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ABSTRACT

Despite the remarkable performance of deep neural networks (DNNs) on various
tasks, they are susceptible to adversarial perturbations which makes it difficult
to deploy them in real-world safety-critical applications. In this paper, we aim
to obtain robust networks by sparsifying DNN’s latent features sensitive to ad-
versarial perturbation. Specifically, we define vulnerability at the latent feature
space and then propose a Bayesian framework to prioritize/prune features based
on their contribution to both the original and adversarial loss. We also suggest
regularizing the features’ vulnerability during training to improve robustness fur-
ther. While such network sparsification has been primarily studied in the literature
for computational efficiency and regularization effect of DNNs, we confirm that it
is also useful to design a defense mechanism through quantitative evaluation and
qualitative analysis. We validate our method, Adversarial Neural Pruning (ANP)
on multiple benchmark datasets, which results in an improvement in test accuracy
and leads to state-of-the-art robustness. ANP also tackles the practical problem of
obtaining sparse and robust networks at the same time, which could be crucial to
ensure adversarial robustness on lightweight networks deployed to computation
and memory-limited devices.

1 INTRODUCTION

In the last many years, deep neural networks (DNNs) have achieved impressive results on various
artificial intelligence tasks, e.g., image classification (Krizhevsky et al., 2012), face and object
recognition (He et al., 2015; Deng et al., 2018), semantic segmetnation (Badrinarayanan et al., 2015;
He et al., 2017) and playing games (Silver et al., 2016; 2017). The groundbreaking success of DNNs
has motivated their use in a broader range of domains, including more safety-critical environments
such as medical imaging (Esteva et al., 2017; Rajpurkar et al., 2017) and autonomous driving (Bojarski
et al., 2016; Li et al., 2017). However, DNNs are shown to be extremely brittle to carefully crafted
small adversarial perturbations added to the input (Szegedy et al., 2013; Goodfellow et al., 2014).
These perturbations are imperceptible to human eyes but have been intentionally optimized to cause
miss-classification.

While the field has primarily focused on the development of new attacks and defenses, a ‘cat-and-
mouse’ game between attacker and defender has arisen. There has been a long list of proposed
defenses to mitigate the effect of adversarial examples defenses (Papernot et al., 2015b; Xu et al.,
2017b; Madry et al., 2018; Buckman et al., 2018; Dhillon et al., 2018; Xie et al., 2018; Tramèr et al.,
2018; Liu et al., 2019), followed by round of successful attacks (Carlini & Wagner, 2016; Athalye
et al., 2018; Uesato et al., 2018; Athalye & Carlini, 2018) designed in light of the new defense. Since
it shows that any defense mechanism that once looks successful could be circumvented with the
invention of new attacks, we try to tackle the problem by identifying a more fundamental cause of the
adversarial vulnerability of deep neural networks.

What makes deep neural networks vulnerable to adversarial attacks? We conjecture that the adversarial
vulnerability of deep neural networks is mostly due to the distortion in the latent feature space. If
any perturbation at the input level is successfully suppressed in the latent feature space at any layer
of the neural network, such that clean and adversarial samples cannot be distinguished in the latent
feature space, then it will not lead to misclassification. However, not all latent features will contribute
equally to the distortion in the latent feature space; some latent features may have larger distortion,
by amplifying the perturbations at the input level while others will remain relatively static.
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Figure 1: Concept: We consider a novel problem of distortion in latent features of a network in the presence of
adversarial perturbation, where the model observes different degrees of distortion for different features (brighter
red indicates higher level of distortion). To solve this problem, our proposed method learns a bayesian pruning
mask to suppress the higher distorted features in order to maximize it’s robustness on adversarial perturbations.

In this paper, based on the motivation that adversarial vulnerability comes from distortion in the latent
feature space, we first formally define the vulnerability of the latent features and propose to minimize
the feature-level vulnerability to achieve adversarial robustness with DNNs. One way to suppress the
vulnerability in the feature space is by adding a regularization that minimizes it. However, a more
effective and irreversible means is to set the vulnerability to zero, by completely dropping the latent
features with high vulnerability. This is shown in Figure 2(a), where sparse networks are shown to
have a much smaller degree of vulnerability (average perturbation of the latent feature across all
layers). However, naive sparsification approaches will prune both the robust and vulnerable features,
which will limit its effectiveness as a defense mechanism. Moreover, when the sparsity is pushed
further, it will prune out robust features which will hurt the model robustness. To overcome this
limitation, we propose the so-called adversarial neural pruning (ANP) method that adversarially
learns the pruning mask, such that we can prune out vulnerable features while preserving robust ones.
Our method requires little or no modification of the existing network architectures, can be applied
to any pre-trained networks and it effectively suppresses the distortion in the latent feature space
(See Figure 1) and thus obtains a model that is more robust to adversarial perturbations. We validate
our model on multiple heterogeneous datasets including MNIST, CIFAR-10, and CIFAR-100 for
its adversarial robustness. Our experimental results show that ANP achieves significantly improved
adversarial robustness, with significantly less memory and computational requirements.

In summary, the contribution of this paper is as follows:

• We consider the vulnerability of latent features as the main cause of DNN’s susceptibility
to adversarial attacks, and formally describe the concepts of vulnerable and robust latent
features, based on the expectation of the distortion with respect to input perturbations.
• We show that while sparsity improves the robustness of DNNs by zeroing out distortion at

the pruned features, it is still orthogonal to robustness and even degenerates robustness at a
high degree, via experimental results and visualization of the loss landscape.
• Motivated by the above findings, we propose the ANP method that prunes out vulnerable

features while preserving robust ones, by adversarially learning the pruning mask in a
Bayesian framework. During training, we also regularize the vulnerability of the latent
features to improve robustness further.
• The proposed ANP framework achieves state-of-the-art robustness on CIFAR-10 and CIFAR-

100 datasets, along with a large reduction in memory and computation.

While our major focus is on achieving robustness with DNNs, we found that ANP also achieves
higher accuracy for clean/non-adversarial inputs, compared to the baseline scheme of adversarial
training (see the results of CIFAR datasets in Table 1). This is due to the fact that sparsification
helps to regularize models and is also an important benefit of ANP as it has been well known that
adversarial training schemes tend to hurt the accuracy of the DNNs on non-adversarial samples
(Schmidt et al., 2018; Tsipras et al., 2019; Zhang et al., 2019). Moreover, our method enables to
obtain a robust and lightweight network, which is useful when working with resource-limited devices.

2 ROBUSTNESS OF DEEP REPRESENTATIONS

Before presenting adversarial neural pruning, we first briefly introduce some notation and the concept
of robust and vulnerable features in the deep latent representation space. Let a L-layer neural
network be represented by a function f : X→ Y with dataset denoted by D = {X,Y} such that
f(x) = fL−1(fL−2(· · · (f1(x))) for any x ∈ X. We use fθ to represent the neural network classifier,
where θ = {W1, . . . ,WL−1,b1, . . . ,bL−1} denotes the model parameters.
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Figure 2: a) Mean distortion (average perturbation in latent features across all layers) for various networks.
We use Lenet-5-Caffe for MNIST and VGG-16 for CIFAR-10 and CIFAR-100 dataset. Our proposed method
has minimum distortion compared to all the other networks. b) - d) Visualization of the mean distortion for the
input layer for Lenet-5-caffe on MNIST for various methods. The standard network has the maximum distortion
which is comparatively reduced in adversarial training and further suppressed by our proposed method.

Let zl denote the feature vector for the l-th layer with rectified linear unit (ReLU) as the activation
function, then fl(·) can be defined as

zl+1 = fl(zl) = max{Wlzl + bl,0}, ∀l ∈ {1, 2, . . . , L− 2},
where Wl denotes the weight parameter matrix and bl denotes the bias vector. Let x and xadv

denote clean and adversarial data points, respectively (xadv = x + δ) for any x ∈ X with lp-ball
B(x, ε) around x with radius ε, zl and zadvl as their corresponding feature vectors for the l-th layer.

Vulnerability of a feature. The vulnerability of a k-th feature for l-th layer (zlk) can be measured
by the distortion in that feature in the presence of an adversary. The vulnerability of a latent feature
could then be defined as the expectation of the absolute difference between the feature value for a
clean example and its adversarial perturbation. This could be formally defined as follows:

v(zlk, z
adv
lk ) = E(x,y)∼D|zlk − zadvlk | (1)

Definition 1 A feature z: X→ R for a given strength of adversary ε is said to be (ε, δ)-robust to
adversarial perturbation for a distribution D with respect to the vulnerability metric v, if there exists
zadv such that v(z, zadv) < δ. Formally:

E(x,y)∼D|z− zadv| < δ

Definition 2 A feature z: X→ R for a given strength of adversary ε is said to be (ε, δ)-vulnerable
to adversarial perturbation for a distribution D with respect to the vulnerability metric v, if there
exists zadv such that v(z, zadv) ≥ δ. Formally:

E(x,y)∼D|z− zadv| ≥ δ

To measure the vulnerability of an entire network fθ(X), we simply need to compute the sum
of the vulnerability of all the latent features vectors of the network before the logit layer, then
V (fθ(X), fθ(X

adv)) can be defined as:

V (fθ(X), fθ(X
adv)) =

1

L− 1

l=L−1∑
l=1

vl, vl =
1

Nl

k=Nl∑
k=1

v(zlk, z
adv
lk )) (2)

where vl represents the vulnerability of the layer l with a feature vector composed of Nl features.
Figure 2(a) shows the vulnerability of different networks across various datasets. It can be clearly
observed that although adversarial training suppresses the vulnerability at the input level, the latent
feature space is still vulnerable to adversarial perturbation, and that our proposed method achieves
the minimum distortion across all the datasets.

Adversarial training. Adversarial training (Goodfellow et al., 2014; Kurakin et al., 2016) was
proposed as a data augmentation method to train the network on the mixture of clean and adversarial
examples until the loss converges. Instead of using it as a data augmentation technique, the adversarial
search was incorporated inside the training process by solving the following non-convex outer
minimization problem and a non-concave inner maximization problem (Madry et al., 2018):

arg min
θ

E(x,y)∼D

[
max

δ∈B(x,ε)
L(θ,xadv,y)

]
(3)
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In order to minimize the vulnerability of the network to further improve the robustness of the model
we regularize the adversarial training loss with vulnerability suppression loss (VS):

arg min
θ

E(x,y)∼D

[
max

δ∈B(x,ε)
L(θ,xadv, y)

]
+ λ · V (fθ(x), fθ(x

adv)) (4)

where λ is the hyper-parameter determining the strength of the vulnerability suppression loss. The
vulnerability suppression loss directly aims to minimize the distortion of the latent features in the
presence of adversarial perturbations. Adding VS loss to the adversarial learning objective will make
it minimize the adversarial loss by suppressing the distortions. We empirically found that it also has
an effect of pushing the decision boundary and increasing the smoothness of the model’s output and
its loss surface (See Figure 5).

3 ADVERSARIAL NEURAL PRUNING

In this section, we propose a new method, coined Adversarial Neural Pruning (ANP), to further
reduce the vulnerability in the latent space. ANP combines the idea of adversarial training (Madry
et al., 2018) with the Bayesian pruning methods. Guo et al. (2018) used weight pruning and activation
pruning to show that sparsifying networks leads to more robust networks. The actual reason behind
the robustness is obvious by our definitions: sparsity suppresses vulnerability to 0 and thus reduces
the vulnerability of the network. Yet, the network still does not take into account the robustness of a
feature. The basic idea of adversarial neural pruning is to achieve robustness while suppressing the
distortion, by explicitly pruning out the latent features with high distortion.

Let L(θ �M,x,y) be the loss function at data point x with class y for any x ∈ X for the model
with parameters θ and mask parameters M, we can use Projected Gradient Descent (PGD) (Madry
et al., 2018), a variant of IFGSM (Kurakin et al., 2016) to generate the adversarial examples:

xt+1 = Πx+B(x,ε)(x
t + α · sgn(OxL(θ �M,x,y))) (5)

where α is the step size and sgn(·) returns the sign of the vector. In this work, we consider the
l∞-bounded perturbations where δ is the added perturbation from the l∞ norm-ball B(x, ε) around x
with radius ε for each example. We then use the following objectives to train the weight and mask
parameters for our model:

J(θ �M,x,y) = β · E(x,y)∼D

(
L(θ �M,x,y)

)
+ (1− β) · E(x,y)∼D

(
max

δ∈B(x,ε)
L(θ �M,xadv,y)

)
Lθ = argmin

θ
J(θ �M,x,y)︸ ︷︷ ︸

classification loss

+λ · V (fθ(x), fθ(x
adv))︸ ︷︷ ︸

vulnerability suppression loss

LM = argmin
M

E(x,y)∼D

(
max

δ∈B(x,ε)
L(θ �M,x+ δ,y)

)
(6)

where β is the coefficient determining the strength of the adversarial classification loss and λ is the
coefficient determining the strength of the vulnerability suppression loss. We now introduce our
proposed method Adversarial neural pruning for Beta Bernoulli dropout (Lee et al., 2019) based on
our complete Algorithm 1. We emphasize that our proposed method can be extended to any existing
or new sparsification method in a similar way.

Adversarial beta bernoulli dropout. Beta Bernoulli Dropout (Lee et al., 2019) learns to set the
dropout rate by generating the dropout mask from sparsity-inducing beta-Bernoulli prior for each
neuron. Let W be a parameter of neural network layer with K channels and Z = {z1, . . . , zn}
be the mask sampled from the finite-dimensional beta-Bernoulli prior to be applied for the n-th
observation xn. The goal is to compute the posterior distribution p(W,Z,π|D) and we approximate
this posterior using an approximate variational distribution q(W,Z,π|X) of known parametric form.
We conduct computationally efficient point-estimate for W to get the single value Ŵ, with the
weight decay regularization from the zero-mean Gaussian prior. For π, we use the Kumaraswamy
distribution (Kumaraswamy, 1980) with parameters a and b. Using the Stochastic Gradient Variational
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Algorithm 1 Adversarial Neural Pruning
1: Input: Dataset D, trained model f(θ,X,Y), mask parameters M
2: for number of training iterations do
3: for minibatch B = {x1, . . . ,xm} ⊂ D do
4: Generate adversarial examples {x1

adv, . . . ,x
m
adv} from the clean examples {x1, . . . ,xm} using PGD

attack in Equation 5 from the pruned state of network f(θ �M,X,Y):
5: Optimize the weights θ and the mask parameters M for the network in Equation 6 using gradient

descent.
6: end for
7: end for
8: Return the pruned network.

Bayes (SGVB) framework (Kingma et al., 2015), we can then get the final loss LM as:

LM =

N∑
n=1

Eq[log p(yn|f(xadv
n ;Ŵ))]−DKL[q(Z;π)||p(Z|π)]

DKL[q(Z,π)||p(Z,π)] =

K∑
k=1

{
ak − α/K

ak

(
−γ −Ψ(bk)− 1

bk

)
+ log

akbk
α/K

− bk − 1

bk

} (7)

where γ is Euler-Mascheroni constant, Ψ(.) is digamma function. The first term in the loss measures
the log-likelihood of the adversarial samples w.r.t. q(Z;π) and the second term regularizes q(Z;π)
so it doesn’t deviate too much from the prior distribution. We use ANP to refer to Adversarial
Beta Bernoulli dropout for the rest of our paper. The results for Adversarial Variational information
bottleneck (Dai et al., 2018) and detailed derivation of Equation 7 are deferred to the appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. 1) MNIST. This dataset (LeCun, 1998) contains 60,000 28 × 28 grey scale images of
handwritten digits for training example images, where there are 5,000 training instances and 1,000
test instances per class. As for the base network, we use LeNet 5-Caffe 1 for this dataset.
2) CIFAR-10. This dataset (Krizhevsky, 2012) consists of 60,000 images sized 32× 32, from ten
animal and vehicle classes. For each class, there are 5,000 images for training and 1,000 images for
test. We use VGG-16 (Simonyan & Zisserman, 2015) for this dataset with 13 convolutional and two
fully connected layers with pre-activation batch normalization and Binary Dropout.
3) CIFAR-100. This dataset (Krizhevsky, 2012) also consists of 60,000 images of 32× 32 pixels as
in CIFAR-10 but has 100 generic object classes instead of 10. Each class has 500 images for training
and 100 images for test. We use VGG-16 (Simonyan & Zisserman, 2015) similar to CIFAR-10 as the
base network for this dataset.

Baselines and our model. 1) Standard. The base convolution neural network.
2) Bayesian Pruning (BP). The base network with beta-bernoulli dropout (Lee et al., 2019).
3) Adversarial Training (AT). The adversarial trained network (Madry et al., 2018).
4) Adversarial Neural Pruning (ANP). Adversarial neural pruning with beta-bernoulli dropout.
4) Adversarial Training with vulnerability suppression (AT-VS). The adversarial trained network
regularized with vulnerability suppression loss.
5) Adversarial Neural Pruning with vulnerability suppression (ANP-VS). The adversarial neural
pruning network regularized with vulnerability suppression loss.

Evaluation setup. We report the clean accuracy, vulnerability metric (Equation 2) and accuracy on
adversarial examples generated from l∞ white box and black box attack (Papernot et al., 2016) using
an adversarial trained full network for ANP and the standard base network for standard bayesian
compression method. All models and algorithms are implemented using the Tensorflow library (Abadi
et al., 2016). For the reproduction of results, we list the hyper-parameters in the appendix.

1https://github.com/BVLC/caffe/tree/master/examples/mnist
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Adversarial accuracy(%) Vulnerability

Model Clean
accuracy (%)

White box
attack

Black box
attack

White box
attack

Black box
attack

M
N

IS
T

Standard 99.29±0.02 0.00±0.0 8.02±0.9 0.129±0.001 0.113±0.000

BP 99.34±0.05 0.00±0.0 12.99±0.5 0.091±0.001 0.078±0.001

AT 99.14±0.02 88.03±0.7 94.18±0.8 0.045±0.001 0.040±0.000

AT-VS (ours) 98.98±0.07 89.50±0.1 (+1.67%) 95.16±0.4 (+1.04%) 0.022±0.000 (-51.11%) 0.020±0.002 (-50.00%)
ANP (ours) 98.67±0.07 89.12±0.5 (+1.24%) 94.83±0.5 (+0.69%) 0.020±0.002 (-55.56%) 0.019±0.001 (-52.50%)
ANP-VS (ours) 99.05±0.08 89.89±0.6 (+2.11%) 95.24±0.8 (+1.13%) 0.014±0.000 (-68.89%) 0.013±0.002 (-67.50%)

C
IF

A
R

-1
0 Standard 92.65±0.1 12.02±0.7 40.89±0.9 0.078±0.001 0.066±0.001

BP 93.00±0.2 13.36±0.6 39.14±0.5 0.037±0.000 0.033±0.001

AT 87.37±0.3 48.93±0.5 63.61±0.8 0.051±0.001 0.047±0.002

AT-VS (ours) 87.89±0.1 51.52±0.2 (+5.29%) 66.60±0.3 (+4.70%) 0.024±0.001 (-52.94%) 0.023±0.001 (-51.06%)
ANP (ours) 88.74±0.1 55.31±0.3 (+13.04%) 70.30±0.9 (+10.52%) 0.022±0.000 (-56.86%) 0.020±0.001 (-57.44%)
ANP-VS (ours) 88.95±0.3 56.16±0.3 (+14.78%) 70.70±0.2 (+11.15%) 0.017±0.000 (-66.67%) 0.016±0.000 (-65.96%)

C
IF

A
R

-1
00 Standard 67.10±0.2 2.95±0.1 15.90±0.2 0.135±0.005 0.111±0.003

BP 69.08±0.3 3.54±0.1 17.07±0.3 0.066±0.001 0.057±0.000

AT 56.43±0.3 18.34±0.4 33.39±0.1 0.077±0.004 0.072±0.001

AT-VS (ours) 57.14±0.5 19.22±0.2 (+4.80%) 33.91±0.2 (+1.56%) 0.072±0.001 (-6.49%) 0.039±0.002(-45.83%)
ANP (ours) 57.80±0.3 21.29±0.4 (+16.08%) 36.27±0.3 (+8.63%) 0.037±0.003 (-51.94%) 0.032±0.002 (-55.56%)
ANP-VS (ours) 57.38±0.4 21.92±0.3 (+19.52%) 37.84±0.3 (+13.32) 0.035±0.001 (-54.55%) 0.030±0.003 (-58.33%)

Table 1: Comparison of generalization and robustness for MNIST on Lenet-5-Caffe, CIFAR-10 and CIFAR-100
on VGG-16 architecture under l∞-PGD attack. All the values are measured by computing mean and standard
deviation across 3 trials upon randomly chosen seeds, respectively. The best results are highlighted in bold and
the gain is shown over the base adversarial trained model.

Epsilon (ε) # Iterations

0.01 0.03 0.05 0.07 100 200 500 1000

C
IF

A
R

-1
0

Standard 37.95±0.8 12.02±0.6 3.83±0.5 1.41±0.1 11.99±0.4 11.93±0.7 11.91±0.3 11.87±0.3

BP 40.25±0.5 13.36±0.6 3.97±0.1 1.48±0.1 13.30±0.5 13.24±0.3 13.20±0.2 13.22±0.3

AT 64.92±0.4 48.93±0.5 34.54±0.3 23.01±0.4 48.80±0.4 48.78±0.5 48.79±0.3 48.75±0.2

AT-VS (ours) 67.66±0.3 51.42±0.2 36.49±0.1 23.79±0.1 51.45±0.2 51.47±0.1 51.46±0.2 51.43±0.1

ANP (ours) 71.67±0.4 55.31±0.3 39.40±0.2 26.37±0.5 55.38±0.3 55.39±0.1 55.44±0.2 55.40±0.2

ANP-VS (ours) 72.17±0.6 56.16±0.3 40.89±0.4 27.88±0.5 56.16±0.3 56.13±0.4 56.14±0.2 56.12±0.3

C
IF

A
R

-1
00

Standard 11.11±0.1 2.95±0.1 0.99±0.0 0.38±0.0 2.88±0.1 2.87±0.2 2.87±0.1 2.85±0.1

BP 13.53±0.7 3.54±0.3 1.01±0.1 0.44±0.0 3.44±0.3 3.48±0.2 3.43±0.2 3.44±0.1

AT 30.18±0.4 18.34±0.4 10.02±0.3 5.66±0.2 18.33±0.3 18.30±0.2 18.29±0.1 18.27±0.1

AT-VS (ours) 32.30±0.6 19.22±0.2 10.75±0.5 5.94±0.3 19.21±0.3 19.20±0.1 19.20±0.2 19.19±0.2

ANP (ours) 34.52±0.2 21.29±0.1 11.83±0.2 6.67±0.1 21.21±0.2 21.18±0.1 21.19±0.2 21.18±0.1

ANP-VS (ours) 35.36±0.1 21.92±0.3 12.72±0.1 7.17±0.3 21.89±0.3 21.85±0.3 21.84±0.2 21.85±0.2

Table 2: Adversarial accuracy of CIFAR-10 and CIFAR-100 for VGG-16 architecture under l∞-PGD
white box attack for different epsilon values (ε) with perturbation per step of (0.007), 40 total attack
steps and different PGD iterations with ε = 0.03 and perturbation per step of (0.007).

4.2 COMPARISON OF ROBUSTNESS AND GENERALIZATION

Evaluation on MNIST. We evaluate our Lenet 5-Caffe defense model for MNIST with similar attack
parameters as in Madry et al. (2018): total adversarial perturbation of 76.5/255 (0.3), perturbation per
step of 2.55/255 (0.01) and 40 total steps with random restarts in Table 1. First observe that AT-VS
achieves significantly improved robustness compared to the original AT model. The standard Bayesian
pruning method achieves the best generalization and marginally improve robustness in comparison to
the standard-base model but they are not able to defend against the adversarial perturbation. ANP-VS
outperforms all the baselines, achieving 68% reduction in vulnerability with 2% improvement in
adversarial accuracy under both white box and black box attacks.

Evaluation on CIFAR-10 and CIFAR-100. Compared with MNIST, CIFAR-10 and CIFAR-100
are much more difficult tasks for classification and adversarial robustness. Our goal here is not
just to achieve state-of-the-art robustness but to also compare the the generalization capabilities of
various training methods. We use total adversarial perturbation of (0.03), perturbation per step of
(0.007), 10 total attack steps for training and 40 total steps with random restarts for evaluating the
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Figure 3: Comparison of clean and adversarial accu-
racy for adversarial examples generated from white-
box and black-box attack for different sparsity levels
for Top VGG-16 on CIFAR10 Bottom VGG-16 on
CIFAR100.

Adv. accuracy(%) Vulnerability

Model Clean
acc.(%)

White
box

Black
box

White
box

Black
box

M
N

IS
T

AT BNN 99.16±0.05 88.44±0.4 94.87±0.2 0.045±0.002 0.023±0.001

Pretrained AT 99.18±0.06 88.26±0.6 94.49±0.7 0.043±0.001 0.038±0.002

AT-VS (ours) 98.98±0.07 89.50±0.1 95.16±0.4 0.022±0.000 0.020±0.002

ANP (ours) 98.67±0.07 89.12±0.5 94.83±0.5 0.020±0.002 0.019±0.001

ANP-VS (ours) 99.05±0.08 89.89±0.6 95.24±0.8 0.014±0.000 0.013±0.002

C
IF

A
R

-1
0 AT BNN 86.54±0.6 51.59±0.6 64.20±0.7 0.044±0.001 0.038±0.002

Pretrained AT 87.50±0.4 52.25±0.7 66.10±0.8 0.041±0.002 0.036±0.001

AT-VS (ours) 87.89±0.1 51.52±0.2 66.60±0.3 0.024±0.001 0.023±0.001

ANP (ours) 88.74±0.1 55.31±0.3 70.30±0.9 0.022±0.000 0.020±0.001

ANP-VS (ours) 88.95±0.3 56.16±0.3 70.70±0.2 0.017±0.000 0.016±0.000

C
IF

A
R

-1
00

AT BNN 53.21±0.7 19.40±0.6 30.38±0.2 0.078±0.002 0.070±0.001

Pretrained AT 57.14±0.9 19.86±0.6 35.42±0.4 0.071±0.001 0.065±0.002

AT-VS (ours) 57.14±0.5 19.22±0.2 33.91±0.2 0.072±0.001 0.039±0.002

ANP (ours) 57.80±0.3 21.29±0.4 36.27±0.3 0.037±0.003 0.032±0.002

ANP-VS (ours) 57.38±0.4 21.92±0.3 37.84±0.3 0.035±0.001 0.030±0.003

Table 3: Comparison of clean and adversarial accuracy
for adversarial examples generated from white-box and
black-box attack to analyze the importance of individual
components for and Lenet-5 on MNIST and VGG-16 on
CIFAR10 and CIFAR100 datasets.

CIFAR-10 and CIFAR-100 datasets. The results for both CIFAR-10 and CIFAR-100 are summarized
in Table 1. AT-VS improves the robustness of AT by 5% and vulnerability by 52% approximately.
However, ANP without VS largely outperforms AT-VS showing the effectiveness of adversarial
pruning over regularization on the distortion, as it can drop features with high vulnerability. ANP-VS
achieves state of the art robustness for CIFAR-10 and CIFAR-100 for both white-box and black-box
attack with 14.78% and 21.92% improvement in adversarial accuracy along with 65.96% and 58.33%
reduction in vulnerability as compared to standard adversarial training for CIFAR-10 and CIFAR-100,
respectively with significant improved clean accuracy.

We also consider various numbers of PGD steps and different epsilon values. It has been shown that
for certain defenses the robustness decreases as the number of PGD steps are increased (Engstrom
et al., 2018). Table 2 shows the results for different l∞ epsilon values and PGD iterations up to 1000.
It can be observed that compared to AT, all our methods achieve better robustness across all the
l∞-epsilon values and PGD iterations, with ANP-VS outperforming all the competing methods on
most adversaries. This confirms that even if the attacker uses greater resources to attack our model,
the effect is negligible.

4.3 ROBUSTNESS AND SPARSITY

Our adversarial neural pruning method could be useful when we want to obtain a lightweight yet
robust network, for its deployment to computation and memory-limited devices. To show that we can
achieve both goals at once, we evaluate the defense performance of ANP at various sparsity levels
in Figure 3. We experiment with different scaling coefficient by scaling the KL term in ELBO in
Equation 7 to obtain architectures with different levels of sparsity, whose details can be found in the
appendix.

ANP leads to 88% reduction in memory footprint while maintaining similar level of robustness. We
observe that ANP outperforms adversarial training up to a sparsity level of 80% for both CIFAR-10
and CIFAR-100 after which there is a decrease in the robustness and the clean accuracy. The results
are not surprising, as it is an overall outcome of the model capacity reduction and the removal of the
robust features.

We further compare ANP with another baseline PAT where we first perform bayesian pruning, freeze
the dropout mask and then perform adversarial training. It can be observed that PAT slightly improves
the adversarial robustness but loses on clean accuracy. This proves the fact just naive approach of
pruning over adversarial training can hurt performance. This result confirms the effectiveness of our
method as a defense mechanism. The distributions of neurons and memory efficiency for various
datasets can be seen in the appendix.
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Figure 4: Top: Visualization of the vulnerability of the latent-features with respect to the input pixels for
various datasets. Bottom: Histogram of vulnerability of the features for the input layer for CIFAR-10 with the
number of zeros shown in orange color.

Figure 5: Comparison of loss landscapes for various methods. We see that adversarial neural pruning behaves
similar to adversarial training and results in a much smooth and flattened loss surface compared to adversarial
training. The z axis represents the loss projected along two random directions.

4.4 FURTHER ANALYSIS ON DEFENSE PERFORMANCE

Analysis of individual components. We first individually dissect the effectiveness of different
components in adversarial neural pruning: Pretrained model for adversarial robustness, bayesian
component in bayesian pruning, we conduct a series of ablation experiments with adversatrial training
on a pretrained model (Pretrained AT, Hendrycks et al. 2019) and adversarial bayesian neural network
(AT BNN, Liu et al. 2019) in Table 3. The results illustrate that both the methods individually improve
the robustness of the model. By combining pretraining and bayesian component, our final algorithm
exhibits significant improvement across both the individual components.

Vulnerability analysis. We next visualize the vulnerability of the latent-feature space. Figure 4
shows the vulnerability for each image for various set of datasets and the vulnerability distribution for
all the features of the input layer for CIFAR-10. The results clearly show that the latent-features of the
standard model are the most vulnerable, and the vulnerability decreases with the adversarial training
and further suppressed by half with adversarial neural pruning. Further, the latent features of our
proposed method align much better with the human perception which also results in the interpretable
gradients as observed in the previous work (Tsipras et al., 2019; Kim et al., 2019). The bottom row of
Figure 4 shows the histogram of the feature vulnerability defined in Equation 1 for various methods.
We consistently see that standard Bayesian pruning zeros out some of the distortions, and adversarial
training reduces the distortion level of all the features. On the other hand, adversarial neural pruning
does both, with the largest number of features with zero distortion and low distortion level in general.
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Loss landscape visualization. We further visualize the loss surface of the baseline models and
network obtained using our adversarial pruning technique in Figure 5. We vary the input along a
linear space defined by the sign of gradient where x and y-axes represent the perturbation added
in each direction and the z-axis represents the loss. The loss is highly curved in the vicinity of the
data point x for the standard networks which reflects that the gradient poorly models the global
landscape. On the other hand, we observe that both sparsity and adversarial training make the loss
surface smooth, with our model obtaining the most smooth surface.

5 RELATED WORK

Adversarial robustness. Since the literature on adversarial robustness of neural networks is vast, we
only discuss some of the most relevant studies. Large number of defenses (Papernot et al., 2015a;
Xu et al., 2017a; Buckman et al., 2018; Dhillon et al., 2018; Song et al., 2018; Wong & Kolter,
2018) have been proposed and consequently broken by more sophisticated attack methods (Carlini
& Wagner, 2016; Athalye et al., 2018; Uesato et al., 2018; Athalye & Carlini, 2018). One of the
most successful defense is adversarial training (Madry et al., 2018), in which the neural network is
trained to optimize the maximum loss obtainable using projected gradient descent over the region of
allowable perturbations. There has also been previous work which considered robust and vulnerable
features at the input level. Garg et al. (2018) establish a relation between adversarially robust features
and the spectral property of the geometry of the dataset and Gao et al. (2017) proposed to remove
unnecessary features in order to get robustness. Our work is different from these existing work in that
we consider and define the vulnerability at the latent feature level, which is more directly related to
model prediction.

Sparsification methods. Sparsification of neural networks is becoming increasingly important with
the increased deployments of deep network models to resource-limited devices. Simple heuristics-
based pruning methods based on removing weights with small magnitude (Ström, 1997; Collins &
Kohli, 2014; Han et al., 2015) have demonstrated high compression with minimal accuracy loss.
However elementwise sparsity does not yield practical speed-ups and Wen et al. (2016) proposed
to use group sparsity to drop a neuron or a filter, that will reduce the actual network size. Recently,
Bayesian and Information-theoretic approaches (Molchanov et al., 2017; Neklyudov et al., 2017; Dai
et al., 2018; Lee et al., 2019) have shown to yield high compression rates and accuracy while providing
theoretical motivation and connections to classical sparsification and regularization techniques.

Robustness and sparsity. The sparsity and robustness have been explored and modelled together in
various recent works. Guo et al. (2018) and Ye et al. (2018) analyze sparsity and robustness from a
theoretical and experimental perspective and demonstrate that appropriately higher sparsity leads
to a more robust model. In contrary, Wang et al. (2018) derived opposite conclusions showing that
robustness decreases with increase in sparsity. On the contrary, we sparsify networks while explicitly
targeting for robustness, as we learn the pruning (dropout) mask to minimize loss on adversarial
examples.

6 CONCLUSION

We propose a novel adversarial neural pruning and vulnerability suppression loss, as a defense mech-
anism to achieve adversarial robustness as well as a means of achieving a memory and computation-
efficient deep neural networks. We observe that the latent features of deep networks have a varying
degree of distortion/robustness to the adversarial perturbations to the input and formally defined the
vulnerability and robustness of a latent feature. This observation suggests that we can increase the
robustness of the model by pruning out vulnerable latent features and by minimizing the vulnerability
of the latent features, we show that sparsification thus leads to certain degree of robustness over
the base network for this obvious reason. We further propose a Bayesian formulation that trains
the pruning mask in an adversarial training, such that the obtained neurons are beneficial both for
the accuracy of the clean and adversarial inputs. Experimental results on a range of architectures
with multiple datasets demonstrate that our adversarial pruning is effective in improving the model
robustness. Further qualitative analysis shows that our method obtains more interpretable latent
features compared to standard counterparts, suppresses feature-level distortions in general while
zeroing out perturbations at many of them, and obtains smooth loss surface.
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A ADVERSARIAL BETA BERNOULLI DROPOUT

In this section, we prove the Equation 7 for beta bernoulli dropout. Let W be the parameters for the
neural network and let zn ∈ {0, 1}K be the mask sampled from the finite-dimensional beta-Bernoulli
prior to be applied for the n-th observation xn. The generative process of the bayesian neural network
can be modelled as:

W ∼ N(0, λI), π ∼
K∏
k=1

beta(πk;α/K, 1)

zn|π ∼
K∏
k=1

Ber(zn,k;πk),
∼

Wn = zn �W

(8)

The goal is to compute the posterior distribution p(W,Z,π|D) and we approximate this posterior
using an approximate variational distribution q(W,Z,π|X) of known parametric form. We conduct
computationally efficient point-estimate for W to get the single value Ŵ, with the weight decay
regularization arising from the zero-mean Gaussian prior. For π, we use the Kumaraswamy distribu-
tion (Kumaraswamy, 1980) with parameters a and b. and zk is sampled by reparametrization with
continuous relaxation following Lee et al. (2019):

q(πk; ak, bk) = akbkπ
ak−1
k (1− πakk )bk−1

zk = sgm

(
1

τ

(
log

πk
1− πk

+ log
u

1− u

)) (9)

where τ is a temperature continuous relaxation, u ∼ unif [0, 1], and sgm(x) = 1
1+e−x . The KL-

divergence between the prior and the variational distribution in closed form can then be defined as
follows Nalisnick & Smyth (2016); Lee et al. (2019):

DKL[q(Z,π)||p(Z,π)] =

K∑
k=1

{
ak − α/K

ak

(
−γ −Ψ(bk)− 1

bk

)
+ log

akbk
α/K

− bk − 1

bk

}
(10)

where γ is Euler-Mascheroni constant and Ψ(.) is the digamma function. We can use Stochastic
Gradient Variational Bayes (SGVB) Kingma et al. (2015) to minimize the KL divergence between
the variational distribution q(Z;π) of known parametric form and the true posterior p(Z|π). As we
know from the SGVB framework minimizing the KL is equal to maximizing the evidence lower
bound which can be done as follows:

L =

N∑
n=1

Eq[log p(yn|f(xadv
n ;Ŵ))]−DKL[q(Z;π)||p(Z|π)] (11)

where the first term measures the log-likelihood of the adversarial samples w.r.t. q(Z;π) and the
second term regularizes q(Z;π) so it doesn’t deviate too much from the prior distribution.

B ADVERSARIAL VARIATIONAL INFORMATION BOTTLENECK

We further extend the idea of Adversarial Neural Pruning to variational information bottleneck.
Variational information bottleneck Dai et al. (2018) uses information theoretic bound to reduce the
redundancy between adjacent layers. Consider a distribution D of N i.i.d samples (x,y) input to a
neural network with L layers with the network hidden layer activations as {hi}Li=1 where hi ∈ Rri .
Let p(hi|hi−1) define the conditional probability and I(hi;hi−1) define the mutual information
between hi and hi−1 for every hidden layer in the network. For every hidden layer hi, we would
like to minimize the information bottleneck Tishby et al. (2000) I(hi;hi−1) to remove interlayer
redundancy, while simultaneously maximizing the mutual information I(hi;y) between hi and the
output y to encourage accurate predictions of adversarial examples. The layer-wise energy Li can be
written as:

Li = γiI(hi;hi−1)− I(hi;y) (12)
where γ ≥ 0 is a coefficient that determines the strength of the bottleneck that can be defined as the
degree to which we value compression over robustness.
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The output layer approximates the true distribution p(y|hL) via some tractable alternative q(y|hL).
Let xadv be the adversarial example for l∞-bounded perturbations. i.e. 4 = {x + δ = ||δ||∞ ≤ ε}
where δ is the added perturbation from the set of allowed perturbations for each example. Using
variational bounds, we can invoke the upper bound as:

Li = γiEhi−1∼p(hi−1)[KL[p(hi|hi−1)||q(hi)]]− E{x,y}∼D,h∼p(h|xadv)[log q(y|hL)] ≥ Li (13)

Li in Equation 13 is composed of two terms, the first is the KL divergence between p(hi|hi−1) and
q(hi), which approximates information extracted by hi from hi−1 and the second term represents
constancy with respect to the adversarial data distribution. In order to optimize Equation 13, we can
define the parametric form for the distributions p(hi|hi−1) and q(hi) as follow:

p(hi|hi−1) = N (hi; fi(hi−1)� µi, diag[fi(hi−1)2 � σ2
i ]

q(hi) = N (hi; 0, diag[ξi])
(14)

where ξi is an unknown vector of variances that can be learned from data. The gaussian assumptions
help us to get an interpretable, closed-form approximation for the KL term from Equation 13, which
allows us to directly optimize ξi out of the model.

Ehi−1∼p(hi−1)[KL[p(hi|hi−1)||q(hi)]] =
∑
j

[
log

(
1 +

µ2
i,j

σ2
i,j

)]
(15)

The final variational information bottleneck can thus be obtained using Equation 15:

L =

L∑
i=1

γi

ri∑
j=1

[
log

(
1 +

µ2
i,j

σ2
i,j

)]
− E{x,y}∼D,h∼p(h|xadv)[log q(y|hL)] (16)

C EXPERIMENT SETUP

In this section, we describe our experimental settings for all the experiments. We follow the two-step
pruning procedure where we pretrain all the networks using the standard-training procedure followed
by network sparsification using various sparsification methods. We train each model with 200 epochs
with a fixed batch size of 64 and show the results averaged over five runs.

Our pretrained standard Lenet 5-Caffe baseline model reaches over 99.29% accuracy on MNIST and
VGG-16 reaches 92.65% and 67.1% on CIFAR-10 and CIFAR-100 respectively after 200 epochs.
We use Adam Kingma & Ba (2015) with the learning rate for the weights to be 0.1 times smaller
than those for the variational parameters as in Neklyudov et al. (2017); Lee et al. (2019). For
Beta-Bernoulli Dropout, we set α/K = 10−4 for all the layers and prune the neurons/filters whose
expected drop probability are smaller than a fixed threshold 10−3 as originally proposed in the paper.
For Beta-Bernoulli Dropout, we scaled the KL-term in Equation 11 by different values of trade-off
parameter γ where γ ∈ {1, 4, 8, 10, 12} for Lenet-5-Caffe and γ ∈ {1, 2, 4, 6, 8} for VGG-16. For
Variational Information Bottleneck (VIBNet), we tested with trade-off parameter γ in Equation 16
where γ ∈ {10, 30, 50, 80, 100} for Lenet-5-Caffe with MNIST dataset and γ ∈ {10−4, 1, 20, 40, 60}
for VGG-16 with CIFAR-10 and CIFAR-100 dataset.

D MORE EXPERIMENTAL RESULTS

Due to the length limit of our paper, some results are illustrated here. We validate all the models with
respect to three metrics for compression ratio and model complexity: i) Run-time memory footprint
(Memory) - The ratio of space for storing hidden feature maps during run-time in pruned-network
versus original model. ii) Floating point operations (xFLOPs) - The ratio of the number of floating
point operations for original model versus pruned-network. iii) Model size (Sparsity) - The ratio of
the number of zero units in original model versus compressed network. All the values are measured
by computing mean and standard deviation across 3 trials upon randomly chosen seeds, respectively.
We also report the clean accuracy, vulnerability metric (Equation 2) and accuracy on adversarial
examples generated from l∞ white box and black box attack (Papernot et al., 2016).
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Table Appendix-1: Comparison of different methods for MNIST on Lenet-5-Caffe, CIFAR-10 and CIFAR-100
on VGG-16 architectures. We report compression in terms of Floating Point Operations (FLOPs), memory
and sparsity, robustness in terms of accuracy (average and stddev) and vulnerability on adversarial examples
generated from white-box and black-box attack.

Adversarial accuracy (%) Vulnerability

Model Clean
acc.(%)

xFLOPs Memory (%) Sparsity (%) White
box

Black
box

White
box

Black
box

M
N

IS
T

Standard 99.29 1.0 100.0 0.00 0.00 8.02 0.129 0.113
BP (BBD) 99.34 4.14 9.68 83.48 0.00 12.99 0.091 0.078
BP (VIB) 99.32 4.34 9.39 82.46 5.66 15.47 0.074 1.265
AT 99.14 1.0 100.0 0.00 88.03 94.18 0.045 0.040
AT BNN 99.16 0.5 200.0 0.00 88.44 94.87 0.045 0.023
Pretrained AT 99.18 1.0 100.0 0.00 88.26 94.49 0.043 0.038

AT-VS (ours) 98.98 1.0 100.0 0.00 89.50 95.16 0.022 0.020
ANP (BBD) (ours) 98.67 9.77 6.69 84.45 89.12 94.83 0.020 0.019
ANP (VIB) (ours) 98.86 4.87 10.06 78.48 89.01 94.94 0.017 0.015
AT-VS (BBD) (ours) 99.05 7.30 8.59 78.91 89.89 95.24 0.014 0.013

C
IF

A
R

-1
0

Standard 92.65 1.0 100.0 0.00 12.02 40.89 0.078 0.066
BP (BBD) 93.00 2.36 12.39 75.82 13.36 39.14 0.037 0.033
BP (VIB) 92.73 2.38 12.28 76.35 12.35 41.32 0.035 0.032
AT 87.37 1.0 100.0 0.00 48.93 63.61 0.051 0.047
AT BNN 86.54 0.5 200.0 0.00 51.59 64.20 0.044 0.038
Pretrained AT 87.50 1.0 100.0 0.00 52.25 66.10 0.041 0.036

AT-VS (ours) 87.89 1.0 100.0 0.00 51.52 66.60 0.024 0.023
ANP (BBD) (ours) 88.74 2.33 12.46 76.39 55.31 70.30 0.022 0.020
ANP (VIB) (ours) 87.41 2.37 12.15 76.50 52.13 67.95 0.025 0.024
ANP-VS (BBD) (ours) 88.95 2.43 12.09 77.02 56.16 70.70 0.017 0.016

C
IF

A
R

-1
00

Standard 67.10 1.0 100.0 0.00 2.95 15.90 0.135 0.111
BP (BBD) 69.08 1.93 18.87 63.05 3.54 17.07 0.066 0.057
BP (VIB) 69.09 1.95 18.46 63.84 2.73 19.53 0.084 0.073
AT 56.43 1.0 100.0 0.00 18.34 33.39 0.077 0.072
AT BNN 53.21 0.5 200.0 0.00 19.40 30.38 0.078 0.071
Pretrained AT 57.14 1.0 100.0 0.00 19.86 35.42 0.071 0.065

AT-VS (ours) 57.14 1.0 100.0 0.00 19.22 33.91 0.072 0.039
ANP (BBD) (ours) 57.80 2.00 16.87 66.63 21.29 36.27 0.037 0.032
ANP (VIB) (ours) 59.77 2.02 17.55 64.75 20.43 36.31 0.051 0.047
ANP-VS (BBD) (ours) 57.38 2.06 16.46 67.19 21.92 37.84 0.035 0.030

(a) (b) (c) (d) (e) (f) (g)

Figure D.1: Visualization of convolutional features of first layer of adversarial trained VGG-16 network with
CIFAR-100 dataset. b) - d) represents the vulnerable latent-feature with high vulnerability (vulnerable feature)
on b) clean example, c) Adversarial example d) Vulnerability (difference between clean and adversarial example)
e) - f) represents the vulnerable latent-feature with low vulnerability (robust feature) on e) clean example, f)
Adversarial example g) Vulnerability (difference between clean and adversarial example)

Table Appendix-1 also shows the results of Adversarial Neural Pruning with Variational Information
Bottleneck. We can observe that both ANP (BBD) and ANP (VIB) outperform the base adversarial
training for robustness of adversarial examples while also achieving memory and computation
efficiency. We emphasize that ANP can similarly be extended to any existing or future sparsification
method to improve performance.

Table Appendix-2 shows the number of units for all the baselines and our proposed method. Figure D.2
shows the histogram of the feature vulnerability for various datasets. We can consistently observe
that standard Bayesian pruning zeros out some of the distortions, adversarial training reduces the
distortion level of all the features and adversarial neural pruning does both, with the largest number
of features with zero distortion and low distortion level in general which confirms that our adversarial
neural pruning works successfully as a defense against adversarial attacks.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure D.2: Histogram of vulnerability of the features for the input layer for MNIST in the top row, CIFAR-10
in the middle and CIFAR-100 in the bottom with the number of zeros shown in orange color.

Table Appendix-2: Clean and adversarial accuracy for models trained with and without adversarial training
with flops, memory and sparsity percentage reduction.

Model No of neurons

M
N

IS
T

Standard 20 – 50 – 800 – 500
BP (BBD) 14 – 21 – 150 – 49
BP (VIB) 12 – 19 – 160 – 37
AT 20 – 50 – 800 – 500
ANP (BBD) 7 – 21 – 147 – 46
ANP (VIB) 10 – 23 – 200 – 53

C
IF

A
R

-1
0

Standard 64 – 64 – 128 – 128 – 256 – 256 – 256 – 512 – 512 – 512 – 512 – 512 – 512 – 512 – 512
BP (BBD) 57 – 59 – 127 – 101 – 150 – 71 – 31 – 41 – 35 – 10 – 46 – 48 – 16 – 16 – 25
BP (VIB) 49 – 56 – 106 – 92 – 157 – 74 – 26 – 43 – 32 – 10 – 39 – 40 – 7 – 7 – 13
AT 64 – 64 – 128 – 128 – 256 – 256 – 256 – 512 – 512 – 512 – 512 – 512 – 512 – 512 – 512
ANP (BBD) 42 – 57 – 113 – 96 – 147 – 68 – 25 – 37 – 27 – 9 – 39 – 40 – 13 – 13 – 12
ANP (VIB) 40 – 57 – 104 – 93 – 174 – 96 – 30 – 48 – 39 – 9 – 49 – 57 – 10 – 10 – 12

C
IF

A
R

-1
00

Baseline 64 – 64 – 128 – 128 – 256 – 256 – 256 – 512 – 512 – 512 – 512 – 512 – 512 – 512 – 512
BBD 62 – 64 – 128 – 123 – 244 – 203 – 84 – 130 – 95 – 18 – 152 – 157 – 32 – 32 – 101
VIB 52 – 64 – 119 – 116 – 229 – 179 – 83 – 99 – 71 – 17 – 107 – 110 – 12 – 11 – 49
Adv. Train 64 – 64 – 128 – 128 – 256 – 256 – 256 – 512 – 512 – 512 – 512 – 512 – 512 – 512 – 512
Adv. BBD 60 – 64 – 126 – 122 – 235 – 185 – 77 – 128 – 101 – 17 – 165 – 177 – 35 – 35 – 45
Adv. VIB 44 – 58 – 110 – 109 – 207 – 155 – 81 – 86 – 66 – 19 – 88 – 86 – 15 – 15 – 36

E FEATURES VISUALIZATION

One might also be curious about the representation of the robust and vulnerable features in the latent-
feature space. In this section, we visualize the robust and vulnerable features in terms of the definitions
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of robust and vulnerable features in the latent-feature space from our paper. Figure D.1 shows
the visualization of robust and vulnerable features in the latent space for adversarial training. It is
important to observe that adversarial training also contains features with high vulnerability (vulnerable
feature) and features with less vulnerability (robust feature) which align with our observation that
the latent features have a varying degree of susceptibility to adversarial perturbations to the input.
As future work, we plan to explore more effective ways to suppress perturbation at the intermediate
latent features of deep networks.
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