
Under review as a conference paper at ICLR 2020

DUAL-MODULE INFERENCE FOR EFFICIENT RECUR-
RENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Using Recurrent Neural Networks (RNNs) in sequence modeling tasks is promis-
ing in delivering high-quality results but challenging to meet stringent latency re-
quirements because of the memory-bound execution pattern of RNNs. We propose
a big-little dual-module inference to dynamically skip unnecessary memory access
and computation to speedup RNN inference. Leveraging the error-resilient feature
of nonlinear activation functions used in RNNs, we propose to use a lightweight
little module that approximates the original RNN layer, which is referred to as the
big module, to compute activations of the insensitive region that are more error-
resilient. The expensive memory access and computation of the big module can
be reduced as the results are only used in the sensitive region. Our method can
reduce the overall memory access by 40% on average and achieve 1.54x to 1.75x
speedup on CPU-based server platform with negligible impact on model quality.

1 INTRODUCTION

Recurrent Neural Networks (RNNs) play a critical role in many natural language processing (NLP)
tasks, such as machine translation (Bahdanau et al., 2014; Wu et al., 2016), speech recognition
(Graves et al., 2013; He et al., 2019), and speech synthesis (Wang et al., 2017), owing to the capabil-
ity of modeling sequential data. These RNN-based services deployed in both data-center and edge
devices often process inputs in a streaming fashion, which demands a real-time interaction. For
instance, in cloud-based translation tasks, multiple requests need to be served with very stringent
latency limit, where inference runs concurrently and individually (Park et al., 2018). For on-device
speech recognition as an automated assistant, latency is the primary concern to pursue a fast response
(He et al., 2019).

However, serving RNN-based models in latency-sensitive scenarios is challenging due to the low
data reuse, and thus low resource utilization as memory-bound General Matrix-Vector multiplica-
tion (GEMV) is the core compute pattern of RNNs. Accessing weight matrix from off-chip memory
is the bottleneck of GEMV-based RNN execution as the weight data almost always cannot fit in
on-chip memory. Moreover, accessing weights repeatedly at each time-step, especially in sequence-
to-sequence models, makes the memory-bound problem severer. Subsequently, the on-chip com-
puting resources would be under-utilized. Although batching is a walk-around for low-utilization,
using a large batch size is not favored in latency-sensitive scenarios such as speech recognition and
translation.

In essence, the RNN inference is not a simple GEMV. With non-linearity followed the GEMV op-
eration as the activation functions, the RNN inference operation is “activated” GEMV. These non-
linear activation functions as used in neural networks bring error resilience. As shown in Figure 1,
sigmoid and tanh functions in Gated RNNs such as Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) have insensitive regions –
green shaded regions – where the outputs are saturated and resilient to errors in pre-activation accu-
mulated results. In other words, not all computations in RNNs need to be accurate. Can we leverage
this error resilience in RNNs to reduce the memory access and eventually achieve speedup?

To this end, we propose a big-little dual-module inference that regarding the original RNN layer
as the big module, and use a parameterized little module to approximate the big module to help
reduce redundant weight accesses. The philosophy of dual-module inference is using approximated
results computed by the memory-efficient little module in the insensitive region, and using accurate

1



Under review as a conference paper at ICLR 2020

Figure 1: Insensitive (green shaded) and sensitive (white) regions of sigmoid (left) and tanh (right)
nonlinear functions.

results computed by the memory-intensive big module in the sensitive region. For this reason,
the final outputs are the mixture of the big-little module. With the memory-efficient little module
computes for the insensitive region, we can reduce the expensive data access and computation of the
big module and thus reduce overall memory access and computation cost. The (in)sensitive region
is dynamically determined using the little module results. Because of the error resilience, using
approximated results in the insensitive region has a negligible impact on the overall model quality
but creates a significant acceleration potential.

Given the trade-off between accuracy and efficiency, the little module needs to be sufficiently accu-
rate while being as much lightweight as possible. To achieve this, we first use a dimension reduction
method – random projection – to reduce the parameter size of the little module and thus reducing
data accesses. Then, we quantize the weights of the little module to lower the overhead further.
Because we only need the little module outputs in the insensitive region that is error-resilient, we
can afford aggressively low bit-width. Compared with common sparsification schemes, our hybrid
approach avoids indexing overheads and therefore successfully achieves practical speedup.

We evaluate our method on language modeling and neural machine translation using RNN-based
models and measure the performance, i.e., wall-clock execution time, on CPU-based server plat-
form. With overall memory access data reduced by 40% on average, our method can achieve 1.54x
to 1.75x speedup with negligible impact on model quality.

2 MOTIVATION

In this section, we discuss the error resilience of RNNs. As shown in Fig. 1, the nonlinear activation
functions – sigmoid and tanh – have insensitive regions where the output activations are resilient to
errors introduced in pre-activation accumulation results. We take a single LSTM layer for language
modeling over PTB dataset as an illustrative example. The baseline perplexity (PPL) is 80.64. We
consider two cases: adding a random error vector under norm distribution into the pre-activation
accumulation results in the sensitive regions of four gates; adding errors to the insensitive regions.
We separate the (in)sensitive regions by 50% based on the activation magnitude.

As listed in Table 1, we report the PPL on the testing set and the average cosine similarity between
the activations of the baseline model and the error-introduced model. Before applying the nonlinear
activation functions, the cosine similarity of two cases – adding errors in the sensitive region or the
insensitive region – are in the same level. However, we observe that after the nonlinear gates, the
cosine similarity in the insensitive case is much closer to one (i.e., fewer output errors) than that in

Table 1: Comparison of adding random errors to the sensitive or insensitive region of LSTM gates.

Case Cosine similarity before gate Cosine similarity after gate PPLinput forget cell output input forget cell output
Sensitive 0.953 0.859 0.952 0.932 0.934 0.946 0.882 0.940 85.70

Insensitive 0.944 0.929 0.943 0.947 0.968 0.987 0.969 0.977 81.79

2



Under review as a conference paper at ICLR 2020

Figure 2: Dynamic region distribution across timesteps and inputs. The white and black colors
denote neurons in the insensitive and sensitive regions, respectively. The left and right patterns are
from different inputs.

the sensitive case. We further compare the PPL of these two cases, and we observe that introducing
errors in the insensitive region causes little quality degradation.

The selection of which neurons should be in the (in)sensitive region is dynamic and input-dependent,
which can be seen in Figure 2. Unlike the static weight sparsity that we can prune the unused con-
nections offline in advance, the dynamic region speculation requires a very lightweight criterion for
real-time processing. Taking all these into account, we propose a dual-model inference method that
efficiently determines (in)sensitive region and significantly saves the memory access and computa-
tional cost.

3 APPROACH

Firstly, we explain the dual-module inference by taking a fully-connected (FC) layer as an example
and then extend it to LSTM and GRU. For an FC layer with unit batch size, the operation is typically
formulated as a = ϕ(y),y = Wx + b, where W is a weight matrix (W ∈ Rn×d), x is an input
vector (x ∈ Rd), b is a bias vector (b ∈ Rn), a is an activated output vector (a ∈ Rn), and ϕ is an
activation function. The core computation is matrix-vector multiplication (GEMV), i.e., Wx. Both
the amount of computation and memory access are O(nd); therefore, it is memory-bounded since
the operation intensity is O(1) according to the Roofline model analysis (Williams et al., 2009).
Accessing weights from the off-chip memory is the bottleneck in terms of both the latency and
energy.

3.1 OVERVIEW OF DUAL-MODULE PHILOSOPHY

Our work aims at reducing the memory access of weight matrices for GEMV-based RNN inference.
We show in Section 2 that not all values in y need accurate computation, and those that belong to the
insensitive region can afford some level of approximation. In other words, we only need accurate
computation and expensive memory access in the sensitive region of y and skip computation and
memory access to weights that contribute to the insensitive region of y. With that, we still need
approximated results in the insensitive region. Therefore, we propose to learn a lightweight little
module from the original trained layer, here we refer the original layer as the big module. Essentially,
our little module is executed in a low-dimensional and low-precision space, thus termed as LL
module; by contrast, the original big module with high dimension and high precision is called HH
module. Let the outputs from these two modules be yLL and yHH , respectively. If the LL module
approximates the HH module well, the final output vector – a mixture of results from the HH and
the LL modules – can be assembled by

y = yHH �m+ yLL � (1−m) (1)

where m ∈ {0, 1}n is a binary mask vector for the output switching. mi equals 1 in the sensitive
region while it switches to 0 in the insensitive region. The overall saving comes from skipping
memory access to the big module while paying the overhead of accessing and computing of the
little module.

3



Under review as a conference paper at ICLR 2020

3.2 CONSTRUCT THE LL MODULE

As the HH module is the original pre-trained layer, we only need to construct the LL module.
Delivering a lightweight little module at inference time is crucial to achieving real wall-clock time
speedup. As discussed earlier, the sparsification method usually suffers from severe indexing over-
heads; therefore, we turn to other approaches. In this work, we propose a hybrid compression with
dimension reduction and data quantization to keep the little module as efficient as possible in com-
putation and storage. The low dimension and low precision give birth to the desired LLmodule. We
emphasize two objects that should be reached in the design of LL module: (1) much lower compu-
tation and memory overheads than the HH module; (2) approximating the outputs of HH module
accurately.

First, we introduce sparse random projection to reduce the dimension of x from Rd to Rk where
k � d. Subsequently, the parameter size of the LL module is O(nk), which is much smaller
compared with the parameter size O(nd) of the HH module. Random projection is a common
technique for dimension reduction that preserves distances in Euclidean space (Achlioptas, 2003;
Bingham & Mannila, 2001; Li et al., 2006; Liu et al., 2019).

The dimension reduction step can be formulated as

xLL = PxHH (2)

where P is a sparse random matrix (P ∈ 1√
3
· {−1, 0, 1}k×d, the probability of Pij being −1, 0,

and 1 is 1
6 , 2

3 , and 1
6 , respectively). Note that k is configurable according to actual needs to balance

the accuracy loss and inference cost. We choose the value of k according to Achlioptas (2003):

k =
4logn

ε2/2− ε3/3
(3)

where n is the number of rows in W and ε is a real number in (0, 1).

Second, after the dimension reduction, we quickly construct a lightweight little module in the low-
dimensional space to approximate the pre-trained big module. The parameters of the latter (i.e.,
WHH and bHH ) are kept frozen while the parameters of the former (i.e., WLL and bLL) are
updated by stochastic gradient descent (SGD) to minimize the following loss function:

L =
1

S

∑
s

||yHH − yLL||22 =
1

S

∑
s

||(WHHxHH + bHH)− (WLLxLL + bLL)||22 (4)

where S is the mini-batch size. Essentially, for each pair of big-little modules, we apply linear
regression on the little module to approximate the function of the big module and optimize the
mean square error of the two. Apparently, the parameter size of WLL is O(nk), much smaller than
the original weight WHH of O(nd) in the high-dimensional space. Even if further considering
the projection cost of O(kd), the overhead is still much lower than the vanilla inference. In this
way, the memory-bound issue in GEMV-based models can be greatly alleviated; the computational
complexity is also reduced. The SGD overhead for constructing the above module can be amortized
by the pattern of “construct-once-inference-forever”.

Finally, based on the constructed low-dimensional module, we also apply data quantization tech-
nique to reduce the parameter precision. Data quantization can further shrink the storage space of
LL parameters due to the shorter bit-width. The input x is also quantized during run-time to reduce
the computation cost. In our design, we apply one-time uniform quantization on WLL to avoid
complicated calculations. Although some other accurate quantization methods are available as well,
we find that one-time quantization works well in our dual-module inference given in Equation (1).
This error tolerance is benefit from the fact that the computation in the insensitive region has a small
influence on the final outputs.

3.3 DETERMINE THE INSENSITIVE REGION

The dual-module inference relies on a binary mask m to switch between outputs of the “accurate
& costly” HH module and the “approximated & efficient” LL module. Hence, the generation of
m is a crucial factor to control the overall performance by adjusting the trade-off between accuracy
and efficiency. Thanks to the saturation region of the nonlinear activation functions in RNNs, such

4



Under review as a conference paper at ICLR 2020

Figure 3: Output activation distribution of sigmoid and tanh gates as in LSTM.

as sigmoid and tanh, we observe a unipolar or bipolar distribution of their outputs, as depicted
in Figure 3. This affords two excellent opportunities: (1) It is possible to remove the majority of
the computation and access from the costly HH module by setting the peak areas in Figure 3 as
insensitive regions; (2) The saturation output values in those regions such as near 0 in sigmoid
and near ±1 in tanh additionally allow inaccurate computations because the outputs are insensitive
to approximated values. According to the above observations and analysis, we design a specific
criterion for each activation function. In particular, they are governed by{

sigmoid : if yLL
i > θsigmoid,mi = 1; otherwise, mi = 0

tanh : if θ−tanh < yLL
i < θ+tanh,mi = 1; otherwise, mi = 0

(5)

where θsigmoid > 0, θ−tanh < 0, and θ+tanh > 0 are constant thresholds. Note that these thresholds
can be searched to a target insensitive ratio using validation dataset or be tuned at run-time that acts
as a knob for accuracy-efficiency trade-off.

3.4 OVERVIEW OF DUAL-MODULE INFERENCE ALGORITHM

The overall implementation is provided in Algorithm 1. After the construction of the LL model, the
consequent dual-module inference needs five steps: (1) Dimension reduction and data quantization
for each dynamical input x as xLL

Q = Q(PxHH) where Q(·) is a quantization function; (2) Obtain
the approximated output yLL by performing yLL = ϕ(WLL

Q xLL
Q + bLL

Q ) where WLL
Q & bLL

Q are
stored quantized parameters; (3) Calculate the switching mask vector m according to Equation (5);
(4) Obtain a faction of actual output yHH by performing yHH

i = ϕ(W [i, :]HHxHH + bHH
i ) if

mi = 1; (5) Produce the final output y according to the assembling in Equation (1).

Algorithm 1: Dual-module Inference Algorithm

Data: HH module parameters: WHH , bHH ; quantized LL module parameters: WLL
Q and bLL

Q ;
thresholds θs to determine m; random projection matrix P ; current input xHH

Result: Final output y
1 Step 1: xLL

Q = Q(PxHH);
2 Step 2: yLL = ϕ(WLL

Q xLL
Q + bLL

Q );
3 Step 3: Generating m according to Equation (5);
4 Step 4-5: foreach mi ∈m do
5 if mi == 1 then yi = yHH

i = ϕ(W [i, :]HHxHH + bHH
i );

6 else yi = yLL
i ;

7 end

3.5 APPLY TO RECURRENT NEURAL NETWORKS

We discuss how to apply the proposed dual-module inference for an FC layer to RNNs, including
LSTM and GRU. We will explain the LSTM implementation for illustration, while the extension to

5



Under review as a conference paper at ICLR 2020

Figure 4: Comparison of memory access data and operations between baseline layers and the little
module of dual-module enhanced layers. L750 indicates single-layer LSTM with 750 hidden units;
G is short for GRU; L1024r indicates LSTM with residual input.

GRU is quite straightforward. The dynamics of an LSTM cell can be described as

f(t) = σ(bf +Wfxx(t) +Wfhh(t− 1))

i(t) = σ(bi +Wixx(t) +Wihh(t− 1))

o(t) = σ(bo +Woxx(t) +Wohh(t− 1))

g(t) = θ(bg +Wgxx(t) +Wghh(t− 1))

c(t) = c(t− 1)� f(t) + g(t)� i(t)

h(t) = θ(c(t))� o(t)

(6)

where f , i, o are the states of forget, input, and output gate, respectively, and g is the input activation.
Each of them has its own bias vector and weight matrices. c and h are the cellular and hidden states
of the hidden layer, respectively. σ(·) and θ(·) are sigmoid function and tanh function, respectively.

The computation of each gate is similar to an FC-like layer; therefore, Algorithm 1 still holds.
The first difference is the two GEMV computations in each gate; we apply dimension reduction,
construction of the LL module, and data quantization on both GEMV computations. The second
difference is that there is an additional temporal dimension in RNNs. We should guarantee the
approximation performance of theLLmodule at all time steps. Taking the forget gate as an example,
the linear map works for both xLL(t) = Pxx

HH(t) and hLL(t − 1) = Phh
HH(t − 1). The loss

function for constructing the LL module is slightly modified to

L =
1

ST

∑
s

∑
t

||(bHH
f +WHH

fx xHH(t)+WHH
fh hHH(t−1))−(bLL

f +WLL
fx xLL(t)+WLL

fh hLL(t−1))||22.

(7)
Here the minimization considers not only S training samples in each mini-batch but also T time

steps. The data quantization, switching mask (i.e., m) generation, and output assembling is the
same as Algorithm 1 describes. Applying to other gates is similar so we do not discuss them to
avoid repetition. Note that the input x and hidden state h can have different sizes, termed as dx
and dh, respectively. For simplicity, we set Px ∈ Rk×dx and Ph ∈ Rk×dh to let xLL and hLL to
the same length k. For the g gate with tanh function, we set |θ−tanh| = |θ

+
tanh| also for simplicity;

however, different magnitudes are allowed.

3.6 SAVING AND OVERHEAD ANALYSIS

The target of our dual-module inference method is to reduce the expensive off-chip memory access
of the big module with the help of the little module. We introduce an insensitive ratio as the number
of outputs using the little module results over entire outputs. The ratio can be interpreted as the zero
ratio in mask m as in Equation 1. In other words, the higher insensitive ratio will have less memory
access to the big module. For example, obtaining a ratio of 50% results in reducing 50% of weight
matrix accessing in a GEMV operation. The choice of accurate ratio determines the model inference
quality, and it is a knob to trade-off model inference quality vs. latency at run-time.

6



Under review as a conference paper at ICLR 2020

The overhead of dual-module inference is small due to the use of dimension reduction and quanti-
zation. When choosing reduced dimension k and low-precision bit-width of the little module, we
use Equation 3 with ε = 0.5 and INT8 quantization by default. We also explore different levels
of dimension reduction and quantization in Section 4.3 and Section 4.4. As shown in Figure 4, we
compare memory access data and operations between the single-module – the base case – and the
little module of dual-module inference using a set of LSTM and GRU layers. On average, the little
module accounts 10% storage overhead and 40% operation overhead compared with the base case.
Note that we count the number of operations in Figure 4 regardless of precision; and the little mod-
ule computation overhead can be further reduced using low-precision compute kernel as we used in
performance evaluation.

4 EVALUATION

We first evaluate the model inference quality and execution time under different insensitive ratio and
then conduct two sensitivity studies on dimension reduction and quantization.

Our method is evaluated on CPU-based server platform (Intel(R) Xeon(R) CPU E5-2698 v4) as
most inference workloads run on CPUs (Park et al., 2018). We use PyTorch to train the little module
and evaluate inference quality. The baseline implementation is the PyTorch CPU version with Intel
MKL (version 2019.4) as the back-end BLAS kernel library. Our custom kernel implementation
uses a multi-threaded MKL dot-product kernel at BLAS level-1 to compute the big module instead
of BLAS level-2 or level-3 kernels. The kernel-wise performance is measured as wall-clock time
and averaged with 1000 runs, assuming cold cache at the execution of each RNN cell representing
the real-world cases, for example in the decoder of seq2seq model.

We first evaluate our method on single-layer LSTM & GRU used in language modeling tasks and
then on multi-layer stacked LSTM in GNMT model used in machine translation tasks – a standard
benchmark model for inference as in MLPerf 1. We train the little module while freezing the param-
eters of the big module, and we use the same training set and validation set to run SGD optimization.

4.1 LANGUAGE MODELING

We first evaluate our method on single-layer LSTMs/GPUs. Our implementations are adapted from
the word-level language modeling example from PyTorch with same hyper-parameters to train base-
line models. We report word-level perplexity (PPL) as the measure of model quality. As listed in
Table 2, the baseline LSTM model achieves 80.64 PPL at the latency of 1.477ms. Then, we varying
the insensitive ratio to show the quality-performance trade-off; the larger insensitive ratio indicates
more results are from the little module and less memory access to compute the big module. As
we increase the insensitive ratio, we observe the degradation of quality as the perplexity increases
during a gradual reduction in execution time. When the insensitive ratio is 50%, the perplexity
is slightly increased to 81.36, which is negligible in language modeling tasks, while the inference
speedup is 1.67x.

We observe a similar quality-performance trade-off for LSTM with 750 hidden units. Comparing
the case of base LSTM with 750 hidden units with dual-module LSTM with 1500 hidden units and
50% insensitive ratio, although the memory access reduction is at the same level, our proposed dual-
module approach achieves much better model quality because we kept the expressive power of a
larger LSTM layer.

We further report the results using single-layer GRU on word-level language modeling tasks as in
Table 3. Using dual-module inference on GRUs expresses the similar quality-performance trade-off
as of LSTMs. Our dual-module method is generally applicable to both LSTMs and GRUs.

4.2 NEURAL MACHINE TRANSLATION

Given the promising results on language modeling, we further investigate Neural Machine Trans-
lation (NMT), which is a promising end-to-end learning approach for automated translation (Wu

1https://mlperf.org/inference-overview/

7



Under review as a conference paper at ICLR 2020

Table 2: LSTM perplexity and execution time (ms).

Insensitive
ratio

hidden size: 1500 hidden size: 750
PPL Diff. Time Speedup PPL Diff. Time Speedup

Base 80.64 n/a 1.477 1.00x 84.32 n/a 0.546 1.00x
10% 80.72 -0.08 1.315 1.12x 84.42 -0.10 0.448 1.22x
30% 80.56 0.08 1.095 1.35x 84.43 -0.11 0.415 1.32x
50% 81.36 -0.72 0.885 1.67x 84.29 0.03 0.342 1.60x
70% 87.48 -6.83 0.641 2.30x 84.89 -0.57 0.287 1.90x
90% 109.37 -28.73 0.380 3.89x 88.44 -4.12 0.216 2.53x

Table 3: GRU perplexity and execution time (ms).

Insensitive
ratio

hidden size: 1500 hidden size: 750
PPL Diff. Time Speedup PPL Diff. Time Speedup

Base 85.48 n/a 1.182 1.00x 89.64 n/a 0.466 1.00x
10% 85.62 -0.14 1.024 1.15x 89.81 -0.17 0.383 1.22x
30% 86.01 -0.53 0.869 1.36x 89.63 0.01 0.334 1.40x
50% 88.73 -3.25 0.726 1.63x 89.69 -0.05 0.302 1.54x
70% 98.09 -12.61 0.545 2.17x 92.51 -2.87 0.284 1.64x
90% 122.75 -37.27 0.350 3.38x 102.37 -12.73 0.198 2.35x

et al., 2016). The base model 2 consists of a four-layer stacked LSTM in both the encoder and the
decoder of the sequence-to-sequence modeling. We focus on the speedup of the decoder since it is
the most memory intensive and the most time-consuming part ( 95%). The decoder has a four-layer
unidirectional LSTM with hidden size 1024 with residual connections starting from the third layer,
i.e., the input size of the third and fourth layer is 2048. Our experiments show de-tokenized BLEU
score to measure the model inference quality on the public WMT16 English-German dataset. The
baseline model obtains a BLEU score of 24.32.

We replace the LSTM layers in the decoder with our proposed dual-module-based LSTM layers.
Similar to single-layer LSTM results, using the little module computed results in the insensitive
region can reduce overall memory access while maintaining model quality. As listed in Table 4,
our method can achieve imperceptible BLEU score degradation while speedup inference by 1.75x
for the first two LSTM layers and 1.70x for the last two LSTM layers. When compromising more
translation quality, i.e., decreasing the BLEU score by 2.4, our method can achieve more than 2x
speedup.

4.3 DISCUSSION ON DIMENSION REDUCTION

Dimension reduction is an integral part of our dual-module inference method to reduce the number
of parameters and memory footprint. Here, we study the impact of different levels of dimension
reduction on the model quality and performance. We conduct experiments on language modeling
using single-layer LSTM of 1500 hidden units. We quantize the little module to INT8 and reduce
the hidden dimension from 1500 to three different levels, which are calculated by Sparse Random
Projection. We fix the insensitive ratio to be 50% across this set of experiments. As we can see in
Table 5, the higher dimension of the little module, the better approximation the little module can
perform. For instance, when we reduce hidden size to 966 and quantize to INT8, the dual-module
inference can achieve slightly better quality – PPL of 80.40 – and 1.37x speedup. More aggressive
dimension reduction can further have more speedup at the cost of more quality degradation: hidden
dimension reduced to 417 and 266 can have 1.67x and 1.71x speedup but increase PPL by 0.72 and
2.87, respectively.

We further show the overhead of performing the computation of the little module. As listed in the
last three columns in Table 5, we measure the execution time of performing dimension reduction on

2From https://github.com/NVIDIA/DeepLearningExamples

8



Under review as a conference paper at ICLR 2020

Table 4: GNMT BLEU score and execution time (ms). (1024, 2048) indicates the hidden size is
1024 and the input size is 2048; similarly for (1024, 1024).

Insensitive
ratio

Quality (1024, 1024) (1024, 2048)
BLEU Diff. Time Speedup Time Speedup

Base 24.32 n/a 0.838 1.00x 1.092 1.00x
10% 24.33 0.01 0.679 1.23x 0.962 1.14x
30% 24.18 -0.14 0.541 1.55x 0.803 1.36x
50% 23.73 -0.59 0.480 1.75x 0.642 1.70x
70% 21.92 -2.40 0.360 2.33x 0.479 2.28x
90% 11.77 -12.55 0.243 3.45x 0.307 3.56x

Table 5: Sensitivity study of dimension reduction.

Dimension PPL Diff. Time Speedup SRP Little Big
1500 (baseline) 80.64 n/a 1.477 1.00x 0% 0% 100%
966 (ε = 0.3) 80.40 0.24 1.076 1.37x 8% 14% 44%
417 (ε = 0.5) 81.36 -0.72 0.885 1.67x 4% 8% 47%
266 (ε = 0.7) 83.51 -2.87 0.866 1.71x 3% 5% 46%

inputs by Sparse Random Projection, computation of the little module, and computation of the big
module; the execution time is normalized to the baseline case, i.e., the execution time of standard
LSTM, to highlight the percentage of overheads. When the hidden dimension is reduced to 966, the
overhead of the little module accounts 22% while the execution time of the big module is cut off by
half 3. In our experiments, we choose ε = 0.5 as the default parameter in sparse random projection
as it demonstrated good quality and speedup trade-off by our study. When further reducing the
hidden dimension to 266, there is only a slight improvement on speedup compared with the hidden
size of 417 in the little module, where the overhead of the little module is already small enough, but
the quality dropped significantly.

4.4 DISCUSSION ON QUANTIZATION

Quantizing the weights of the little module is another integral part of keeping memory footprint
small. We show different quantization levels the impact on model quality and parameter size. After
training the little module, we can quantize its weights to lower precision to reduce the memory
accessing on top of dimension reduction. As we can see in Table 6, more aggressive quantization
leads to smaller parameter size that can reduce the overhead of computing the little module; on the
other hand, the approximation of the little module is compromised by quantization. We can quantize
the little module up to INT4 without significant quality degradation. Using lower precision would
degrade the quality while decreasing the parameter size. For performance evaluation, we choose
INT8 as the quantization level since we leverage off-the-shelf INT8 GEMM kernel in MKL. We
expect more speedup once the little module overhead can be further reduced by leveraging INT4
compute kernels.

Table 6: Inference quality and parameter size comparison under different levels of quantization on
the little module

Precision Base FP32 INT16 INT8 INT4 INT2 INT1
Perplexity 80.64 81.28 81.18 81.25 81.28 82.14 94.75

Diff. n/a -0.64 -0.54 -0.61 -0.64 -1.50 -14.11
MSE n/a 0.408 0.425 0.444 0.465 0.573 3.337

Param. size (MB) 68.7 19.1 9.6 4.8 2.4 1.2 0.6

3We measured the execution time with multi-threading.

9



Under review as a conference paper at ICLR 2020

5 RELATED WORK

As we aim at the memory-bound problem of RNN-based inference applications, we limit the discus-
sion on related work to RNN inference acceleration. Although we only evaluate our dual-module
inference method on standard LSTMs/GRUs, we believe our method can be applied to many newly
released sequence modeling networks (Shen et al., 2019; Wu et al., 2019) as we leverage the com-
monly observed error-resilience of non-linear activation functions.

5.1 MODEL COMPRESSION

Compressing DNN models via data quantization, weight sparsity, and knowledge distillation is
promising to deliver efficient deployment for inference. Xu et al. (2018) propose a quantization
method for RNNs where both weights and activations are quantized to binary or ternary. Wang et al.
(2018) propose a hybrid ternary quantization method based on the different distributions of weights
and activations.

Weight pruning, i.e., inducing weight sparsity, has been proposed to reduce the parameter size of a
pre-trained model (Han et al., 2015b;a). While fine-grained pruning at element-wise could reduce
the number of parameters (Narang et al., 2017; Zhu & Gupta, 2017; Dai et al., 2018), indexing non-
zero weights causes extra memory cost and would offset the benefits of reducing parameter size; it
is hard to gain practical acceleration on general-purpose hardware or need hardware specialization
(Mao et al., 2017). Although structural pruning (Wen et al., 2017) and knowledge distillation (Polino
et al., 2018) could achieve speedup, the applicability on more complicated tasks such NMT using
large-scale dataset is unstudied; besides, those methods require extensive retraining via regulariza-
tion that would increase the training cost and hard to find a solution.

Model compression would inevitably compromise the compressive power of RNNs. Our method,
by no means, is supposed to replace model compression but provides an orthogonal approach to
accelerate RNN inference. Using the analogy of knowledge distillation, we do not simply deploy a
student network learned from the teacher network. Instead, we let the teacher network, applied with
model compression or not, help with the student – the little module learned from the base module –
and collaboratively perform inference with reduced memory access and computation.

5.2 COMPUTATION SKIPPING

Instead of model compression, many work propose to skip computations dynamically based on
certain criterion. Bolukbasi et al. (2017) propose dynamic execution with layer-wise early exit.
Zhang et al. (2018) leverage a special feature of LSTM that using threshold-based pruning on output
gates and generate a mask, and then using the mask to skip computation as well as data access
of masked-out neurons of the other three gates. Neil et al. (2017) utilize temporal input sparsity
but need to enforce input similarity with threshold clipping. Campos et al. (2018) selectively skip
updating the hidden states for some inputs. However, these work either depend on special cell
structure or rely on the temporal similarity of inputs which is not evaluated on NLP tasks such as
NMT. We are the first that propose a general and principled method to reduce memory access and
computation of Gated RNNs, including both LSTMs and GRUs.

6 CONCLUSION

In this paper, we describe a big-little dual-module inference method to mitigate the memory-bound
problem in serving RNN-based models under latency-sensitive scenarios. We leverage the error
resilience of nonlinear activation functions by using the lightweight little module to compute for
the insensitive region and using the big module with skipped memory access and computation to
compute for the sensitive region. With overall memory access reduced by near half, our method can
achieve 1.54x to 1.75x wall-clock time speedup without significant degradation on model quality.

REFERENCES

Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of computer and System Sciences, 66(4):671–687, 2003.

10



Under review as a conference paper at ICLR 2020

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to
image and text data. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 245–250. ACM, 2001.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks
for efficient inference. In Proceedings of the 34th International Conference on Machine Learn-
ing - Volume 70, ICML’17, pp. 527–536. JMLR.org, 2017. URL http://dl.acm.org/
citation.cfm?id=3305381.3305436.

Vctor Campos, Brendan Jou, Xavier Gir i Nieto, Jordi Torres, and Shih-Fu Chang. Skip RNN:
Learning to skip state updates in recurrent neural networks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=HkwVAXyCW.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Grow and prune compact, fast, and accurate lstms.
arXiv preprint arXiv:1805.11797, 2018.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international conference on acoustics, speech and signal
processing, pp. 6645–6649. IEEE, 2013.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015b.

Yanzhang He, Tara N Sainath, Rohit Prabhavalkar, Ian McGraw, Raziel Alvarez, Ding Zhao, David
Rybach, Anjuli Kannan, Yonghui Wu, Ruoming Pang, et al. Streaming end-to-end speech recog-
nition for mobile devices. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 6381–6385. IEEE, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random projections. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 287–296. ACM, 2006.

Liu Liu, Lei Deng, Xing Hu, Maohua Zhu, Guoqi Li, Yufei Ding, and Yuan Xie. Dynamic sparse
graph for efficient deep learning. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=H1goBoR9F7.

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally.
Exploring the regularity of sparse structure in convolutional neural networks. arXiv preprint
arXiv:1705.08922, 2017.

Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring sparsity in recurrent
neural networks. arXiv preprint arXiv:1704.05119, 2017.

Daniel Neil, Jun Haeng Lee, Tobi Delbruck, and Shih-Chii Liu. Delta networks for optimized
recurrent network computation. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2584–2593. JMLR. org, 2017.

Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah, Daya Khudia,
James Law, Parth Malani, Andrey Malevich, Satish Nadathur, et al. Deep learning inference in
facebook data centers: Characterization, performance optimizations and hardware implications.
arXiv preprint arXiv:1811.09886, 2018.

11

http://dl.acm.org/citation.cfm?id=3305381.3305436
http://dl.acm.org/citation.cfm?id=3305381.3305436
https://openreview.net/forum?id=HkwVAXyCW
https://openreview.net/forum?id=H1goBoR9F7


Under review as a conference paper at ICLR 2020

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and
quantization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=S1XolQbRW.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron Courville. Ordered neurons: Integrating
tree structures into recurrent neural networks. In International Conference on Learning Repre-
sentations, 2019. URL https://openreview.net/forum?id=B1l6qiR5F7.

Peiqi Wang, Xinfeng Xie, Lei Deng, Guoqi Li, Dongsheng Wang, and Yuan Xie. Hitnet: hybrid
ternary recurrent neural network. In Advances in Neural Information Processing Systems, pp.
604–614, 2018.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: Towards end-to-end
speech synthesis. arXiv preprint arXiv:1703.10135, 2017.

Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia Zhang, Wenhan Wang, Fang Liu, Bin Hu,
Yiran Chen, and Hai Li. Learning intrinsic sparse structures within long short-term memory,
2017.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual perfor-
mance model for floating-point programs and multicore architectures. Technical report, Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2009.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=SkVhlh09tX.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang, and Hong-
bin Zha. Alternating multi-bit quantization for recurrent neural networks. arXiv preprint
arXiv:1802.00150, 2018.

X. Zhang, C. Xie, J. Wang, W. Zhang, and X. Fu. Towards memory friendly long-short term memory
networks (lstms) on mobile gpus. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 162–174, Oct 2018. doi: 10.1109/MICRO.2018.00022.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

12

https://openreview.net/forum?id=S1XolQbRW
https://openreview.net/forum?id=S1XolQbRW
https://openreview.net/forum?id=B1l6qiR5F7
https://openreview.net/forum?id=SkVhlh09tX


Under review as a conference paper at ICLR 2020

APPENDIX A COMPARISON WITH WEIGHT PRUNING METHOD

We compare our proposed dual-module inference approach with the automated gradual pruning
method (Zhu & Gupta, 2017), which is a popular pruning method with open implementation4.
Firstly, compared with weight pruning, our method achieves better quality with practical speedup
– 1.54x to 1.75x reduction on wall-clock time – on commodity CPUs while element-wise weight
pruning requires specialized hardware to gain real speedup of computation given irregular sparsity.
Moreover, our dual-module inference method can be further applied on top of pruned models to
reduce execution time by reducing memory access.

Table 7: Comparison of our proposed dual-module inference (using 50% insensitive ratio) with
weight pruning using one LSTM layer with 1500 units in word language modeling task on WikiText-
2 dataset.

Method PPL w/o dual-module inference PPL w/ dual-module inference
Dense 85.52 86.21

80% weight sparsity 86.42 88.46
90% weight sparsity 88.75 90.96

4From https://github.com/NervanaSystems/distiller

13


	Introduction
	Motivation
	Approach
	Overview of Dual-module Philosophy
	Construct the LL Module
	Determine the Insensitive Region
	Overview of Dual-Module Inference Algorithm
	Apply to Recurrent Neural Networks
	Saving and Overhead Analysis

	Evaluation
	Language Modeling
	Neural Machine Translation
	Discussion on Dimension Reduction
	Discussion on Quantization

	Related Work
	Model Compression
	Computation Skipping

	Conclusion
	Comparison with Weight Pruning Method

