
Under review as a conference paper at ICLR 2020

ON SOLVING COOPERATIVE DECENTRALIZED MARL
PROBLEMS WITH SPARSE REINFORCEMENTS

Anonymous authors
Paper under double-blind review

1 ABSTRACT

Decentralized decision makers learn to cooperate and make decisions in many domains including
(but not limited to) search and rescue, drone delivery, box pushing and fire fighting problems. In
these cooperative domains, a key challenge is one of sparse rewards, i.e., rewards/reinforcements are
obtained only in a few situations (e.g., on extinguishing a fire, on moving a box) and in most other
situations there is no reward/reinforcement. The problem of learning with sparse reinforcements is
extremely challenging in cooperative Multi-Agent Reinforcement Learning (MARL) problems due
to two reasons: (a) Compared to the single agent case, exploration is harder as multiple agents have
to be coordinated to receive the reinforcements; and (b) Environment is not stationary as all the
agents are learning at the same time (and therefore change policies) and therefore the limited (due
to sparse rewards) good experiences can be quickly forgotten.

One approach that is scalable, decentralized and has shown great performance in general MARL
problems is Neural Fictitious Self Play (NFSP). However, since NFSP averages best response poli-
cies, a good policy can be drowned in a deluge of bad best-response policies that come about due
to sparse rewards. In this paper, we provide a mechanism for imitation of good experiences within
NFSP that ensures good policies do not get overwhelmed by bad policies. We then provide an in-
tuitive justification for why self imitation within NFSP can improve performance and how imitation
does not impact the fictitious play aspect of NFSP. Finally, we provide a thorough comparison (ex-
perimental or descriptive) against relevant cooperative MARL algorithms to demonstrate the utility
of our approach.

2 INTRODUCTION

Cooperative Multi-Agent Reinforcement Learning (MARL) is an important framework for learn-
ing agent policies in multiple domains including but not limited to disaster rescue Nanjanath et al.
(2010); Parker et al. (2016), fire fighting Oliehoek et al. (2008) and box pushing Seuken & Zilber-
stein (2012). In these problems, a team of agents (or robots) coordinate to accomplish tasks (find
people, extinguish fires, and push boxes to destinations) in uncertain domains. There are multiple
key challenges in these problems of interest: (a) Uncertainty in movement or in accomplishing tasks;
(b) Coordination of decentralized entities to accomplish tasks (e.g., big fires require multiple fire en-
gines or pushing a large box may require multiple robots; (c) Affected global state: Global state
(representing status of tasks) can be impacted by agent actions; and most importantly (d) Sparse
rewards: rewards are obtained by an agent only when tasks are accomplished and there are only a
few tasks.

Due to its relevance in many team problems, research in cooperative MARL is extensive. There
are multiple threads of relevant research in cooperative MARL. First, we have team learning ap-
proaches Haynes et al.; Haynes & Sen (1995); Sen & Sekaran (1995); Boutilier (1996); Claus &
Boutilier (1998) where a single learner learns policies for a team of agents. Since there is a single
learner, approaches from single agent learning can be employed for optimizing performance of the
team. However, team learning approaches suffer from curse of dimensionality, where state and ac-
tion space increases exponentially with number of agents. Furthermore, it may not be realistic to
assume centralization of information, especially if the agents are decentralized.

The second thread of research has focussed on concurrent learning Agogino & Tumer (2006); Tam-
puu et al. (2017), where agents learn concurrently to avoid the curse of dimensionality and central-

1

Under review as a conference paper at ICLR 2020

ization of information. However, this is challenging as the RL problem faced by an individual agent
is no longer stationary, especially as other agents can also change their policies.

In order to address the non-stationarity issue due to concurrent learning of multiple agents, a thread
of research has focussed on methods with a centralized critic. One of the leading approaches in
this space is called COMA Foerster et al. (2018) that employs an actor critic model with a cen-
tralized critic (which takes state, action information from all agents) and decentralized actors that
are trained independently using local information of individual agents. Another leading approach is
by Nguyen et al. (2017) to solve cooperative problems with large numbers of homogenous agents
and anonymous interactions. However, it relies on having non-global states and transition function
decomposability given number of agents. This is not feasible in domains of interest in this paper
and since it is based on actor critic architecture, it will have same issues as other MARL approaches
with sparse rewards.

The last thread of relevant research has employed game theory to develop decentralized learning
methods Hu & Wellman (2003); Heinrich et al. (2015); Heinrich & Silver (2016). One of the leading
approaches is the neural fictitious self play method Heinrich & Silver (2016), which employs ideas
from the well known fictitious play Brown (1951) method. Given the focus on equilibrium for game
theoretic methods, these approaches can get stuck in bad local optima in the case of cooperative
problems. The key advantage of these approaches, specifically NFSP is decentralized learning at
scale.

Even though the research in cooperative MARL is extensive, existing work is unable to provide
good policies (as demonstrated in experimental results) in the presence of sparse rewards. The
issue of sparse rewards is also present in single agent RL Oh et al. (2018), however, the problem is
exacerbated in multi-agent problems due to two reasons: (1) Exploration is harder as multiple agents
have to be coordinated to receive the rewards; and (b) Environment is not stationary since multiple
agents are learning together. Due to difficulty in exploration finding good policies is difficult and
non-stationarity can make the algorithms forget good policies.

Since NFSP is adept at handling non-stationarity, we provide a new approach called Neural Ficti-
tious Self Imitation and Play (NFSIP), that extends on NFSP in two major ways to handle sparse
rewards: (a) We incorporate self imitation into NFSP, so as to replay past good experiences and
ensure effective exploration; (b) All agents employ an average best response policy to deal with
non-stationarity in NFSP. However, with sparse rewards, number of good policies are very few and
averaging can make a good policy irrelevant. We provide supervised reinforcement based policy
averaging to ensure good policies remain relevant.

We demonstrate that our approach is able to get significant improvement in performance over leading
MARL approaches on three different problem domains from literature.

3 BACKGROUND: NEURAL FICTITIOUS SELF PLAY (NFSP)

In Fictitious play (FP), a popular game-theoretic model of learning, agents repeatedly play a game,
choosing the best response against average strategies of their opponents at each iteration. The av-
erage strategies converge to a Nash equilibrium for zero-sum games, potential games and identical
interest games (i.e., cooperative multi-agent problems). FP is a theory on a normal-form repre-
sentation, where each agent acts only once per one game, which is not suited to real problems at
scale.

To overcome the scalability issue, Heinrich et al. (2015); Heinrich & Silver (2016) proposed an
appropriately approximated (hence scalable to large-scale games) method for FP referred to as Neu-
ral Fictitious Self Play (NFSP). As with FP, agents in NFSP repeatedly play a game, storing their
experiences in memory. Instead of computing the full-width best response strategy (i.e., compute
best response by playing the entire game), they learn an approximate best response using Deep Q-
Networks (DQN) Mnih et al. (2015). And instead of averaging their full-width strategies, they learn
an approximate average strategy by using supervised learning (SL). Heinrich & Silver (2016) on
deep neural networks.

Deep Q network with parameters θQ is trained using the following loss function:

L(θQ) = E(s,a,r,s′)∼MRL

[(
r +maxa′Q(s′, a′|θQ

′
)−Q(s, a|θQ)

)2]
2

Under review as a conference paper at ICLR 2020

Figure 1: NFSIP

Average policy learning deep network with parameters θΠ is trained by minimizing the loss of the
policy:

L(θπ) = E(s,a)∼MSL

[
− log(Π(s, a|θΠ)

]
whereMRL andMSL refer to the stored Reinforcement Learning and Supervised Learning expe-

riences respectively.

3.1 IMITATION LEARNING

Imitation learning (IL) enables a learner to imitate expert behavior given expert demonstrations. A
wide variety of IL methods have been proposed in the last few decades. The simplest IL method
among those is Behavioral Cloning (BC) Pomerleau (1991) which learns an expert policy in a su-
pervised fashion without environment interactions during training. BC can be the first IL option to
consider when enough demonstrations are available. Since it is often hard to obtain a large number
of demonstrations in real-world environments, BC is often not the best choice for real-world IL sce-
narios. IL requires experts to generate the expert demonstrations, which may not be feasible in large
scale problems.

Oh et al. (2018) provided a Self Imitation Learning (SIL) approach where (good) experiences gen-
erated during exploration are stored in a prioritized buffer based on cumulative reward achieved.
During training it samples the experiences from this buffer and trains the neural networks only if the
current Q/Value network is predicting a lower value for these experiences. This ensures that we only
utilize good experiences in places where there is scope for improvement. It does so by computing
the following value for experiences:

(max(0, R(s, a)− V (s)))

where R(s, a) = cumulative reward, is sum of immediate rewards from that state,action till end of
episode and V(s) is state based baseline value.

4 NEURAL FICTITIOUS SELF IMITATION PLAY, NFSIP

In this section, we describe our main algorithm, NFSIP for learning in the presence of sparse rein-
forcements. Algorithm 1 provides the pseudo code and Figure 1) provides the flow and dependen-
cies. For each agent, in NFSIP and NFSP, we update the average policy network and Q-network
parameters based on all the experiences. Since there are sparse reinforcements, it is imperative

3

Under review as a conference paper at ICLR 2020

that updates from “good” experiences (i.e., ones that improve social welfare) are not overwritten by
“bad” experiences. Therefore, in NFSIP, we have a separate self imitation loop at the end of each
episode to not forget the learning from “good” experiences. In this self imitation loop, we update
both the average policy and Q-network parameters based on difference in the reward obtained from
the episode and the current value function estimate.

All agents in NFSIP also learn based on experiences generated from simultaneous play with other
agents. An NFSIP agent interacts with its fellow agents and memorizes its experience of state
transitions and its own best response behaviour in three memories, MRL, MSL and MSI . NFSIP
treats these memories as three distinct datasets suitable for deep reinforcement learning, supervised
policy learning and self imitation respectively.

The NFSIP agent trains a neural network (Q), to predict action values from data in MRL and MSI

using off-policy reinforcement learning. The resulting network defines the agents’ approximate best
response strategy, bε(Q), which selects a random action with probability ε and otherwise chooses the
action that maximizes the predicted action values. The agent trains a separate neural network (Π),
to imitate its own past best response behaviour using supervised classification on the data in MSL

and MSI . This network maps states to action probabilities and defines the agent’s average strategy
while appropriately taking into account of good experiences stored in MSI . During execution, the
agent chooses its actions from a mixture of its two strategies, bε(Q) and Π.

In lines 4-11 of algorithm 1, each agent executes actions, stores the experiences in MRL and also
in MSL, and uses the stored experiences to train the Q-network (action-value network) and policy
networks. Once episode ends, in lines 12-17, we update the self imitation buffer, MSI with expe-
riences if social welfare (welfare of the entire system, including all agents) is higher than the set
threshold for social welfare (best reward achieved so far). These experiences are updated to include
cumulative rewards. In lines 18-24, Q and Π networks are trained with experiences from self imita-
tion buffer, MSI if Q-network is predicting a lower value for these experiences as compared to their
actual (cumulative) reward.

We now provide two key insights employed in our algorithm to ensure improved performance.

4.1 WEIGHTED GENERALIZED WEAKENED FICTITIOUS PLAY

Leslie & Collins (2006) have defined a generalization of fictitious play for approximate best re-
sponses as follows:

πt+1 ∈ (1− αt+1)πt + αt+1 · bεt(Qt)
where αt → 0, εt → 0, ||Qt −R(πt)|| → 0 as t→∞
NFSP employs maximum log likelihood (using Loss as negative log likelihood) for learning the
above mixture of past policy, πt and current approximate best response policy, bεt(Qt) based on
the observed samples (i.e., best response actions taken at each iteration). The standard maximum
likelihood principle implicitly places equal weight on each of the observations in the sample, but
depending on the extent to which the model and the true data generating process deviate this can
be improved upon. Taking the example of coin toss, if after 1000 iterations, if we observed 700
heads and 300 tails, maximum likelihood will predict a biased coin with 0.7 and 0.3 probability.
However, this is incorrect as the sampled data was biased. This issue happens frequently in sparse
reinforcement setting as sparse but good experiences come by rarely. So, samples data is bound to
have rare occurrences of them, causing maximum likelihood (for average policy network) to result
in bad local optima.

One of the ways to improve the model is to use weighted maximum likelihood (such methods has
been employed in many domain such as risk management in Finance Steude (2011), image de-
noising for image processing Deledalle et al. (2009)). Steude (2011) to minimize the risk, down
weighted the observations that bear a high probability of being destructive outliers. they show that
it can considerably improve the forecast accuracy for a variety of data sets and different time series
models can be realized. Deledalle et al. (2009) derived the weights in a data driven manner. The
weights are iteratively refined based on both the similarity between noisy patches and the similarity
of patches extracted from the previous estimate.

For solving MARL with sparse reward setting, we build on similar ideas. Specifically, we increase
weight for better experiences in both policy and Q-networks. These weights are dynamically up-

4

Under review as a conference paper at ICLR 2020

dated based on the current state of learning. Since we only want to increase the weight of good
experiences, we will not have negative weight in the process. For average policy network, we em-
ploy the following additional loss based on experiences in self imitation memory:

E(s,a,R)∼MSI

[
− log(Π(s, a)) · [R(s, a)− V (s)]+

]
where

[R(s, a)− V (s)]+ = max(0, R(s, a)− V (s))

On similar lines, we also add an additional weight to the Q-network loss based on self imitation
memory (

r(s, a) + γmax
a′

Q′(s′, a′)−Q(s, a)
)2

+ α ·
(
[R(s, a)− V (s)]+

)2
4.2 SELF IMITATION LEARNING FOR COOPERATIVE MULTIPLE AGENT PROBLEMS

Self imitation learning in single agent case imitates past “good” experiences and prioritizes learning
with those “good” experiences. However, in multi-agent problems, due to simultaneous learning
of agents, past good experience for an agent may not be a “good” experience if other agents have
changed their policy. More importantly, in a cooperative setting, individual good experiences may
not be maximizing social welfare. So we make following changes:

• We judge the goodness of any experience not just based on its own reward but also based on social
welfare. We only store experiences for self imitation if social welfare is above a certain threshold
value. We start with a very low threshold value and gradually increase it as we explore better
experiences (providing higher social welfare).

• Presence of multiple learning agents makes the environment non stationary and therefore in order
to avoid utilizing old experiences (that may not be valid any more), we periodically remove expert
data (self) generated for self imitation process. We do so when we encounter a better social
welfare solution and adjust the threshold value accordingly. This will ensure that there always
expert experiences to train with that are not too old and provide higher social welfare.

• We train only with those experiences where neural network is predicting a lower value than the
actual value (cumulative reward) obtained by the agent. Therefore, the max operator is given by:

(.)+ =

{
max(O, (R(s, a)− V (s))) if W >= WT

0 otherwise

Where R(s, a) = Cumulative reward of agent, W = Welfare of the entire system (social welfare)
and WT = Threshold value for social welfare

5 DISCUSSION

Figure 2: Credit assignment

In this section, we provide a discussion on key challenges that
exist typically in cooperative MARL problems and how NFSIP
addresses these challenges.

First, we discuss about a problem faced by many centralized
learners Sen & Sekaran (1995); Boutilier (1996); Claus &
Boutilier (1998); Lowe et al. (2017); Foerster et al. (2018), i.e.,
curse of dimensionality. As the size of state and action spaces
grows exponentially with number of agents, centralized learn-
ers can face severe scalability issues. Since NFSIP (like NFSP)
is a decentralized method, the curse of dimensionality does not
pose a challenge as each learning agent can run on a different
computing thread. Another approach that has been employed
for addressing curse of dimensionality is by exploiting homo-
geneity and anonymity in agent models Nguyen et al. (2017).
However, in problems of interest in this paper, due to the pres-
ence of a global state (task states) that is affected by individ-
ual agent actions, the method employed to generate counts of
agents becomes inapplicable.

5

Under review as a conference paper at ICLR 2020

Algorithm 1: Neural Fictitious Self Imitation and Play, NFSIP

1: Initialize policy network(θΠ), action-value network(θQ) and target action-value network(θQ
′
)

networks
2: best reward achieve so far = −∞
3: while Not Converged do

4: policy =
{
bε(Q) with probability η

Π with probability 1− η
5: for every time step do
6: Simulate agents for 1 step
7: Store experiences in MRL

8: Store experiences in MSL if agent took best response action (bε(Q))
9: for all agents do

10: Sample from MRL, train action-value network:

L(θQ) = E(s,a,r,s′)

[(
r +maxa′Q(s′, a′|θQ′

)−Q(s, a|θQ)
)2]

11: Sample from MSL, train policy network: L(θπ) = E(s,a)

[
− log(Π(s, a|θΠ)

]
12: if Episode reward > best reward achieve so far then
13: Reset prioritized experience buffer
14: best reward achieve so far = Episode reward
15: if Episode reward >= best reward achieve so far then
16: Compute cumulative reward, R
17: Store experiences in prioritized experience buffer prioritized on R
18: for some iteration do
19: for all agents do
20: Sample from prioritized replay buffer
21: Train action-value network: L(θQ) = E(s,a,R)

[
([R(s, a)− V (s|θQ, θΠ)]+)2

]
22: Train policy network:

L(θπ) = E(s,a,R)

[
− log(Π(s, a|θΠ)) · [R(s, a)− V (s|θQ, θΠ)]+)

]
23: [R(s, a)− V (s)]+ = max

(
0, R(s, a)− V (s)

)
24: V (s) =

∑
a π(s, a) ·Q(s, a)

25: Update target action-value network periodically

Second, we consider the credit assignment problem. Since agents receive reward as a team, a key
challenge while learning is understanding how much each agent contributed to receiving the reward.
A leading approach Foerster et al. (2018), employs marginal utilities, i.e., difference in reward with
the agent included and reward without the agent included. However, in problems of interest in this
paper, agents have to coordinate to complete tasks (i.e, extinguishing a fire, pushing a box). That is
to say, if n agents are required to accomplish a task, then n− 1 agents will not be able to complete
the task. So, marginal utility for every agent will be equal to the total reward to be received by the
entire team of n agents. Since that would be inaccurate, we do not go for marginal utility based
credit assignment. Instead, we employ the reward strategy described by Panait et al. Panait & Luke
(2005), where rewards are divided equally among all agents.

Third, we consider the non-stationarity introduced due to multiple agents learning at the same time.
We employ the NFSP type of policy averaging and short experience buffers to reason with non-
stationarity.

Finally, the issue of sparse reward has not received much attention in MARL literature, even though
it has been studied extensively in single agent literature Oh et al. (2018); Zhu et al. (2018); Večerı́k
et al. (2017); Hester et al. (2018). Through a synergistic combination of Neural Fictitious Self Play
(NFSP) and Self Imitation Learning (SIL)1, NFSIP is able to provide significant improvements on
complex domains with sparse reinforcements.

1NFSP handles non-stationarity to ensure SIL is able to learn from the right experiences. SIL ensures good
experiences are not forgotten so that NFSP can move to higher quality equilibria.

6

Under review as a conference paper at ICLR 2020

Figure 3: Box pushing v1, v2 and Fire Fighting v1

Figure 4: Fire Fighting v2, Search and Rescue v1 and v2

6 EXPERIMENTAL SECTION

In this section, we evaluate the performance of our NFSIP approach in comparison to leading ap-
proaches for cooperative MARL. We perform the comparison on three different problem settings
from literature: (a) Box Pushing Seuken & Zilberstein (2012); (b) Fire Fighting Oliehoek et al.
(2008); and, (c) Search and Rescue Nanjanath et al. (2010); Parker et al. (2016). We extended these
problem settings to ones with many agents and larger state space.

We compare against the following leading approaches for cooperative MARL: (a) COMA Foerster
et al. (2018); (b) NFSP Heinrich & Silver (2016); (c) AC-SIL: Multi-agent extension of SIL Oh
et al. (2018); (d) COMA SIL: An SIL extension for COMA.

We now provide more details on the specific problem domains:

Box pushing problem Seuken & Zilberstein (2012): Multiple agents need to coordinate and push
boxes of different sizes to their goal locations in a grid world. Each agent has 6 possible actions
to take: {move left, move right, move up, move down, act on the task, stay}. To successfully push
a box, certain number of agents need to push the box simultaneously. For this domain, we created
simpler instances with smaller grid sizes as benchmark algorithms were unable to learn at all on
larger problem instances. We considered a 4x4 grid with 5-agents in box pushing. There are 4
boxes. We created different versions of this problem by changing the number of agents required
to push the boxes: (V1) Any single agent can push the box; and (V2): To push any box at least 2
agents need to cooperate and simultaneously act on it.

Firefighting problem Oliehoek et al. (2008): In this problem setting we have a 6x6 grid with 10
agents (fire trucks), fires are spread over different locations. Fire trucks need to act on fires to
put them out, number of trucks needed to put out the fire depends on its intensity (low/high).
We created different versions of the problem as follows: (V1): 2 agents can put out the fire with
probability 0.9, more than 2 agents can put out the fire with probability 1; and (V2): Intensity of
fire will increase from low to high with probability 0.2 at every time step. Low intensity fire: “2

7

Under review as a conference paper at ICLR 2020

agents can put it out probability 0.9, more than 2 agents with probability 1”. High intensity fires:
“2 agents can put it out with probability 0.75, 3 agents can put it out with probability 0.9 and more
than 3 agents can do it with probability 1”.

Search and Rescue Nanjanath et al. (2010); Parker et al. (2016): Here different types of agents
(such as firetrucks and ambulances) need to coordinate with each other. In this problem setting we
have a 6x6 grids with 5 ambulances and 5 firetrucks. Number of firetrucks and ambulances needed
to complete the task depends on difficulty of the scenario. Here we created different scenarios as
follows: (V1): Minimum 1 fire truck and 1 ambulance needs to cooperate to complete the task; and
(V2): Difficulty of the search and rescue scenario will increase from low to high with probability
0.2 if operation is not completed. If difficulty level is low then minimum 1 ambulance and 1 fire
truck can complete search and rescue, if difficulty level is high then minimum 2 ambulances and
2 firetrucks are needed to carry out the operation.

Before we provide the main result, we show that the counterfactual way of handling the credit
assignment fares badly in problems of interest in this paper. Figure 2 shows that COMA without
counterfactual performs better on both box pushing problems. We have made the same observation
in other problems as well. In COMA without counterfactual version, it should be noted that we used
same credit assignment scheme as we used for our NFSIP approach.

Here are the key observations from the charts in Figures 3 and 4:

• On the simplest problems, i.e., ones in box pushing, COMA is able to learn good policies. How-
ever, NFSIP and AC-SIL perform the best even on these simplest problems.

• NFSIP is able to outperform both NFSP and COMA on all 6 scenarios
• NFSIP is able to perform as good as or better than AC SIL. In the last scenario (Search and Rescue

V2), NFSIP is able to get a result that is 6 times that of AC SIL.
• Due to counterfactual baseline computation for every action, COMA is very slow as compared to

our approach. On all 6 problem settings, each agents has 6 possible actions to choose from, on
average COMA is more than 6 times slower than NFSIP. In our problem settings, on 6x6 grids,
where action set size is 6, NFSIP is on average taking between 1-2 days for training, COMA
is taking between 1-2 weeks. Since COMA need to compute counterfactual baseline for every
action, COMA will take more and more time as we move to a larger action set.

In all experiments, in our approach, all agents share parameters in both policy as well as best re-
sponse network. i.e, there is one policy network and one best response network that takes agents Ids
as input to distinguish between them.

Neural Network Details: In all networks (Q/Policy networks for NFSP, actor/critic networks for
COMA) we have 2 hidden layers with 32 nodes each, after every hidden later we used layer norm.
In all experiments for NFSP and NFSIP following are the parameters details: {LearningRateQ,
LearningRateΠ, η, ε} ={10−3, 10−4, 0.2, 0.5}. In all experiments with COMA and AC SIL fol-
lowing are the parameters details: {LearningRateCritic, LearningRateActor, ε} ={10−3, 10−4,
0.2*0.5 = 0.1}. We gradually reduce epsilon value as follows, after every 500 iteration we reduce
epsilon to a factor of 0.98.

REFERENCES

Adrian K Agogino and Kagan Tumer. Quicr-learning for multi-agent coordination. 2006.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In conference
on Theoretical Aspects of Rationality and Knowledge (TARK), pp. 195–210, 1996.

George W. Brown. Iterative solution of games by fictitious play. Activity Analysis of Production and
Allocation, 13(1):374–376, 1951.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multia-
gent systems. 1998.

Charles-Alban Deledalle, Loı̈c Denis, and Florence Tupin. Iterative weighted maximum likelihood
denoising with probabilistic patch-based weights. IEEE Transactions on Image Processing, 18
(12):2661–2672, 2009.

8

Under review as a conference paper at ICLR 2020

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Thomas Haynes and Sandip Sen. Evolving behavioral strategies in predators and prey. In Interna-
tional Joint Conference on Artificial Intelligence, pp. 113–126. Springer, 1995.

Thomas Haynes, Kit Lau, and Sandip Sen. Learning cases to compliment rules for conflict resolution
in multiagent systems.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121, 2016.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games.
In International Conference on Machine Learning, pp. 805–813, 2015.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Junling Hu and Michael P Wellman. Nash q-learning for general-sum stochastic games. Journal of
machine learning research, 4(Nov):1039–1069, 2003.

David S Leslie and Edmund J Collins. Generalised weakened fictitious play. Games and Economic
Behavior, 56(2):285–298, 2006.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems, pp. 6379–6390, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Maitreyi Nanjanath, Alexander J Erlandson, Sean Andrist, Aravind Ragipindi, Abdul A Mohammed,
Ankur S Sharma, and Maria Gini. Decision and coordination strategies for robocup rescue agents.
In International Conference on Simulation, Modeling, and Programming for Autonomous Robots,
pp. 473–484. Springer, 2010.

Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Policy gradient with value function
approximation for collective multiagent planning. In Advances in Neural Information Processing
Systems, pp. 4319–4329, 2017.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. arXiv preprint
arXiv:1806.05635, 2018.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value func-
tions for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. Autonomous
agents and multi-agent systems, 11(3):387–434, 2005.

James Parker, Ernesto Nunes, Julio Godoy, and Maria Gini. Exploiting spatial locality and hetero-
geneity of agents for search and rescue teamwork. Journal of Field Robotics, 33(7):877–900,
2016.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neu-
ral Computation, 3(1):88–97, 1991.

Sandip Sen and Mahendra Sekaran. Multiagent coordination with learning classifier systems. In
International Joint Conference on Artificial Intelligence, pp. 218–233. Springer, 1995.

Sven Seuken and Shlomo Zilberstein. Improved memory-bounded dynamic programming for de-
centralized pomdps. arXiv preprint arXiv:1206.5295, 2012.

9

Under review as a conference paper at ICLR 2020

Sven C Steude. Weighted maximum likelihood for risk prediction. 2011.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PloS one, 12(4):e0172395, 2017.

Matej Večerı́k, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nico-
las Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstra-
tions for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017.

Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvunakool,
János Kramár, Raia Hadsell, Nando de Freitas, et al. Reinforcement and imitation learning for
diverse visuomotor skills. arXiv preprint arXiv:1802.09564, 2018.

10

	Abstract
	Introduction
	Background: Neural Fictitious Self Play (NFSP)
	Imitation Learning

	Neural Fictitious Self Imitation Play, NFSIP
	Weighted Generalized Weakened Fictitious Play
	Self Imitation Learning for Cooperative Multiple Agent Problems

	Discussion
	Experimental Section

