
Under review as a workshop paper at ICLR 2019

DEBIASING DEEP GENERATIVE MODELS VIA
LIKELIHOOD-FREE IMPORTANCE WEIGHTING

Anonymous authors
Paper under double-blind review

ABSTRACT

A learned generative model often gives biased statistics relative to the underlying
data distribution. A standard technique to correct this bias is by importance
weighting samples from the model by the likelihood ratio under the model and
true distributions. When the likelihood ratio is unknown, it can be estimated by
training a probabilistic classifier to distinguish samples from the two distributions.
In this paper, we employ this likelihood-free importance weighting framework
to correct for the bias in using state-of-the-art deep generative models.We find
that this technique consistently improves standard goodness-of-fit metrics for
evaluating the sample quality of state-of-the-art generative models, suggesting
reduced bias. Finally, we demonstrate its utility on representative applications in a)
data augmentation for classification using generative adversarial networks, and b)
model-based policy evaluation using off-policy data.

1 INTRODUCTION

Learning probabilistic generative models of complex environments from high-dimensional observa-
tions is a long-standing challenge in machine learning. Once learned, these models are used to draw
inferences and plan future actions. For example, in data augmentation, samples from a learned model
are used to enrich a dataset for supervised learning (Antoniou et al., 2017). In model-based off-policy
policy evaluation (henceforth MBOPE), a learned dynamics model is used to simulate and evaluate
a target policy without real-world deployment Mannor et al. (2007); Thomas & Brunskill (2016),
which is especially valuable for risk-sensitive applications Thomas (2015).

In recent years, deep generative models have made substantial progress in learning high-dimensional
distributions and shown remarkable success across several applications in computer vision, natural
language processing, and reinforcement learning (Goodfellow, 2016; Kim et al., 2018; Ho & Ermon,
2016). However, existing theoretical results (Rosenblatt, 1956; Arora et al., 2018; Zhao et al., 2018)
show that learning distributions in an unbiased manner is either impossible or has prohibitive sample
complexity. Consequently, the models used in practice are inherently biased,1 and any downstream
planning and inference based on a biased model can be misleading.

In order to address this issue, our work starts from the observation that many typical uses of generative
models involve computing expectations under the generative model. For instance, in MBOPE, we
seek to find the expected return of a policy under a trajectory distribution defined by this policy and
learned dynamics model. A classical recipe for correcting the bias in expectations, when samples
from a different distribution than the ground truth are available, is to importance weight the samples
according to the likelihood ratio (Horvitz & Thompson, 1952). If the importance weights were exact,
the resulting estimates are unbiased. But in practice, the likelihood ratio is unknown and needs to be
estimated since the true data distribution is unknown and even the model likelihood is intractable or
ill-defined for many deep generative models, e.g., variational autoencoders Kingma & Welling (2013)
and generative adversarial networks Goodfellow et al. (2014).

Our proposed solution to estimate the importance weights is to train a calibrated, probabilistic
classifier to distinguish samples from the true data distribution and the generative model. As has been
shown in prior work, the output of such classifiers can be used to extract density ratios (Sugiyama
et al., 2012). Appealingly, this estimation procedure is likelihood-free since it only requires samples

1We call a generative model biased if it produces biased statistics relative to the true data distribution.
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from the two distributions. The density ratio perspective has been used previously to expand the
class of learning objectives for deep generative modeling (Goodfellow et al., 2014; Nowozin et al.,
2016; Mohamed & Lakshminarayanan, 2016; Grover & Ermon, 2018). While following the same
estimation procedure, we use the density ratios as importance weights for bias reduction of a
pretrained generative model to be used for downstream Monte Carlo evaluation.

Empirically, we evaluate our bias reduction framework on deep generative models of high-dimensional
datasets on three main sets of experiments. First, we consider goodness-of-fit metrics for evaluating
sample quality of a likelihood-based and a likelihood-free state-of-the-art model on the CIFAR-10
dataset. In particular, we experiment with PixelCNN++ (Salimans et al., 2017) and SNGAN (Miyato
et al., 2018) models on three most commonly used metrics viz. Inception Scores (Salimans et al.,
2016), Frechet Inception Distance (Heusel et al., 2017), and Kernel Inception Distance (Bińkowski
et al., 2018). All these metrics are defined as Monte Carlo estimates from the generated samples. By
importance weighting samples, we observe improvements of 23.35% and 13.48% averaged across
the three metrics on the PixelCNN++ and SNGAN models respectively.

Next, we demonstrate the utility of our approach on the task of data augmentation for multi-class
classification on the Omniglot dataset (Lake et al., 2015). This dataset is particularly relevant for data
augmentation since it contains only 20 images per class and 1600 classes in total. We show that
while naively augmenting the model with samples from a data augmentation generative adversarial
network due to (Antoniou et al., 2017) is not very effective for multi-class classification, we can
improve classification accuracy from 66.03% to 68.18% by importance weighting the contributions
of each augmented data point.

Our final experiment demonstrates bias reduction for model-based off policy evaluation (Precup
et al., 2000). A typical MBOPE approach is to first estimate a generative model of the dynamics
using off-policy data and then evaluate the policy using Monte Carlo sampling (Mannor et al., 2007;
Thomas & Brunskill, 2016). Again, we observe that correcting the bias of the estimated dynamics
model via importance weighting leads to significantly better policy evaluations on three MuJoCo
environments (Todorov et al., 2012).

2 PRELIMINARIES

In this section, we discuss the necessary notation and background in deep generative modeling.
Unless explicitly stated otherwise, we assume probability distributions admit absolutely continuous
densities on a suitable reference measure. We use uppercase notation X,Y, Z to denote random
variables, lowercase notation x, y, z to denote specific values in the corresponding sample spaces
X ,Y,Z . We use boldface for multivariate random variables and their vector values.

Consider a finite dataset Dtrain of instances x drawn i.i.d. from a fixed, but unknown distribution
pdata. Given Dtrain, the goal of generative modeling is to learn a distribution pθ to approximate pdata.
Here, θ denotes the model parameters, e.g. weights in a neural network for deep generative models.
The quality of approximation is measured via a suitable measure of discrepancy between distributions,
e.g., KL divergence, Wasserstein distance, maximum mean discrepancy, moment matching (Nowozin
et al., 2016; Arjovsky et al., 2017; Li et al., 2017; Ravuri et al., 2018) etc.

Broadly, there exist two main paradigms for learning a deep generative model: maximum likelihood
estimation (MLE) and adversarial training (Mohamed & Lakshminarayanan, 2016). MLE fits
parameters to maximize the model likelihood for the dataset Dtrain, when the model specifies a
likelihood function, e.g. autoregressive models (Uria et al., 2016), normalizing flow models (Dinh
et al., 2014), and variational autoencoder models (Kingma & Welling, 2013). Adversarial training,
on the other hand, learns a generative model via a minimax game between the generative model and
an auxiliary critic, where the critic distinguishes the samples in Dtrain and from those generated by
the model (Goodfellow et al., 2014). This method is likelihood-free since the learning objective only
requires evaluating expectations w.r.t. the current model distribution during training, which can be
done by drawing samples from the model.
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3 GENERATIVE MODELS FOR MONTE CARLO EVALUATION

In this work, we are interested in use cases where the goal is to evaluate or optimize the expectations
of functions under some distribution p (either equal or close to the data distribution pdata). Assuming
access to samples from p as well some generative model pθ, one extreme is to evaluate the sample
average using the samples from p alone. However, this ignores the availability of pθ, to which we
have a virtually unlimited access ignoring computational constraints and can arbitrarily improve the
accuracy of our estimates when pθ is close to p. We begin by presenting a direct motivating use
case of data augmentation using deep generative models for training classifiers which generalize
better. Thereafter, we discuss more generally how using generative models for evaluating Monte
Carlo expectations and propose a debiasing mechanism based on importance weighting.

3.1 EXAMPLE USE CASE: DATA AUGMENTATION

The availability of training data is critical for learning classification and regression systems. Sufficient
labeled training data may however be expensive to obtain or susceptible to noise. Data augmentation
seeks to improve the performance of supervised learning systems by artificially injecting new
datapoints into the training set. These new datapoints are derived from an existing labeled dataset,
either by specifying manual transformations (e.g., rotations, flips for image data), or alternatively,
learned via a generative model as demonstrated successfully in recent work (Ratner et al., 2017;
Antoniou et al., 2017).

Consider a supervised learning task over a labeled dataset Dcl of pairs of features and labels denoted
as (x, y), which are assumed to be sampled independently from an underlying data distribution
pdata(x, y) defined over X × Y . Further, let Y ⊆ Rk. In order to learn a classifier fφ : X → Rk ,
we are interested in minimizing the expectation of a loss ` : Y × Rk → R over the training dataset:

Epdata(x,y)[`(y, fφ(x))] ≈ 1

|Dcl|
∑

(x,y)∼Dcl

`(y, fφ(x)). (1)

For example, ` could be specified as the per example cross-entropy loss. Optimizing the above
objective w.r.t φ hence requires reliably estimating the function fφ ∈ F that best fits the data
distribution.

A generative model for the task of data augmentation learns a joint distribution pθ(x, y). Several
algorithmic variants exist for learning the model’s joint distribution and we defer the specifics of prior
work to the experiments section. Once the generative model is learned, it can be used to optimize the
expected classification loss in Eq. 1 under a mixture distribution of empirical data distributions and
generative model distributions given as:

pmix(x, y) = mpdata(x, y) + (1−m)pθ(x, y) (2)

for a suitable choice of the mixture weights m ∈ [0, 1]. Data augmentation is a standard routine in
most supervised learning problems, and recent work has successfully applied it in low labelled data
regimes (Wong et al., 2016; Antoniou et al., 2017). Notice that while the eventual task here is opti-
mization, reliably evaluating the expected loss of a candidate parameter φ is an important ingredient
and we focus on this basic question first, before leveraging the solution for data augmentation and
other use cases. Also observe that the distribution p under which we seek expectations is same as
pdata here, and we rely on the generalization ability of pθ to generate transformations of an instance
in the dataset which are not explicitly present, but plausibly observed in other, similar instances (Zhao
et al., 2018).

3.2 DEBIASING USING IMPORTANCE WEIGHTS

Whenever the distribution p under which we seek expectations differs from pθ, model-based estimates
exhibit bias. In this section, we start out by formalizing bias for Monte Carlo expectations and
subsequently propose a bias reduction strategy based on likelihood-free importance weighting. The
notation used in this section follows Section 2.
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We are interested in evaluating expectations of a class of functions of interest f ∈ F w.r.t. the
distribution p. For any given f : X → R, we get:

Ex∼p[f(x)] =

∫
p(x)f(x)dx. (3)

Given access to samples from a generative model pθ, if we knew the densities for both p and pθ,
then a classical scheme to evaluate expectations under p using samples from pθ is to use importance
sampling (Horvitz & Thompson, 1952). We reweight each sample from pθ according to its likelihood
ratio under p and pθ and compute a weighted average of the function f over these samples. Formally,
we have:

Ex∼p[f(x)] = Ex∼pθ

[
p(x)

pθ(x)
f(x)

]
≈ 1

T

T∑
i=1

w(xi)f(xi) (4)

where w(xi) := p(xi)/pθ(xi) is the importance weight for xi ∼ pθ. The validity of this procedure
is subject to the use of a proposal pθ(x) that for all x ∈ X where pθ(x) = 0, we also have
f(x)p(x) = 0.2

However, in order to apply this technique to reduce the bias of a generative sampler pθ w.r.t. p, we
require knowledge of the importance weights w(x) for any x ∼ pθ. However, we typically only have
a sampling access to p. For instance, in the data augmentation example above, where p = pdata, the
unknown distribution used to learn pθ. Similarly in MBOPE, p involves the unknown dynamics of
the environment which we can only observe samples from. Hence we need a scheme to learn the
weights w(x), using samples from p and pθ, which is the problem we tackle next.

Consider two sets of samples from the distributions p and pθ respectively. Without loss of generality,
assign the positive label y = 1 to samples from p and negative label y = −1 to samples from pθ.
A probabilistic, binary classifier c : X → [0, 1] assigns a probability that a sample x belongs to
the positive class y = 1. As shown in prior work, such a classifier can be used to extract density
ratios (Friedman et al., 2001). We restate the result in the proposition below.

Proposition 1. If a probabilistic classifier c : X → [0, 1] trained to classify data from p and pθ is
Bayes optimal, then the ratio of densities assigned to any point x is given as:

p(x)

pθ(x)
= γ

c(x)

1− c(x)
(5)

where γ = p(y=−1)
p(y=1) .

For the rest of the work, we assume for the purpose of brevity that a data point is equally likely to be
classified as positive or negative, and hence γ = 1.3

3.3 PRACTICAL CONSIDERATIONS

In practice, we do not have access to a Bayes optimal classifier and hence, the estimated importance
weights will not be exact and consequently, we can hope to reduce the bias as opposed to eliminating
it entirely. Hence, our proposed bias reduced estimator w.r.t. pdata is given as:

Ex∼p[f(x)] ≈ 1

T

T∑
i=1

ŵ(xi)f(xi) (6)

where ŵ(xi) = c(xi)/(1−c(xi)) is the importance weight for xi ∼ pθ estimated via a probabilistic
binary classifier c(x).

2A stronger sufficient, but not necessary condition that is independent of f , states that the proposal pθ is
valid if it has a support larger than p, i.e., for all x ∈ X , pθ(x) = 0 implies p(x) = 0.

3This can be enforced empirically by training a classifier on an equal number of positive and negative
examples.
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(a) Setup (b) n = 50 (c) n = 100 (d) n = 1000

Figure 1: Importance Weight Estimation using Probabilistic Classifiers. (a) A univariate Gaussian
(blue) is fit to samples from a mixture of two Gaussians (red). (b-d) Estimated class probabilities
(with 95% confidence intervals based on 1000 bootstraps) for varying number of points n, where n is
the number of points used for training the generative model and multilayer perceptron.

Self-normalization. If the importance weights across the sample set are too small, one useful trick
from the importance sampling literature that works well in practice is to normalize the importance
weights across a batch.

The self-normalized importance weighted estimator for Monte Carlo evaluation is given as:

Ex∼p[f(x)] ≈
T∑
i=1

ŵ(xi)∑T
j=1 ŵ(xj)

f(xi). (7)

where ŵ(xi) is the importance weight for xi ∼ pθ.

Deriving confidence intervals. To derive confidence intervals around the estimated importance
weights or c(x), we propose to use a combination of empirical and parametric bootstraps. Bootstrap
is a widely-used tool in statistics for deriving confidence intervals by fitting ensembles of models on
resampled data points. If the dataset is finite e.g., Dtrain, then the bootstrapped dataset is obtained via
random sampling with replacement and confidence intervals are estimated via the empirical bootstrap.
For a parameteric model generating the dataset e.g., pθ, a fresh bootstrapped dataset is resampled
from the model and confidence intervals are estimated via the parametric bootstrap. See Efron &
Tibshirani (1994) for a detailed review. In training a binary classifier as described above, we can
estimate the confidence intervals by retraining the classifier on a fresh sample of points from pθ and a
resampling of the training dataset Dtrain (with replacement).

Synthetic experiment. We visually illustrate the efficacy of classifiers for estimating importance
weighting in a toy experiment. The setup for this experiment is illustrated in Figure 1a. We are
given a finite set of samples drawn from a mixture of two Gaussians (red). The model family is a
unimodal Gaussian with two parameters, illustrating mismatch due to a parametric model. The mean
and variance of the model are estimated by the empirical means and variances of the observed data.
Using estimated model parameters, we then draw samples from the model (blue).

In Figure 1b, we show the probability assigned by a binary classifier to a point to be from true data
distribution. Here, the classifier is a multi-layer perceptron with a single hidden layer of 100 units and
has been trained by gradient-based methods on a dataset of 50 samples drawn from the generative
model and data distribution each. The density ratios are estimated based on the probabilities assigned
by the classifier. The classifier is not Bayes optimal, which can be seen by the gaps between the
optimal probabilities curve (black) and the estimated class probability curve (green). However, as
we increase the number of real and generated examples n in Figure 1c,d from n = 50 to n = 100
and n = 1000, the classifier approaches optimality. Furthermore, even its uncertainty shrinks
with increasing data, as expected. In summary, this experiment demonstrates model mismatch in a
generative model as the root cause of bias and how a binary classifier can mitigate this bias.

4 EXPERIMENTS

Our experiments are designed to demonstrate two key takeaways: (a) likelihood-free importance
weighting can reduce bias of deep generative models on standard goodness-of-fit metric evaluations,
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Table 1: Goodness-of-fit evaluation on CIFAR-10 dataset for PixelCNN++ and SNGAN. Standard
errors computed over 10 runs. Higher IS is better. Lower FID and KID scores are better.

Model Evaluation IS (↑) FID (↓) KID (↓)
- Reference 11.09 ± 0.1263 5.20 ± 0.0533 0.008 ± 0.0004

PixelCNN++ Default 5.16 ± 0.0117 58.70 ± 0.0506 0.196 ± 0.0001
IW 6.68 ± 0.0773 55.83 ± 0.9695 0.126 ± 0.0009

SNGAN Default 8.33± 0.0280 20.40 ± 0.0747 0.094 ± 0.0002
IW 8.57 ± 0.0325 17.29 ± 0.0698 0.073 ±0.0004

(b) debiasing improves standard approaches to using deep generative models for data augmentation
and model-based off-policy policy evaluation. In all our experiments, the binary classifier used to
estimate the importance weights was a deep neural network trained based on the binary cross-entropy
loss, and we found it useful to normalize the estimated importance weights. Further, we ensured that
the classifiers used were well-calibrated. Hyperparameter details for the experiments beyond those
mentioned here are deferred to the appendices.

4.1 GOODNESS-OF-FIT TESTING

In the first set of experiments, we highlight the benefits of importance weighting for debiasing transfer
over to deep generative models trained on high-dimensional data distributions. Since our debiasing
strategy is agnostic to the choice of the downstream function for which we wish to perform Monte
Carlo averaging, we experimented with three popularly used metrics for evaluating generative models
viz. Inception Scores (IS) (Salimans et al., 2016), Frechet Inception Distance (FID) (Heusel et al.,
2017), and Kernel Inception Distance (KID) (Bińkowski et al., 2018).

For a semantic evaluation of difference in sample quality, this test is performed in the feature space
of a pretrained classifier, such as the prefinal activations of the Inception Net (Szegedy et al., 2016).
All these scores can be formally expressed as empirical expectations with respect to the model. For
example, the Inception score for a generative model pθ given a classifier d(·) can be expressed as:

IS = exp(Ex∼pθ [KL(d(y|x), d(y))]).

The FID score is another metric which unlike the Inception score also takes into account real data
from pdata. Mathematically, the FID between sets S and R sampled from distributions pθ and pdata
respectively, is defined as:

FID(S,R) = ‖µS − µR‖22 + Tr(ΣS + ΣR − 2
√

ΣSΣR)

where (µS ,ΣS) and (µR,ΣR) are the empirical means and covariances computed based on S and R
respectively. Here, S and R are sets of datapoints from pθ and pdata. In a similar vein, KID compares
statistics between samples in a feature space defined via a combination of kernels and a pretrained
classifier.

For all these metrics, we can simulate the population level unbiased case as a “reference score”
wherein we artificially set both the real and generated sets of samples used for evaluation as finite,
disjoint sets derived from pdata. This gives a sense of the limitations of these tests due to finite sample
effects. The closer the scores for a model are to the reference score, the lesser is the bias of this model
w.r.t. the particular goodness-of-fit metric under consideration.

We evaluate the three metrics for two representative state-of-the-art models trained on the CIFAR-10
dataset viz. an autoregressive model PixelCNN++ (Salimans et al., 2017) learned via maximum
likelihood estimation and a latent variable model SNGAN (Miyato et al., 2018) learned via adversarial
training. In order to evaluate each of these metrics, we draw 10,000 samples from the model. In
Table 1, we report the metrics with and without the bias correction due to likelihood-free importance
weighting (IW). Our results show that importance weighted samples are much closer to the ones
observed during training for evaluating goodness-of-fit statistics, suggesting the utility of our approach
even for other downstream use cases which we discuss next.
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Table 2: Multi-class classification accuracy for data augmentation on the Omniglot dataset. Standard
errors computed over 5 runs.

Training Dataset Accuracy

Dcl 0.6603 ± 0.0012
Dg 0.4431 ± 0.0054
Dg + IW 0.4481 ± 0.0056
Dcl +Dg 0.6600 ± 0.0040
Dcl +Dg + IW 0.6818 ± 0.0022

(a) (b) (c)

(d) (e) (f)

Figure 2: Qualitative evaluation of importance weighting for data augmentation. (a-f) Top row shows
held-out data samples from a specific class in Omniglot. Bottom row shows generated samples from
the same class ranked in decreasing order of importance weights.

4.2 DATA AUGMENTATION

A few different generative models that have demonstrated success in this task and could potentially
benefit from the current work. We restrict our experiments to the use of Data Augmentation Generative
Adversarial Networks (DAGAN) (Antoniou et al., 2017) as our generative model. Here, we also note
that while the aforementioned work was motivated by and evaluated for the task of meta-learning, it
can also be applied for multi-class classification scenarios, which is the setting we consider here. A
self-contained description of DAGAN is provided in the Appendix.

We trained a DAGAN on the Omniglot dataset of handwritten characters (Lake et al., 2015). The
dataset is particularly relevant because it contains 1600+ classes but only 20 examples from each
class and hence, could potentially benefit from augmented data. We used the first 1200 classes for
our experiments to be consistent with prior uses of this dataset, and split the 20 examples for each
class into 15 training, 3 validation, and 2 test examples. All models (DAGAN, binary classifier for
importance weighting, final multi-class classifier) were trained on the training examples alone with
hyperparameter choices made based on the validation set.

Once the model has been trained, it can be used for data augmentation in many ways. In particular, we
consider ablation baselines that use various combinations of the real training data Dcl and generated
data Dg for training a downstream classifier. When the generated data Dg is used, we can either
use the data directly with uniform weighting for all training points, or choose to importance weight
(IW) the contributions of the individual training points to the overall loss. The results are shown in
Table 2. While generated data (Dg) alone cannot be used to obtain competitive performance relative
to the real data (Dcl) on this task as expected, the bias it introduces for evaluation and subsequent
optimization overshadows even the naive data augmentation (Dcl +Dg). In contrast, we can obtain
significant improvements by importance weighting the generated points (Dcl +Dg + IW ).

Qualitatively, we can observe the effect of importance weighting in Figure 2. Here, we show true
and generated samples for 6 randomly choosen classes (a-f) in the Omniglot dataset. The generated
samples are further ranked in decreasing order of the importance weights. While there is no way to
formally test the validity of such rankings, it must also be noted that this criteria can also prefer points
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which have high density under pdata but are unlikely under pθ since we are looking at ratios. Visual
inspection suggests that the classifier is able to appropriately downweight poorer samples, as shown
in Figure 2 (a, b, c, d, bottom right). There are also failure modes, such as the lowest ranked generated
images in Figure 2 (e, f, bottom right) where the classifier weights reasonable generated samples
poorly relative to others. This could be due to particular artifacts such as a tiny disconnected blurry
speck in Figure 2 (e, bottom right) which are potentially more revealing to a classifier distinguishing
real and generated data.

4.3 MODEL-BASED OFF-POLICY POLICY EVALUATION

So far, we have seen the benefits of our debiasing framework in cases where the generative model was
trained on data from the same distribution as the one we wish to use for downstream unbiased Monte
Carlo evaluation. We can extend the same principle to more involved settings when the generative
model is a building block for specifying the full data generation process, e.g, trajectory data generated
via a probabilistic dynamics model along with an agent policy.

In particular, we consider the setting of off-policy policy evaluation (OPE), where the goal is to
evaluate policies using experiences collected from a different policy. Formally, let (S,A, r, P, η, T )
denote an (undiscounted) Markov decision process with state space S, action space A, reward
function r, transition P , initial state distribution η and horizon T . Assume πe : S × A → [0, 1]
is a known policy that we wish to evaluate. The probability of generating a certain trajectory
τ = {s0,a0, s1,a1, ..., sT ,aT } of length T with policy πe and transition P is given as:

p?(τ) = η(s0)

T−1∏
t=0

πe(at|st)P (st+1|st,at). (8)

The return on a trajectory R(τ) is the sum of the rewards across the state, action pairs in τ :
R(τ) =

∑T
t=1 r(st, at), where we assume a known reward function r. Denoting the distribution over

trajectories induced by πe as p∗, we are interested in the value of a policy defined as:

v(πe) = Eτ∼p∗(τ) [R(τ)] . (9)

Evaluating πe using Eq. 9 requires the (unknown) transition dynamics P . The dynamics model is
a conditional generative model of the next states st+1 conditioned on the previous state-action pair
(st,at). If we have access to historical logged data Dτ of trajectories τ = {s0,a0, s1,a1, . . . , } from
some behavioral policy πb : S ×A → [0, 1], then we can use this off-policy data to train a dynamics
model Pθ(st+1|st,at). The policy πe can then be evaluated under this learned dynamics model.

ṽ(πe) = Eτ∼p̃(τ)[R(τ)],

where p̃ uses Pθ instead of the true dynamics in Eq. 8. However, the trajectories sampled with
Pθ could significantly deviate from samples from P due to compounding errors (Ross & Bagnell,
2010). In order to correct for this bias, we can use likelihood-free importance weighting. The binary
classifier c(st,at, st+1) for estimating the importance weights in this case distinguishes between
triples of true and generated transitions. For any true triple (st,at, st+1) extracted from the off-policy
data, the corresponding generated triple (st,at, ŝt+1) only differs in the final transition state, i.e.,
ŝt+1 ∼ Pθ(ŝt+1|st,at). Such a classifier allows us to obtain the importance weights ŵ(st,at, ŝt+1)
for every predicted state transition (st,at, ŝt+1).

The bias reduced estimator for OPE can then be derived as:

v(πe) = Eτ∼p̃(τ)
[
p?(τ)

p̃(τ)
R(τ)

]
. (10)

The importance weights for the trajectory τ can be derived from the importance weights of the
individual transitions:

p?(τ)

p̃(τ)
=

∏T−1
t=0 P (st+1|st,at)∏T−1
t=0 Pθ(st+1|st,at)

=

T−1∏
t=0

P (st+1|st,at)
Pθ(st+1|st,at)

≈
T−1∏
t=0

c(st,at, st+1)

1− c(st,at, st+1)
=

T−1∏
t=0

ŵ(st,at, ŝt+1). (11)
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Table 3: Off-policy policy evaluation on MuJoCo tasks. Standard error is over 100 trajectories used
for Monte Carlo estimation.

Environment v(πe) (Ground truth) ṽ(πe) v̂(πe) (Ours) v̂80(πe) (Ours)

Swimmer 36.7± 0.1 16.5± 16.5 38.9± 23.3 57.6± 34.9
HalfCheetah 185.0± 2.56 129.7± 1.24 149.6± 49.7 152.0± 78.5
HumanoidStandup 14170± 53 8504± 74 9515± 4890 10049± 7335
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Figure 3: Estimation error δ(v) = |v(πe) − v̂H(πe)| under different values of H (minimum 0,
maximum 100). Shaded area denotes standard error over classifiers trained with different random
seeds.

Our final importance weighted (IW) estimator is given as:

v̂(πe) = Eτ∼p̃(τ)

[
T−1∏
t=0

ŵ(st,at, ŝt+1) ·R(τ)

]
. (12)

We consider three continuous control tasks in the MuJoCo simulator (Todorov et al., 2012) from Ope-
nAI gym (Brockman et al., 2016) (in increasing number of state dimensions): Swimmer, HalfCheetah
and HumanoidStandup. These environments have high dimensional states (e.g. HumanoidStandup
has 376 dimensions), which makes learning a reliable dynamics model for OPE challenging. We train
behavioral and evaluation policies using Proximal Policy Optimization (Schulman et al., 2017) with
different hyperparameters for the two policies, and collect dataset from the behavior policy to train a
ensemble neural network dynamics model using three fully-connected layers and swish activation
functions (Ramachandran et al., 2018). We the use the trained dynamics model to evaluate ṽ(πe)
and its IW version v̂(πe), and compare them with the ground truth returns v(πe). Each estimation
is averaged over a set of 100 trajectories with horizon T = 100. Specifically, for v̂(πe), we also
average the estimation over 5 classifier instances trained with different random seeds. We further
consider performing IW over only the first H steps, and use uniform weights for the remainder, which
we denote as v̂H(πe). This allow us to interpolate between ṽ(πe) ≡ v̂0(πe) and v̂(πe) ≡ v̂T (πe).
Finally, as in the other experiments, we used the self-normalized variant (Eq. 7) of the importance
weighted estimator in Eq. 12.

Table 3 compares the policy evaluations under different environments. These results show that the
reward estimations with the trained dynamics model differ from the ground truth by a large margin.
By importance weighting the trajectories, we are able to obtain much more accurate evaluations of
the policy. As expected, we also see that while IW leads to higher returns on average, the imbalance
in trajectory importance weights due to the multiplicative importance weights of the state-action
pairs can lead to higher variance in the importance weighted returns. In Figure 3, we demonstrate
that policy evaluation becomes more accurate as more timesteps are used for IW evaluations, until
around 80− 100 timesteps and thus empirically validates the benefits of importance weighting using
a classifier. Given that our estimates have a large variance, but generally include the true policy
value within the uncertainty interval, it would be worthwhile to compose our approach with other
variance reduction techniques such as (weighted) doubly robust estimation in future work, as well as
incorporate these estimates within a framework such as MAGIC to further blend with model-free
OPE (Thomas & Brunskill, 2016).

Overall. Across all our experiments, we observe that importance weighting the generated samples
leads to uniformly better results, whether in terms of the quality of samples, or their utility in
downstream tasks. Since the technique is a black-box wrapper around any generative model, we
expect this to benefit a diverse set of tasks in follow-up works.
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However, there is also some caution to be excercised with these techniques as evident from the results
of Table 1. Note that in this table, the confidence interval (computed using the reported standard
errors) around our model score after importance weighting still does not contain the reference scores
using a hold-out sample from the true model. This would not have been the case if our debiased
estimator was completely unbiased and this observation reiterates our earlier claim that likelihood-
free importance weighting is reducing bias, as opposed to completely eliminating it. Indeed, when
such a mismatch is observed, it is a good diagnostic to either construct more powerful classifiers to
better approximate the Bayes optimum, or find additional data from the true distribution in case the
generative model fails the full support assumption.

5 RELATED WORK AND DISCUSSION

Density ratios enjoy widespread use across machine learning e.g., covariate shifts (Sugiyama et al.,
2012) and their estimation of via binary classifiers is frequently used for defining learning objectives
for generative models. See Mohamed & Lakshminarayanan (2016) for an excellent review. In
particular, such classifiers have been used to define learning fameworks such as generative adversarial
networks (Goodfellow et al., 2014; Nowozin et al., 2016), likelihood-free Approximate Bayesian
Computation (ABC) (Gutmann & Hyvärinen, 2012) and earlier work in unsupervised-as-supervised
learning (Friedman et al., 2001) and noise contrastive estimation (Gutmann & Hyvärinen, 2012)
among others. The key difference is that these works are explicitly interested in learning the
parameters of a generative model. In contrast, we use the binary classifier for estimating importance
weights to correct for the bias of any fixed generative model.

Classifiers have also been used for defining two-sample tests (Gretton et al., 2007; Bowman et al.,
2015; Lopez-Paz & Oquab, 2016; Danihelka et al., 2017; Rosca et al., 2017; Im et al., 2018; Gulrajani
et al., 2018). These are not particularly restricted to probabilistic classifiers and the goal here is to
evaluate sample quality by goodness-of-fit tests, e.g., FID, KID etc. In our setting, the underlying
functions are not limited to goodness-of-fit testing but could apply to arbitrary functions such as a
classification loss or the value function of a policy. Finally, as shown in the experiments, our approach
can also be used for a bias sensitive evaluation of the above metrics.

Closely related to the above use case are recent works by Tao et al. (2018), Azadi et al. (2018) and
Turner et al. (2018) that use rejection sampling and MCMC to explicitly reject or transform the
generated samples. These methods require extra computation beyond training a classifier, in rejecting
the samples or running Markov chains to convergence, unlike the importance weighting strategy
proposed in this work. Moreover, principled rejection sampling requires an upper bound on the
density ratio that holds for all data points, which is typically infeasible to obtain.

6 CONCLUSION

In this work, we identified bias w.r.t. a target data distribution as a fundamental challenge restricting
the use of deep generative models as proposal distributions for Monte Carlo evaluation. We proposed
a debiasing framework based on importance sampling. The importance weights are learned in a
likelihood-free fashion via a binary classifier distinguishing samples from the target distribution and
the learned model. Empirically, we find the bias correction to be useful across a surprising variety of
tasks including goodness-of-fit sample quality tests and the motivating use cases of data augmentation
and model-based off-policy policy evaluation.

One interesting direction for future work is to design objectives for generative models which explicitly
take into account the class of functions for which we wish to use these models as Monte Carlo
proposals during learning itself. Furthermore, the ability to characterize the bias of a deep generative
model is an important step towards using these models in risk-sensitive applications with high
uncertainty (Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017). Applying our debiasing
strategy in conjunction with recent methods proposed for robust downstream inference tasks using
deep generative models, such as anomaly detection, is another direction for future work (Nalisnick
et al., 2018; Choi & Jang, 2018).
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APPENDICES

A EXPERIMENTAL DETAILS

Our codebase was implemented using the Pytorch library (Paszke et al., 2017). For the case of
model-based off-policy policy evaluation experiments, we used Tensorflow (Abadi et al., 2016) and
OpenAI baselines (Dhariwal et al., 2017).

A.1 GOODNESS-OF-FIT TESTING

We used the open-sourced model implementations of PixelCNN++ (Salimans et al., 2016) and
SNGAN (Miyato et al., 2018). Following the observation by Lopez-Paz & Oquab (2016), we found
that training a binary classifier on top of the feature space of any pretrained image classifier was
useful for removing the low-level artifacts in the generated images in classifying an image as real or
fake. Learning was done using the Adam optimizer with the default hyperparameters with a learning
rate of 0.001 and a batch size of 64. We observed relatively fast convergence for training the binary
classifier (in less than 20 epochs) on both PixelCNN++ and SNGAN generated data and the validation
set accuracy across the first 20 epochs was used for selecting the best checkpoint.

A.2 DATA AUGMENTATION

A DAGAN learns to augment data by training a conditional generative model Gθ : X × Z → X
based on a training dataset Dcl. The generative model is learned via a minimax game with a critic.
For any conditioning datapoint xi ∈ Dtrain and noise vector z ∼ p(z), the critic learns to distinguish
the generated data Gθ(xi, z) paired along with xi against another pair (xi,xj). Here, the point xj
is chosen such that the points xi and xj have the same label in Dcl, i.e., yi = yj . Hence, the critic
learns to classify pairs of (real, real) and (real, generated) points while encouraging the generated
points to be of the same class as the point being conditioned on. For the generated data, the label y is
assumed to be the same as the class of the point that was used for generating the data. We refer the
reader to Antoniou et al. (2017) for further details.

Given a DAGAN model, we additionally require training a binary classifier for estimating importance
weights and a multi-class classifier for subsequent classification. The architecture for both these use
cases follows prior work in meta learning on Omniglot (Vinyals et al., 2016). Except for the final
output layer, the architecture consists of 4 blocks of 3x3 convolutions and 64 filters, followed by
batch normalization (Szegedy et al., 2016), a ReLU non-linearity and 2x2 max pooling. Learning
was done for 100 epochs using the Adam optimizer with default parameters and a learning rate of
0.001 with a batch size of 32.

A.3 MODEL-BASED OFF-POLICY POLICY EVALUATION

We evaluate over three envionments, including HalfCheetah, Swimmer and HumanoidStandup (Fig-
ure 4. Both HalfCheetah and Swimmer rewards the agent for gaining higher horizontal velocity;
HumanoidStandup rewards the agent for gaining more height via standing up. In all three environ-
ments, the initial state distributions are obtained via adding small random perturbation around a
certain state. The dimensions for state and action spaces are shown in Table 4.

(a) HalfChee-
tah (b) Swimmer (c) Hu-

manoid

Figure 4: Environments in OPE experiments.

Our policy network has two fully connected layers with 64 neurons and tanh activations for each
layer, where as our transition model / classifier has three layers of 500 neurons with swish activations.
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Table 4: Statistics for the environments.

Environment # State dim. # Action dim

HalfCheetah 17 6
HumanoidStandup 376 17

Swimmer 8 2

We obtain our evaluation policy by training with PPO for 1M timesteps, and our behavior policy by
training with PPO for 500k timesteps. Then we train the dynamics model Pθ for 100k iterations with
a batch size of 128. Our classifier is trained for 10k iterations with a batch size of 250, where we
concatenate (st+1, st, at) into a single vector. We also experimented with other hyperparameters in
reasonable regions and the results do not vary significantly.
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