
Under review as a conference paper at ICLR 2019

DYNAMIC EARLY TERMINATING OF MULTIPLY AC-
CUMULATE OPERATIONS FOR SAVING COMPUTATION
COST IN CONVOLUTIONAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning has been attracting enormous attention from academia as well as in-
dustry due to its great success in many artificial intelligence applications. As more
applications are developed, the need for implementing a complex neural network
model on an energy-limited edge device becomes more critical. To this end, this
paper proposes a new optimization method to reduce the computation efforts of
convolutional neural networks. The method takes advantage of the fact that some
convolutional operations are actually wasteful since their outputs are pruned by the
following activation or pooling layers. Basically, a convolutional filter conducts a
series of multiply-accumulate (MAC) operations. We propose to set a checkpoint
in the MAC process to determine whether a filter could terminate early based on
the intermediate result. Furthermore, a fine-tuning process is conducted to recover
the accuracy drop due to the applied checkpoints. The experimental results show
that the proposed method can save approximately 50% MAC operations with less
than 1% accuracy drop for CIFAR-10 example model and Network in Network on
the CIFAR-10 and CIFAR-100 datasets. Additionally, compared with the state-of-
the-art method, the proposed method is more effective on the CIFAR-10 dataset
and is competitive on the CIFAR-100 dataset.

1 INTRODUCTION

In recent years, deep learning with deep neural network (DNN) has been a breakthrough solution
in machine learning. Its success has been demonstrated in many artificial intelligence (AI) applica-
tions, such as image classification (Krizhevsky et al. (2012)), face recognition (Learned-Miller et al.
(2016)), object detection (Redmon et al. (2016)), big data analysis (Gheisari et al. (2017)), medical
science (Litjens et al. (2017)), etc. Due to the high computational complexity, a DNN is usually im-
plemented on a powerful hardware device, such as a graphics processing unit workstation. However,
considering the diversity of AI applications, it is desirable to implement a neural network model on
an edge device which usually has limited hardware resources for saving power and cost.

To this end, many model compression and acceleration methods were proposed to compress neural
network models. Their common objective is to reduce the computational complexity and/or mem-
ory usage without significantly affecting the performance and accuracy. The existing methods have
been classified into four categories (Cheng et al.): (1) parameter pruning (Han et al. (2015a); Han
et al. (2015b)), (2) low-rank factorization (Jaderberg et al. (2014); Lebedev et al. (2014); Tai et al.
(2015)), (3) convolutional filter transformation (Szegedy et al. (2017)), and (4) knowledge distilla-
tion (Hinton et al. (2015)). The parameter pruning-based methods eliminate noncritical parameters
for simplifying models. The low-rank factorization-based methods exploit low-rank matrix approx-
imation to simplify convolutional filters. The convolutional filter transformation-based methods
transform filters based on equivariance properties to compress convolutional neural network (CNN)
models. The knowledge distillation-based methods train a compact neural network to mimic the
function of a large network with the distilled knowledge from the large network.

Most compression methods fixedly modify the structure of a model. However, the criticality of a
parameter or a filter heavily depends on the input data. A critical filter may become non-crucial
under different input cases. These static methods may not be comprehensive enough when con-

1

Under review as a conference paper at ICLR 2019

sidering diverse input data. Thus, in this paper, we propose a dynamic optimization method for
CNNs. The proposed method does not modify the structure of a model, but introduces a specific
multiply-accumulate (MAC) unit to reduce the MAC operations dynamically in the inference phase.

In a CNN, a convolutional layer is usually followed by an activation layer and a pooling layer. The
activation layer introduces non-linearity into the system. Rectified linear unit (ReLU) is the most
popular activation function, which applies f(x) = max(0, x) to rectify the feature maps from the
convolutional layer. Since negative values are changed to 0, the computation efforts of the filters that
output negative values in the convolutional layer can be seen as wasteful. Furthermore, a pooling
layer reduces the scale of the feature maps by extracting only significant data. The most common
pooling method, max pooling, preserves the data with the largest value. Similarly, if the output value
of a convolutional filter is not large enough to pass through the max pooling layer, the computation
efforts of the filter are wasteful as well.

Based on the observations, if we are able to detect in advance that a convolutional filter will output
a negative value, we can stop it early for saving computation efforts. A convolutional filter basically
conducts a series of multiply-accumulate (MAC) operations. Since the output is an accumulated
result, it could be feasible that using an intermediate result in the MAC process to predict the sign
of the output. Thus, we propose to determine whether a convolutional filter should continue or
terminate according to an intermediate result.

In the proposed optimization method, a convolutional filter is given a checkpoint. When the check-
point iteration is reached, we check the intermediate result of the MAC process. If the result is
less than 0, we stop the MAC process to save the remaining operations and output the intermediate
result directly; otherwise, the MAC process finishes all the MAC operations. Since saving the MAC
operations may affect the accuracy, we further fine-tune the optimized CNN to improve its accuracy
with the applied checkpoints.

Unlike the previous static optimization methods, which explicitly compress a CNN before the infer-
ence phase, the proposed method is dynamic. It determines the saved computation efforts during the
inference phase, and the saved efforts vary for different input data. Furthermore, unlike the previous
methods (Viola & Jones (2001); Teerapittayanon et al. (2016)) that terminate the whole network
and make a prediction directly at an early layer, the proposed method focuses on early stopping the
MAC processes in the convolutional filters. Basically, each input data still needs to go through the
whole network for making the prediction.

In the experiments, we apply the proposed method to CIFAR-10 example model1 (Jia et al. (2014))
and Network in Network (Lin et al. (2013)), with the CIFAR-10 and the CIFAR-100 datasets
(Krizhevsky (2009)). For CIFAR-10 example model, the results show that our method saves 50.22%
MAC operations with only 0.8% accuracy drop under the CIFAR-10 dataset, and saves 43.64%
MAC operations with only 0.09% accuracy drop under the CIFAR-100 dataset. For Network in
Network, our method saves 47.43% MAC operations with only 0.41% accuracy drop under the
CIFAR-10 dataset, and saves 47.73% MAC operations with only 0.58% accuracy drop under the
CIFAR-100 dataset. Furthermore, our method is competitive with the existing methods (He et al.
(2017); Li et al. (2016)). For the CIFAR-10 dataset, our method even saves more MAC operations
with less accuracy drop.

In summary, we propose a dynamic optimization method for CNNs, which reduces MAC operations
in the inference phase. It effectively saves the computation cost of a CNN with only a small effect
on the accuracy. Additionally, it allows a user to trade off the saved computation cost against the
accuracy drop.

The remainder of this paper is organized as follows: Section 2 reviews some background and related
works. Section 3 shows a motivational example and illustrates the key idea behind the proposed
method. Section 4 presents the proposed method. Section 5 shows the experimental results. Finally,
the conclusion is presented in Section 6.

1The CNN model is from http://caffe.berkeleyvision.org/gathered/examples/
cifar10.html

2

http://caffe.berkeleyvision.org/gathered/examples/cifar10.html
http://caffe.berkeleyvision.org/gathered/examples/cifar10.html

Under review as a conference paper at ICLR 2019

2 PRELIMINARIES

2.1 CNN AND CONVOLUTIONAL FILTER

CNNs have been extensively used in many AI fields, such as computer vision and natural language
processing. A CNN is a multi-stage model. In general, a stage is composed of a convolutional layer,
an activation layer and a pooling layer. The convolutional layer applies convolution operations to the
input feature maps. The following activation and pooling layers rectify the feature maps and reduce
their scale, and pass the outputs to the next stage. Additionally, one or multiple fully connected
layers are applied to the last few layers of a CNN.

Convolutional layers are the core of a CNN. A convolutional layer is made up of a set of learnable
filters and a filter is composed of weights and a bias. The functionality of a filter at the lth layer
can be mathematically formulated as EQ 1, where, K, W , and H are the depth, width, and height
of the filter, respectively. zl−1

p,q,k is an input from the l − 1th layer and hp,q,k is the corresponding
weight in the filter. Additionally, b is the bias. There are a total of H ×W ×K+1 MAC operations
for the filter to generate an output value. For convenience, we call the process of conducting the
H ×W ×K +1 MAC operations a MAC process. Depending on the size of the input feature maps,
a filter usually needs to conduct many MAC processes for generating the outputs.

u =

K−1∑
k=0

W−1∑
q=0

H−1∑
p=0

z l−1
p,q,khp,q,k + b (1)

Basically, the convolutional layers dominate the computation efforts of a CNN. Thus, we propose to
reduce the MAC operations for saving computation efforts.

2.2 RELATED WORKS

In recent years, many efforts have been devoted to simplifying the computational complexity of
CNNs. Most methods aim to simplify a CNN model by removing redundancies or noncritical pa-
rameters without affecting the overall accuracy.

The low-rank factorization-based methods approximate convolution operations by decomposing a
weight matrix into a product of low-rank matrices (Jaderberg et al. (2014); Lebedev et al. (2014);
Tai et al. (2015); Sainath et al. (2013); Kim et al. (2015); Chung & Shin (2016)). As a result, the
convolutional layers are simplified, but the filter count does not change.

Pruning parameters was initially to prevent a trained model from overfitting to the training dataset
(Hassibi & Stork (1993); LeCun et al. (1990)). However, researchers then observed that there may
exist redundant or noncritical parameters in a model. Thus, some works propose to eliminate con-
nections between layers by pruning small-magnitude weights (Han et al. (2015a); Han et al. (2015b);
Han et al. (2016)). However, the simplification does not necessarily reduce computation time and
the irregular sparsity in the convolutional layers requires specific implementation.

Instead of pruning weights, recent methods prune filters directly without introducing irregular spar-
sity (Li et al. (2016); He et al. (2017)). Li et al. propose to prune filters that are identified as
noncritical to the output accuracy (Li et al. (2016)). The method significantly reduces the compu-
tation efforts by removing whole filters and the corresponding feature maps. Furthermore, instead
of analyzing filter weights, the state-of-the-art method proposed by He et al. exploits redundancies
in feature maps to prune filters and feature maps, and reconstruct the following feature maps to the
next layer (He et al. (2017)).

Unlike the previous methods, the proposed method does not explicitly modify the structure of a
model. Since the criticality of a weight/filter may differ for different input feature maps, the pro-
posed method dynamically identifies the filters to be optimized based on the input feature maps.
Additionally, a weight fine-tuning process is used to avoid significant accuracy drop.

3

Under review as a conference paper at ICLR 2019

Table 1: Motivational example. Analysis of early terminating the filters at the first convolutional
layer of CIFAR-10 example model.

ith iteration 3 7 15 22 30 37 45 52 60 67
MACTN (%) 62.74 67.47 71.95 75.95 78.18 82.63 86.63 91.78 95.44 98.46
MACSV (%) 45.45 43.27 38.53 33.44 28.93 23.66 19.07 13.80 9.19 3.93

3 MOTIVATIONAL EXAMPLE

In a convolutional layer, a filter receives inputs from the previous layer and conducts a series of MAC
operations to generate outputs to the next layer. If an output value is not large enough, it could be
blocked by the following layers, and thus is not responsible for the CNN output. The key idea of the
proposed method is to use an intermediate result of a MAC process to determine whether the process
should stop and output the intermediate result directly, or it should complete the computation. If the
intermediate result is small enough, the output value has a higher probability to be blocked and
terminating the process can save MAC operations with little effect on the CNN output.

We conducted a simple experiment on the first convolutional layer of CIFAR-10 example model (Jia
et al. (2014)) with 1000 input images from the CIFAR-10 dataset (Krizhevsky (2009)) to explore the
feasibility of the idea. The first convolutional layer has 32 filters and each has a size of 5 × 5 × 3.
A filter’s MAC process consists of 76 MAC operations, i.e., 76 iterations. The extra 1 is for the
following bias. For each filter, we sort the weights in the decreasing order of magnitudes, so that
the MAC operation with a larger-magnitude weight is computed first. Table 1 shows the probability
that MAC processes with a negative intermediate result at the ith iteration truly output a negative
value (MACTN), and the percentage of saved MAC operations if the processes with a negative
intermediate result are terminated accordingly (MACSV).

As expected, MACTN increases and MACSV decreases as i increases. That is, if we decide
whether a MAC process should stop or not at an earlier iteration, we can save more MAC operations,
but we have a lower probability to correctly terminate the process. However, from Table 1, it is
observed that even we make a decision at the 3rd iteration, the probability that the decision is correct
is more than 60%. The probability is acceptable, especially when we consider the possibility that
the effect of a wrong decision might be blocked by the following layers. Therefore, the strategy of
early terminating a MAC process based on an intermediate result should be promising.

Next, our objective is to develop a method to determine at which iteration the intermediate result
should be considered for maximizing the saved MAC operations with minimal accuracy drop.

4 PROPOSED METHOD

The proposed method saves MAC operations by taking the advantage of the fact that the computa-
tions in some filters could be wasteful, since the results might be set to 0 or blocked by the following
activation or max pooling layers. In the following subsections, we first present the procedure of the
proposed two-step method. Then, we analyze the method and discuss the ideas behind it.

In the first step, we determine the checkpoint of each filter, i.e., the iteration at which we check the
intermediate result. Then, in the second step, we fine-tune the model with the applied checkpoints.
After optimization, each filter has a checkpoint. During the inference phase, when a MAC process
reaches the checkpoint iteration, we check the intermediate result. If it is less than 0, we terminate
the process and the filter directly outputs the intermediate result; otherwise, it completes the MAC
process.

4.1 STEP 1: SORT WEIGHTS AND SET UP CHECKPOINTS

Given a pre-trained CNN model, we first sort the weights of each filter in the decreasing order of
magnitudes. Then, we determine the checkpoints based on a user-defined parameter et, which spec-
ifies the allowed maximum accuracy drop for the training dataset before Step 2. To set a checkpoint,
we need to test all the training data for estimating the accuracy drop it causes. It would be very
time-expensive to set the checkpoint of each filter one by one, especially for a large network with

4

Under review as a conference paper at ICLR 2019

numerous filters. Thus, we use a compromise method that determines the checkpoints layer by layer.
That is, all the filters in the same layer share a common checkpoint.

We iteratively select a convolutional layer and determine its checkpoint starting from the center to
the outer layers. Additionally, for two outer layers that have the same distance from the centre, we
first consider the layer nearer the input. For each selected layer in which a MAC process of a filter
has n MAC iterations, the checkpoint could be the bn ∗ 5%cth iteration or the bn ∗ 32%cth iteration,
or there is no checkpoint. We first try the checkpoint of the bn ∗ 5%cth iteration. If the resultant
accuracy drop for the training data exceeds et, we then try the bn∗32%cth iteration. However, if the
resultant accuracy drop still exceeds et, we do not set up a checkpoint to the layer and then consider
the next layer. The pseudo code of the process is shown in Algorithm 1.

Algorithm 1 Accuracy-aware checkpoint setup

Input: Pre-trained CNN model C with n convolutional layers L, training data D, and tolerable
accuracy drop et

Output: Optimized CNN model with checkpoints P = {p1, p2, ..., pn}
1: acc← measure accuracy of C for D
2: Initialize P and sort weights of each filter in C
3: for each layer li in L from the center to the outer layers do
4: for v in {5%, 32%} do
5: pi = v
6: accp ← measure accuracy of C with P for D
7: if acc− accp < et then
8: break
9: else

10: Undo pi
11: end if
12: end for
13: end for

When a filter applies a checkpoint, it changes the forward propagation step through the filter. Let us
use an example in Fig. 1 to illustrate the MAC process of a filter which is applied a checkpoint. First,
the weights and the corresponding inputs are sorted in the decreasing order of weight magnitudes.
Then, the MAC operations with larger weight magnitudes are conducted first, until the checkpoint
iteration is reached. If the intermediate result is less than 0, the MAC process terminates and outputs
the intermediate result directly; otherwise, it continues to complete all the MAC operations and
outputs the result.

4.2 STEP 2: FINE-TUNE PARAMETERS

1

filter

𝑧𝑙−1 ℎ

(𝑙 − 1)th layer

𝑧𝑙−1

…
…
…
..

3

…
…
…
..

∗∗

ℎ

Check

-6
15

9

1
7

4
1
-5
-12

𝑧′𝑙−1

…
…
…
..

…
…
…
..

∗

ℎ′

-6

15

9

1

7

4

1

-5

-12

3

Sort 𝑧𝑙−1 & ℎ
by |ℎ𝑖|

Compute

Compute or

skip

Figure 1: Example of illustrating the MAC process of
a filter with a checkpoint.

The optimization in Step 1 leads to ac-
curacy drop due to the saved MAC op-
erations. Thus, we further fine-tune the
model to fit the applied checkpoints. The
fine-tuning process is similar to the train-
ing process. The main difference is that
the fine-tuning process starts with the pre-
learned weights and applies the check-
points in the forward propagation.

The overall flow of the proposed method
is as follows: Given a pre-trained CNN
model C, the training data, and a user-
defined parameter et, we first sort the weights of each filter in C in the decreasing order of magni-
tudes. Then, we determine the checkpoint of each convolutional layer in C. The accuracy drop of
C due to the applied checkpoints cannot exceed et. Finally, we fine-tune C to recover its accuracy.

5

Under review as a conference paper at ICLR 2019

4.3 ANALYSIS

4.3.1 EARLY TERMINATING OF MAC PROCESSES

As mentioned above, the proposed method takes the advantage of the fact that many computations
of the convolutional filters are unnecessary, because only the positive and large enough outputs can
pass through the following activation and max pooling layers.

The functionality of a convolutional filter has been shown in EQ 1. By flattening the filter and
inserting a checkpoint into the cth iteration, EQ 1 can be rewritten as EQ 2.

u =

c−1∑
i=0

z l−1
i hi +

H∗W∗K−1∑
i=c

z l−1
i hi + b = ut +

H∗W∗K−1∑
i=c

z l−1
i hi + b (2)

In EQ 2,
∑c−1

i=0 z
l−1
i hi represents the intermediate result we use to determine whether the MAC

process should terminate early or not. Let ut denotes the intermediate result.

Next, let us consider the four possibilities of ut and u and the error matrix. (1) True positive: both
ut and u are positive. In this situation, the filter completes the MAC process and does not lead to any
error. (2) True negative: both ut and u are negative. In this situation, the filter terminates early and
we save (H ∗W ∗K − c) MAC operations without introducing any error. (3) False positive: ut is
positive, but u is negative. In this situation, the filter completes the MAC process without saving any
computation and introducing any error, because ut is positive. (4) False negative: ut is negative,
but u is positive. In this situation, although the filter saves (H ∗ W ∗ K − c) MAC operations,
it generates an erroneous output. After passing through the following activation layer, the error is∑K−1

k=0

∑W−1
q=0

∑H−1
p=0 z l−1

p,q,khp,q,k + b, i.e., u.

The four situations with the corresponding MAC operation counts and errors are summarized in
Table 2. Both the true negative and the false negative lead to MAC operation reduction, while the
false negative introduces an error of u.

Table 2: Error matrix analysis of the proposed method.

True Positive True Negative False Positive False Negative
Situation ut ≥ 0 and u ≥ 0 ut < 0 and u < 0 ut ≥ 0 and u < 0 ut < 0 and u ≥ 0
|MAC op.| H ×W ×K + 1 c+ 1 H ×W ×K + 1 c+ 1

Error 0 0 0 u

4.3.2 WEIGHT SORTING

In the proposed method, we determine whether a convolutional filter should terminate early accord-
ing to an intermediate result. The best-case scenario is that the intermediate result and the final result
have the same sign: both positive or both negative. To this end, we sort the weights in the decreasing
order of magnitudes before performing the MAC process. The MAC operation that results in a larger
magnitude would be conducted earlier.

Sorting weights is a straightforward idea, but it is very important in the proposed method. In the
motivational example in Table 1, we have a probability of more than 60% of making a correct
decision at the 3rd iteration. However, without weight sorting, the probability is approximately
50%.

4.3.3 CHECKPOINT SETUP

As mentioned above, we layer-wisely determine the checkpoints of the convolutional layers for
reducing computation efforts. Since the convolutional layers near the inputs deal with lower-level
features and the convolutional layers near the outputs have larger impacts on the outputs, they usually
have a smaller error tolerance. Thus, we set up checkpoints starting from the center to the outer
layers.

Furthermore, for a convolutional layer, it is impractical to test all the possible checkpoints and then
determine the most suitable one. Basically, a checkpoint closer to the beginning of the MAC process
leads to more MAC operation reduction, but a larger error. Thus, we empirically consider only two
checkpoints: the bn∗5%cth iteration and the bn∗32%cth iteration. Several previous works (Hinton

6

Under review as a conference paper at ICLR 2019

& Van Camp (1993); Giryes et al. (2016); Salimans & Kingma (2016)) show that the majority of
weight distributions in DNNs follow the Gaussian manner. Thus we use one standard deviation
region (68%) and two standard deviation region (95%) to determine the two checkpoint locations,
32% and 5%. Please note that although we consider only the two checkpoints, the proposed method
can be easily extended for more checkpoints.

4.3.4 PARAMETER FINE-TUNING

Due to the applied checkpoints, some filters might generate erroneous outputs, causing accuracy
drop. Parameter fine-tuning is a process to recover the accuracy by further training the model with
the applied checkpoints. Since the difference between the model output and the expected output
increases, the learnable weights will be changed in the fine-tuning process to fit the checkpoints.

5 EXPERIMENTAL RESULTS

We implemented the proposed method within the Caffe (Jia et al. (2014)) environment developed
by the BVLC (Berkeley Vision and Learning Center). The experiments were conducted on a Linux
workstation that comprises of two Intel Xeon E5-2620 2.10GHz CPUs, 64GB memory, and four
NVIDIA GeForce GTX 1080 Ti GPUs.

For comparison, we applied the proposed method and two filter/channel pruning-based previous
methods, CP (He et al. (2017)) and PFEC (Li et al. (2016)), to two classic CNN models, CIFAR-10
example model (C10-Net) (Jia et al. (2014)) and Network in Network (NiN) (Lin et al. (2013)), with
two image classification benchmark datasets, CIFAR-10 and CIFAR-100 (Krizhevsky (2009)). Each
method was conducted multiple times with different parameters to comprehend the comparison. For
our method, we changed the parameter et. Ten different et, 5%, 10%, ..., 45%, and 50%, were
applied. For CP and PFEC, we modified the numbers of pruned filters.

The CIFAR-10 and the CIFAR-100 datasets have 10 and 100 classes, respectively. Each dataset
has 60 000 labeled images with the size of 32 × 32 pixels. In the experiments, we applied zero
padding to each image, such that each image has a size of 40 × 40 pixels. Additionally, several
image data augmentation techniques, including shuffling, random cropping, mirroring, and image
mean, supported by Caffe were applied. When fine-tuning the weights, we conducted 20 epochs for
the CIFAR-10 dataset and 40 epochs for the CIFAR-100 dataset.

5.1 C10-NET

5.1.1 CIFAR-10 DATASET

C10-Net has three convolutional layers and two fully connected layers. The experimental results on
the inference accuracy and the MAC operation count of each method under the CIFAR-10 dataset are
summarized in Figure 2a. The Baseline (marked as a blue diamond) is the original model without
any optimization, which conducts approximately 12.4 millions of MAC operations and achieves
an accuracy of 86.53%. The red dots denote the results of our method. Basically, the accuracy
decreases as et increases. The gray squares and orange triangles denote the results of CP and FPEC,
respectively.

The results show that all the three methods can trade off the accuracy against the MAC operation
count. However, for several cases, our method and CP achieve similar accuracies but save more
MAC operations, compared to FPEC. Furthermore, when we consider the objective of saving more
MAC operations with less accuracy drop, our method with et = 10% obtains the best/largest trade-
off ratio of the saved MAC operation count to the accuracy drop among all the methods. It achieves
50.22% MAC operation reduction with only an accuracy drop of 0.8%.

5.1.2 CIFAR-100 DATASET

The experimental results on the CIFAR-100 dataset are summarized in Figure 2b. Similarly, CP
is more effective than FPEC, and our method is competitive with CP. The best trade-off ratio is
achieved by our method with et = 5%, where 43.64% MAC operations are saved with an accuracy
drop of 0.09%.

7

Under review as a conference paper at ICLR 2019

12.399306, 0.8653
6.172146, 0.8573

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

1 3 5 7 9 11 13

A
cc

u
ra

cy

MACs millions

C10-Net on CIFAR-10

Baseline CP PFEC OURS OURS_10%

(a) C10-Net on CIFAR-10

13.053156, 0.5898
7.355701, 0.5889

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

4 6 8 10 12 14

A
cc

u
ra

cy

MACs millions

C10-Net on CIFAR-100

Baseline CP PFEC OURS OURS_5%

(b) C10-Net on CIFAR-100

Figure 2: Experimental results of C10-Net on CIFAR-10 and CIFAR-100.

5.2 NIN

5.2.1 CIFAR-10 DATASET

Unlike C10-Net, NiN is composed of nine convolutional layers. The experimental results on the
CIFAR-10 dataset are summarized in Figure 3a. It is observed that our method is more effective
than FPEC as well as CP. The best trade-off ratio is achieved by our method with et = 5%, where
47.43% MAC operations are saved with an accuracy drop of 0.41%

5.2.2 CIFAR-100 DATASET

The experimental results on the CIFAR-100 dataset are summarized in Figure 3b. Our method is
also competitive with CP and more effective than FPEC. The best trade-off ratio of our method is
achieved by setting et = 5%, where 47.73% MAC operations are saved with an accuracy drop of
0.58%.

223.117952,
0.9033

117.288926,
0.8992

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0 50 100 150 200 250

A
cc

u
ra

cy

MACs millions

NiN on CIFAR-10

Baseline CP PFEC OURS OURS_5%

223.117952,
0.9033

117.288926,
0.8992

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0 50 100 150 200 250

A
cc

u
ra

cy

MACs millions

NiN on CIFAR-10

Baseline CP PFEC OURS OURS_5%

(a) NiN on CIFAR-10

224.229632,
0.6466

117.191896,
0.6408

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0 50 100 150 200 250

A
cc

u
ra

cy

MACs millions

NiN on CIFAR-100

Baseline CP PFEC OURS OURS_5%

(b) NiN on CIFAR-100

Figure 3: Experimental results of NiN on CIFAR-10 and CIFAR-100.

In summary, our method can save approximately 50% MAC operations with an accuracy drop of
less than 1% for each model and dataset. Like CP and FPEC, our method can trade off the accuracy
against the MAC operation count. The best trade-off ratio of our method is achieved by setting
et = 5% or et = 10%. Compared to CP and FPEC, our method achieves a better trade-off ratio for
the CIFAR-10 dataset, and is competitive with CP for the CIFAR-100 dataset.

6 CONCLUSION

We present a dynamic optimization method to CNN models for reducing MAC computations in the
convolutional layers. The method consists of two steps. The first step applies a checkpoint to each
convolutional filter, which is used to determine whether a MAC process of the filter could terminate
early according to an intermediate result during the inference phase. The second step is to fine-
tune the weights of the filters to recover the accuracy drop due to the applied checkpoints. The
experimental results show that the proposed method is effective for saving MAC operations with
only slight accuracy drop. The proposed method could promisingly make more AI applications run
on edge devices.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Y. Cheng, D. Wang, P. Zhou, and T. Zhang. Model compression and acceleration for deep neural
networks: The principles, progress, and challenges. IEEE Signal Processing Magazine, 35(1):
126–136.

Jaeyong Chung and Taehwan Shin. Simplifying deep neural networks for neuromorphic architec-
tures. In Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE, pp. 1–6. IEEE,
2016.

Mehdi Gheisari, Guojun Wang, and Md Zakirul Alam Bhuiyan. A survey on deep learning in big
data. In Computational Science and Engineering (CSE) and Embedded and Ubiquitous Comput-
ing (EUC), 2017 IEEE International Conference on, volume 2, pp. 173–180. IEEE, 2017.

Raja Giryes, Guillermo Sapiro, and Alexander M Bronstein. Deep neural networks with random
gaussian weights: A universal classification strategy? IEEE Trans. Signal Processing, 64(13):
3444–3457, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015b.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: efficient inference engine on compressed deep neural network. In Computer Archi-
tecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on, pp. 243–254. IEEE,
2016.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, pp. 164–171, 1993.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In International Conference on Computer Vision (ICCV), volume 2, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, pp. 5–13. ACM, 1993.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. In Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–678.
ACM, 2014.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Citeseer,
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Erik Learned-Miller, Gary B Huang, Aruni RoyChowdhury, Haoxiang Li, and Gang Hua. Labeled
faces in the wild: A survey. In Advances in face detection and facial image analysis, pp. 189–248.
Springer, 2016.

9

Under review as a conference paper at ICLR 2019

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
Ciompi, Mohsen Ghafoorian, Jeroen AWM van der Laak, Bram Van Ginneken, and Clara I
Sánchez. A survey on deep learning in medical image analysis. Medical image analysis, 42:
60–88, 2017.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on,
pp. 6655–6659. IEEE, 2013.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accel-
erate training of deep neural networks. In Advances in Neural Information Processing Systems,
pp. 901–909, 2016.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI, volume 4, pp.
12, 2017.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks with low-
rank regularization. arXiv preprint arXiv:1511.06067, 2015.

Surat Teerapittayanon, Bradley McDanel, and HT Kung. Branchynet: Fast inference via early exit-
ing from deep neural networks. In Pattern Recognition (ICPR), 2016 23rd International Confer-
ence on, pp. 2464–2469. IEEE, 2016.

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features.
In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, volume 1, pp. I–I. IEEE, 2001.

10

	Introduction
	Preliminaries
	CNN and convolutional filter
	Related works

	Motivational example
	Proposed method
	Step 1: Sort weights and set up checkpoints
	Step 2: Fine-tune parameters
	Analysis
	Early terminating of MAC processes
	Weight sorting
	Checkpoint setup
	Parameter fine-tuning

	Experimental results
	C10-Net
	CIFAR-10 dataset
	CIFAR-100 dataset

	NiN
	CIFAR-10 dataset
	CIFAR-100 dataset

	Conclusion

