307

et al., 2023), a commonly used instruction-308

following dataset. Then we measure the calibration309

and performance on CommonsenseQA and Open-310

Book QA(OBQA) (Mihaylov et al., 2018), which311

are particularly adopted to reflect the model’s con-312

fidence level in terms of reasoning ability after313

training on general instruction-following data.314

Metrics To measure calibration, we treat the free-
text generation task as a classification task by re-
stricting the model to generate only one token. We
then obtain the highest probability choice over this
token entry from a set of candidate choices (i.e.
A/B/C/D) using argmaxi∈C P (i), where C repre-
sents the set of candidates. We use the retrieved to-
ken probability as the predicted confidence, and its
corresponding choice to calculate accuracy by com-
paring it to the ground truth. Finally, we compute
the expected calibration error (ECE) as follows:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)|

Here we consistently set the number of bins to 10.315

To measure performance, we check whether the316

prediction is an exact match of the ground truth,317

and compute the final accuracy accordingly.318

4.2 Language Models319

We conduct all experiments on three different320

model families: Llama-1, Llama-2 (Touvron et al.,321

2023) and OpenLlama (Geng and Liu, 2023) as322

they all have a wide range of model sizes from323

small to large, which make the distillation possible.324

In addition, these models have been widely used by325

the community and have shown strong ability on326

instruction following and reasoning tasks that make327

our results more reliable and useful. For Llama-1,328

we adopt Llama-1 7B as the student model and329

corresponding Llama-1 33B fine-tuned model to330

be the teacher. While for Llama-2, we choose 13B331

model as the teacher model since 34B model is not332

publicly available and 70B model requires signif-333

icantly more training resources. For OpenLlama,334

we choose the largest 13B model in this model335

family as the teacher model.336

4.3 Baselines 337

We set up five baseline methods and our proposed 338

COD pipeline as follows: 339

• Pre-train: The original model without any tun- 340

ing which has the same size as the student 341

model. It typically has the lowest performance 342

on downstream tasks. 343

• Teacher: The large model fine-tuned on D 344

with hard labels. 345

• Fine-tune: The small model fine-tuned on D 346

with hard labels, which has the same size as 347

the student model. 348

• Distill 7B w/o Re-calibration: The distilled model 349

by preserving the original teacher-generated 350

probability distribution without re-calibration. 351

• Distill 7B w/ Label Smoothing: The distilled 352

model by re-calibrating the original teacher- 353

generated probability distribution using Label 354

Smoothing. 355

• Distill 7B w/ COD: The distilled model by 356

re-calibrating the original teacher-generated 357

probability distribution using our proposed 358

COD pipeline. 359

5 Experiment Results 360

To establish the importance of re-calibration dur- 361

ing distillation and the superiority of COD pipeline 362

over standard distillation and fine-tuning, we first 363

compare the calibration ability of pre-training, 364

fine-tuning, and distillation with and without re- 365

calibration on two in-domain tasks. We show that, 366

with COD, distillation can generally improve both 367

the calibration and performance on downstream 368

tasks compared with other distillation pipelines and 369

standard fine-tuning. Finally, we extend the results 370

to out-of-domain settings. The overall results are 371

shown in Table 1. 372

5.1 In-Domain Results 373

As shown in the left part of Table 1, we evaluate the 374

calibration and performance of several baselines 375

and our COD pipeline on the CSQA and BoolQ 376

test set. We conclude the following findings: 377

• Fine-tuning lead to catastrophic mis- 378

calibration: We observe that fine-tuned models 379

generally exhibit worse calibration compared to 380

pre-trained counterparts. For example, both the 381
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IN-DOMAIN OUT-OF-DOMAIN
Commonsense QA BoolQ Alpaca → Commonsense QA Alpaca → OBQA

ECE ↓ Acc ↑ ECE ↓ Acc ↑ ECE ↓ Acc ↑ ECE ↓ Acc ↑

LLAMA 1 : 33B → 7B

Pre-train 7B 0.042 28.1% 0.425 61.3% 0.039 27.8% 0.04 27.2%
Teacher 33B 0.102 82.4% 0.077 89.7% 0.186 69.2% 0.202 64.4%
Fine-tune 7B 0.118 79.9% 0.065 82.5% 0.125 48.2% 0.219 43.4%
Distill 7B w/o Re-calibration 0.094 78.9% 0.04 85.3% 0.053 43.1% 0.181 39.8%
Distill 7B w/ Label Smoothing 0.091 78.1% 0.190 85.3% 0.052 43.9% 0.19 37.6%
Distill 7B w/ COD 0.029 80.8% 0.04 85.7% 0.046 50.0% 0.071 47.2%
COD to w/o Re-calibration ↑6.5% ↑1.9% ↑0% ↑0.4% ↑0.7% ↑6.9% ↑11% ↑7.4%

LLAMA 2 : 13B∗ → 7B

Pre-train 7B 0.1 36.6% 0.386 57.2% 0.1 36.6% 0.125 44.7%
Teacher 13B 0.12 81.6% 0.068 89.7% 0.208 65.7% 0.287 58.3%
Fine-tune 7B 0.14 76.8% 0.084 87.5% 0.212 50.0% 0.301 45.6%
Distill 7B w/o Re-calibration 0.109 80.0% 0.04 85.3% 0.077 50.9% 0.125 46.6%
Distill 7B w/ Label Smoothing 0.103 80.4% 0.039 87.5% 0.075 51.1% 0.162 47.6%
Distill w/ COD 0.063 80.3% 0.014 87.9% 0.055 51.4% 0.081 49.5%
COD to w/o Re-calibration ↑4.6% ↑0.3% ↑2.6% ↑2.6% ↑2.2% ↑0.5% ↑4.4% ↑2.9%

OPENLLAMA : 13B → 7B

Pre-train 7B 0.075 20.8% 0.359 58.5% 0.075 20.8% 0.008 28.4%
Teacher 13B 0.132 78.5% 0.075 87.6 0.167 49.5% 0.134 50%
Fine-tune 7B 0.105 75.0% 0.036 81.5% 0.216 28.3% 0.161 30.4%
Distill 7B w/o Re-calibration 0.092 75.2% 0.062 83.8% 0.097 27.7% 0.137 29.8%
Distill 7B w/ Label Smoothing 0.096 74.5% 0.033 83.3% 0.041 29.2% 0.142 29.8%
Distill 7B w/ COD 0.050 77.2% 0.027 84.7% 0.029 30.5% 0.082 30.8%
COD to w/o Re-calibration ↑4.2% ↑2.0% ↑3.5% ↑0.9% ↑6.8% ↑2.8% ↑5.5% ↑1.0%

Table 1: The overall experimental results of calibration and performance on downstream tasks under both in-domain
and out-of-domain setting. We compare pre-trained models, fine-tuned teacher and student models, and distilled
models w/ or w/o re-calibration. The ↑ represents the larger the better while the ↓ means the smaller the better. Bold
represents the best among fine-tuned and distilled student models. Gray represents the statistics presented are for
reference only and should not be used for comparison purposes. The model sizes are all specified in the subscripts.
∗: We use 13B teacher model for Llama 2 family as its 34B version is still not publicly available and its 70B version
requires significantly more resources.

fine-tuned student model and teacher have higher382

ece values than the pre-train 7B model on CSQA383

of three model settings.384

It is also observed that pre-train models that de-385

viate significantly from random guess performance386

tend to show larger mis-calibration. This is because387

these models have not been fine-tuned on the spe-388

cific dataset and is supposed to produce random389

guess probability. When high accuracy is observed,390

there would be a mismatch between its prediction391

and true likelihood, leading to large mis-calibration392

rate.393

• Direct distillation brings bad calibration as394

well: Furthermore, distilled models without re-395

calibration show varied calibration ability and per-396

formance. For in-domain tasks, the distilled Llama-397

1 and Llama-2 7B without re-calibration have ece398

values of 9.4% and 10.9% on CSQA, 4.0% and399

4.0% on BoolQ respectively, a mis-calibration level400

similar to fine-tuned models. And distilled model401

of OpenLlama shows even worse calibration than402

fine-tuned models on BoolQ, indicating bad cali- 403

bration ability of distillation without re-calibration 404

under in-domain setting. While for performance, 405

direct distillation generally has an improvement 406

over standard fine-tuning, but on some settings 407

such as Llama-1 on CSQA, it also shows worse per- 408

formance than fine-tuning. This finding suggests 409

that distillation without re-calibration does not con- 410

sistently lead to good calibration and performance, 411

demonstrating that matching mis-calibrated teacher 412

distribution cannot result in a well-calibrated stu- 413

dent model and verifying our motivation. 414

• Re-calibration before distillation can greatly 415

improve the calibration ability: In contrast, dis- 416

tilled models with re-calibration, particularly our 417

proposed COD pipeline, demonstrate significantly 418

better calibration, achieving the lowest ece scores 419

across all tasks, with an improvement up to 13% 420

over the fine-tuning models of the same size. This 421

suggests that COD effectively adjusts the model’s 422

confidence levels to match its prediction accuracy. 423
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Figure 3: A reliability diagram showing mis-calibration comparison between pre-trained 7B, fine-tuned 33B
(Teacher), fine-tuned 7B (Fine-tune) and distillation methods with or without re-calibration of Llama-1 family
on Commonsense QA. Distill with COD is the rightmost figure. The red bar means accuracy higher than perfect
calibration (under-confident) while the green bar means accuracy lower than perfect calibration (over-confident).
The X-axis is 10 bins according to the model’s confidence in each of the multiple choices for each question while
the Y-axis is the accuracy within each bin.

In such cases, the model’s overconfident issue is424

mitigated. Another baseline, distillation with label425

smoothing, also improves calibration but doesn’t426

reach the efficacy levels of COD, as COD considers427

an optimal smoothing coefficient on the validation428

set, we further analyze the effectiveness of the opti-429

mal smoothing coefficient in Section 6.1.430

On top of calibration, distilled models with re-431

calibration also show consistently improved per-432

formance on downstream tasks. Specifically, COD433

has an averaged improvement of 2.5% accuracy434

over non-calibrated baselines, indicating it not only435

makes well-calibrated confidence in its predictions436

but also has a more accurate prediction, underscor-437

ing the importance of re-calibration in distillation438

processes.439

5.2 Out-of-Domain Results440

The out-of-domain experiment statistics as shown441

in the right part of Table 1 indicate that the general442

trends observed in in-domain settings hold true in443

out-of-domain settings as well.444

When models are fine-tuned on instruction fol-445

lowing tasks and then applied to out-of-domain446

tasks, they also exhibit a poor level of calibration,447

indicated by higher ece values. This trend is consis-448

tent with the in-domain findings, which means that449

current general-purpose models suffer from great450

mis-calibration in many of their downstream tasks,451

making them unreliable to be deployed in real-452

world applications. For instance, the fine-tuned 7B453

model shows 3×-13× increased ece values in the454

out-of-domain tasks compared to the pre-trained455

models.456

Distilled models without re-calibration show457

some improvement in calibration over fine-tuned458

models, but this improvement is not strong and con-459

sistent. For example, the distillation for Llama-1 460

and Llama-2 models without re-calibration does 461

show reduced ece values compared to their fine- 462

tuned counterparts on out-of-domain settings, how- 463

ever, these values are not low enough to indicate 464

strong calibration. This is especially evident with 465

the OpenLlama model, which, despite being dis- 466

tilled, displays worse calibration on BoolQ than 467

fine-tuned models, highlighting the limitations of 468

distillation without re-calibration in out-of-domain 469

settings. 470

In contrast, COD pipeline consistently out- 471

performs both the standard distillation and fine- 472

tuning approaches in terms of calibration on out-of- 473

domain tasks. They achieve the lowest ece val- 474

ues across all out-of-domain tasks across three 475

model families, indicating that the re-calibration 476

process within COD is effective even when applied 477

to general instruction tuning and tested on unseen 478

real-world tasks. This suggests that COD is a ro- 479

bust pipeline for solving mis-calibration issues and 480

improving performance under real-world out-of- 481

domain settings. 482

6 Additional Experiments and Analysis 483

6.1 Visualization on Calibration 484

In addition to metric-based analysis, we also draw 485

a reliability diagram for better visualization and 486

compare the mis-calibration of each model. As 487

shown in Figure 3, each sub-plot contains a reliabil- 488

ity diagram for pre-trained Llama-1-7B, fine-tuned 489

Llama-1-33B, fine-tuned Llama-1-7B, and three 490

distilled methods from left to right. A perfectly 491

calibrated model would have a straight diagonal 492

line from the bottom left to the top right of such a 493

diagram, indicating that confidence level is exactly 494

consistent with actual accuracy. The reliability dia- 495
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Figure 4: Left shows the comparison of different
smoothing coefficient on the validation set, while the
right part demonstrates its corresponding calibration ef-
fect on the test set.

grams are divided into 10 bins based on the model’s496

confidence. The bars represent the accuracy within497

each bin, and the colors indicate whether the model498

is under-confident (red) or over-confident (green)499

within each bin. The class-wise expected calibra-500

tion error at the top of each plot provides a quan-501

titative measure of calibration, with a lower score502

indicating better calibration. The figure indicates503

that the pre-trained model exhibits bad calibration504

as it deviates from the perfect calibration line a lot.505

Since it has not been fine-tuned for this specific506

task, it predicts probabilities only range from 0.2507

to 0.4. After fine-tuning, the model shows catas-508

trophic mis-calibration where it introduced a de-509

gree of over-confidence and under-confidence in510

the model’s predictions. The fine-tuned model’s511

bars now frequently rise below the perfect cali-512

bration line, indicating that it often predicts with513

higher confidence than is warranted by its actual514

accuracy. However, we also observe that the large515

teacher model (33B) is more calibrated than the516

small model (7B) and the direct distilled model can517

reach slightly better calibration. While for distilla-518

tion with COD pipeline, the under-confident and519

over-confident are noticeably less than fine-tuned520

models and distilled models without re-calibration,521

as evidenced by a smaller area of red bar and green522

bar and its proximity to the perfect calibration line.523

6.2 Effectiveness of Smoothing Coefficient in524

COD525

As discussed in the COD pipeline, we pre-select526

an smoothing coefficient that reach a lowest ece527

score based on the validation set as shown in the528

left part of Figure 4. We first divide the interval529

from 0 to 1 by a step of 0.1, as a coefficient of 1530

already compressed the token probability a lot and531

the therefore coefficient of 0.1 will even enlarge532

the probability of over-confident tokens. We fur-533

ther locate a smaller interval that contains potential 534

optimal value and use a smaller step of 0.02 to find 535

the best smoothing coefficient. We further compare 536

COD distillation with the selected optimal smooth- 537

ing coefficient and other different smoothing coef- 538

ficient as shown in the right part of Figure 4. COD 539

with optimal smoothing coefficient do outperform 540

those with other levels of smoothing coefficient 541

with a large margin, indicating the effectiveness of 542

selecting such optimal smoothing coefficient. 543

6.3 Comparison to Post-calibration after 544

Training 545

We also compare our COD method with some post- 546

calibration techniques such as temperature scaling 547

after direct distillation and fine-tuning. These post- 548

calibration are often regard as poorer performance 549

than consider re-calibration during training and 550

will compress the final prediction probability a lot 551

which make the confidence non-differentiable. For 552

example, direct distilled OpenLlama on Alpaca af- 553

ter post temprature scaling still have a 30% ece 554

higher than its COD counterparts and with its high- 555

est confidence reduced to 60%. 556

7 Conclusion 557

In conclusion, this study presents a novel Offline 558

knowledge Distillation with Re-calibration (COD) 559

approach for large language models (LLMs), em- 560

phasizing the importance of re-calibration in knowl- 561

edge distillation. The COD pipeline effectively 562

addresses the issue of mis-calibration in distilled 563

models, consistently leading to more reliable and 564

accurate student models. Through comprehensive 565

experiments, it’s shown that re-calibration prior to 566

distillation significantly improves model reliabil- 567

ity and performance in both in-domain and out-of- 568

domain settings. The research contributes to the un- 569

derstanding of the mis-calibration issue in current 570

LLM tuning methods and offers a robust method 571

for enhancing their performance and calibration 572

ability, proving particularly useful in scenarios in- 573

volving large teacher models. 574

8 Impact Statement 575

This paper presents work whose goal is to advance 576

the field of Machine Learning. We address the 577

critical issue of catastrophic mis-calibration in cur- 578

rent training pipelines (supervised fine-tuning and 579

knowledge distillation) and propose a pipeline to 580

obtain a more reliable model. There are many po- 581
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tential societal consequences of our work, none582

which we feel must be specifically highlighted here.583

9 Limitations584

It is shown that our Calibrated Offline Knowledge585

Distillation (COD) demonstrates superior calibra-586

tion ability and performance over direct distillation587

and standard fine-tuning methods. However, de-588

spite these exciting results, there are still some589

limitations to our current work, as well as potential590

opportunities for future research.591

Extend to Large Teacher Model : Due to the592

resource limitation, our largest teacher model is593

Llama 33B which is not very large but already594

achieving exciting results by distillation to a 7B595

student model. We expect that by employing large596

teacher model such as 70B can lead to better cali-597

bration ability and performance since large model598

learn a better distribution. However, we are unable599

to explore how very large teacher perform due to600

resource limitation.601

Top-K Chosen in Offline Distillation: Another602

limitation of this work is that it does not provide603

a rigorous study on how many token probability604

to choose for one entry is optimal for knowledge605

distillation in large language models. Currently, we606

consistently choose the top-5 token probability to607

retrieve because of the following reasons: (1) We608

suppose the top-5 token probability already contain609

most of the information (i.e. sum of top-5 probabil-610

ity is close to 1) for the whole distribution and top-5611

will not consume tremendous disk space (2) Cur-612

rent strong gray-box models like text-davinci-003613

from OpenAI can only return the top-5 probability614

for each token entry, so that our method can be615

extend to the data generated by these models.616

However, how many token probability to use617

is optimal could be an important area for further618

exploration and development.619
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FINE-TUNED DISTILLATION W/O RE-CALIBRATION DISTILLATION W/ COD

Question Which city is farther north, Oslo or Helsinki?

Correct Answer Helsinki

Generated Oslo is farther north than Helsinki. Oslo is farther north than Helsinki. Oslo is farther north than Helsinki.
Confidence 0.73 → over-confident 0.79 → over-confident 0.54

Question Is Donald Trump a Neo-con American politician and businessman for the Republicans, with a long and varied career?

Correct Answer No

Generated Yes. Yes. Yes.
Confidence 0.91 → over-confident 0.85 → over-confident 0.78

Table 2: A case study on how fine-tuned model and distilled model without re-calibration tend to over-confident on
the wrong answer with high confidence. While distillation with COD though output a wrong answer but it produce
low confidence to show its uncertainty.

A Detailed Experimental Setting 763

A.1 Implementation Details 764

We train our models on 8 GPU (RTX A6000 48G) using the Adam optimizer and cosine annealing 765

scheduler with a warmup ratio of 0.03. For fine-tuning, we utilize LMFlow (Diao et al., 2023) package to 766

obtain a well fine-tuned model by a standard 3-epoch training. For question-answering tasks, we follow 767

Shum et al. (2023)’s format and fine-tune the model in a zero-shot setting. For out-of-domain tasks, we 768

directly follow Alpaca’s (Taori et al., 2023) setting to obtain the fine-tuned model. Finally, for distillation, 769

the batch size is set to 32 on each gpu and we train our model for 3 epochs, the last checkpoint is used for 770

evaluation since it has the best performance. 771

B Additional Analysis 772

B.1 Case Study 773

We further conduct a case study to see whether re-calibration indeed helps mitigate mis-calibration in 774

real-world question answering. As shown in Table 2, we ask the models that use three different tuning 775

methods on Alpaca a question: which city is farther north, Oslo or Helsinki? The correct 776

answer is Helsinki and the wrong answer is Oslo. From the output confidence, we can see that fine-tuned 777

models and distillation w/o re-calibration give high confidence in the wrong answer, which is far from 778

satisfactory for real-world settings, especially when additional post-processing procedures were expected 779

to be applied to filter wrong answer by identifying unconfident responses. In comparison, distillation with 780

COD greatly mitigates this mis-calibration by producing a confidence around 50% which indicate the 781

model is not sure about the generated answer, allowing systems to filter those undesirable answers by a 782

hard confidence threshold. 783
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