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Abstract

In this paper, we consider the problem of autonomous lane changing for self driving1

vehicles in a multi-lane, multi-agent setting. We use reinforcement learning solely2

to obtain a high-level policy for decision making, while the lower level action is3

executed by a pre-defined controller. To obtain a comprehensive model adaptive4

to as wide traffic scenarios as possible, training is carried out based on more5

than 700 handcrafted traffic scenarios with various types of traffic involved. A6

new asynchronous DQN architecture is proposed to handle the training samples’7

diversity while improving the training efficiency. Moreover, we also present a8

new state representation that contains both short range information and long range9

information, to retain the merit of each individual representation while refining10

them in terms of generalization ability and training efficiency. The generated policy11

is evaluated on other 200 testing scenarios in a simulator, the results demonstrate12

that our approach shows the better generalization ability than a rule-based baseline,13

and possesses better intelligence and flexibility.14

1 Introduction and Related Work15

In recent years there has been a growing interest in self driving cars due to the high potential in16

leading to more efficient road networks and more convenient user experience. Lane change making is17

one of the fundamental skills that a self driving car must possess, through reasoning of interactions18

with other agents and forming an efficient long term strategy adaptive to various traffic, which makes19

this problem much challenging.20

The approaches for maneuver decisions cab be classified into three categories. Early approaches21

focused on handcrafted rules typically realized in large state machines, each requiring thoughtful22

engineering and expert knowledge [1][2][3]. Recent work focuses on more complex ways with23

additional domain knowledge to predict and generate maneuver decisions [4][5][6]. Recently, as the24

development of deep reinforcement learning (DRL), there have been a few studies highlighting lange25

change decision making through DRL for highway scenarios in simulation[7][8][9].26

Great progress has been made in the field of using DRL based approach as discussed above, neverthe-27

less there are still several challenging issues needed to be solve in certain aspects. First and most28

important, existing works only focus on training and testing the lane change policy on the same type29

of traffic (e.g., similar distribution of social vehicles), yet neglecting the transfer ability to different30

traffic scenarios, which appears virtually impossible to be put into use practically. Although it is31

commonly recognized that generalization ability plays an important role, especially for the case of32

autonomous driving, it still remains challenging. Next, current studies employ either global grid or33

relational grid as the state representation, both of which give rise to some limitations. The former34

method posses challenged generalization ability to scenarios with different lane number and suffers35

from slow convergence due to large volume of network parameters, while the latter solution only36

takes short range view into account without distinguishing different traffic status, which might lead to37

the myopic policies and be difficult to adapt to various traffic scenarios.38
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Thus, in this paper we re-investigate the strengths of deep reinforcement learning for high-level39

decision making in multi-lane and multi-agent settings, trying to address the issues mentioned above40

with the main contributions summarized as follows: firstly, to obtain a comprehensive model adaptive41

to as wide scenarios as possible, training is carried out based on more than 700 handcrafted traffic42

scenarios with various types of traffic involved. Meanwhile, a new asynchronous DQN architecture43

is proposed to better exploit the sample diversity and improve the training efficiency. Secondly, we44

propose a new state abstraction that takes both short range information and long range information45

into consideration, in combination with a flexible reward design. The primary goal is to retain46

the merit of each individual solution while refine them in terms of generalization ability, training47

efficiency as well as adaptive capacity. We present preliminary benchmarks and demonstrate that our48

solution can significantly outperform a rule-based greedy baseline from the generalization ability.49

And it is particularly worth mentioning that we have experimented our model in reality under urban50

highway scenarios in Shanghai, China. We remark that, to the best of our knowledge it is the first51

attempt for DRL-based lane change solution to be tested in real traffic.52

The rest of this paper is organized as follows: the reinforcement learning solution with novelty is53

demonstrated in Section 2, with detailed experiment setup and implementations presented in Section54

3. Our approach is evaluated in comparison with a baseline solutions in Section 4. Conclusion and55

Future Works are summarized in Section 5.56

2 Reinforcement Learning Solution57

Intuitively, learning a high-level decision making policy can be modeled as a reinforcement learning58

problem, which attempts to maximize the cumulative rewards through continuously interaction with59

the environment. In most existing works, the learned models are trained and tested only under a60

fixed type of traffic with the relatively good performance. However, for a policy to be put into use61

practically, it should perform equivalently well in various traffic types, which raise a huge challenge62

for training: how to train a policy with both higher generalization ability and lower time cost? We63

attempt to handle these problems from the aspect of both the state representation and the algorithm64

architecture.65

2.1 State Representation66

For a multi-task problem, due to the large volume of data coming from different tasks, the state67

space should be designed in consideration of the representation of the real environment, the training68

efficiency, as well as the transfer ability to new tasks. To be specific, (1) state representation should69

be abstract enough and independent of the factors such as lanes’ number, the road geometry and70

the number of surrounding cars. (2) Low dimension of representation is recommended aiming at71

fast convergence. (3) Traffic status should also be considered as indicators of current environments72

to distinguish different scenarios. Based on above considerations, we pay attention to three classes73

of information: the ego information, the short range information, and the long range information,74

denoted as Se, Sshort and Slong respectively. Ego information only includes the speed v of the ego75

car. Short range information is a small number of key perception indicators that directly represent the76

relative relationship between the ego car and its surrounding cars [10]. It consists of the social cars’77

states inside the local scope of the ego car, which is independent of the road geometry, the number of78

lanes, or the number of social cars involved in the traffic. It is intuitive that surrounding cars play an79

crucial role in lane change making and it has also been reported in [9] and [10] that the short range80

information works well for the fixed type of traffic.81

Despite of the major role of short range information, there still exists problems for the induced policy82

to be generalized from scenarios to scenarios since it does not distinguish different types of traffic.83

For instance, lane change behavior in dense traffic is more risky than that in sparse traffic, but such84

difference can not be handled only given the short range information. As a consequence, we add85

some high level description of traffic status, named as long range information, aiming at treating86

various types of traffic discriminatively. Long range information usually involves all the information87

of cars which can be perceived on the road, which may contribute to learn a more intelligent and88

foresighted strategy.89
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2.2 Algorithm Architecture90

To deal with the efficiency of large-scale training with various scenarios, a new asynchronous DQN91

architecture is proposed. The asynchronous DQN involves one master node and many slave nodes92

with the algorithms demonstrated in Algorithm 1 and Algorithm 1, a shared queue is used to achieve93

communication. The master node is used for training an unified model, while the slave nodes just94

focus on collecting the date using the model during the interaction with environment. This kind95

of architecture is designed by the following two motivations: 1) The most time-consuming part of96

the online training process is the interaction of agent with the complex environment to sample data,97

which is typically representative for autonomous driving task. Our proposed asynchronous DQN98

approach can significantly speed up the process of data generation. 2) While the traditional DQN is99

trained on the data flow from one kind of traffic type to another, the proposed asynchronous DQN100

can be fed with the data from various traffic types at one time, which can enhance the generalization101

ability of the desired model.102

Although existing asynchronous framework, like A3C [11], has the similar consideration, our103

architecture enjoys advantages in the following two aspects: first, the parallelization of data generation104

is implemented in multi-process level instead of multi-thread level, which makes the architecture much105

more scalable to multiple machines. Consequently, there also exist great potentials for improving the106

exploration efficiency. Second, the model is only updated in the master node without conducting the107

synchronization between local and remote, thus the memory overhead and communication cost will108

be reduced dramatically.109

Algorithm 1 Asynchronous DQN - pseudocode
Pseudocode for each slave node.
1: Initialize process update counter t = 0

2: Get initial state s
3: repeat
4: repeat
5: Choose a scenario randomly from the training set as the environment for current episode
6: With probability ε select a random action a
7: if Model output is selected then
8: Send current state s to the master node
9: ReceiveQ(s; a; θ) from the master node and execute maxa′ Q(s; a′; θ)

10: end if
11: Receive new state s′ and reward r
12: Send the transition (s, a, r, s′) to the master node
13: s = s′

14: t← t+ 1
15: until s is terminal
16: until t > tmax

Pseudocode for the master node.
1: Initialize replay buffer B with capacityN
2: Initialize the parameters θ of action value networkQ(s; a; θ)

3: Initialize target networkQ(s; a; θ−) with θ− ← θ

4: Initialize training update counter t = 0

5: repeat
6: Fetch the dataD from the slave node
7: if Data type is not TRAIN then
8: Get s from dataD to computeQ(s; a; θ) and sendQ(s; a; θ) to the corresponding slave node
9: else
10: Get the transition (s, a, r, s′) from dataD and put it into B
11: Sample random minibatch of transitions (s, a, r, s′) from B
12: For each transition in the minibatch, set

y =

{
r, for terminal s′,
r + γmaxa′ Q(s′, a′, θ−), for non-terminal s′, ,

13: Perform a gradient descent on Σminibatch(y −Q(s, a, θ))2

14: if t mod Itarget == 0 then
15: Update the target network θ− ← θ

16: end if
17: t← t+ 1
18: end if
19: until t > tmax
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3 Experimental Setup110

3.1 Scenario Configuration111

In this section, we formally define our experiments’ environment. Our goal is to generate112

a comprehensive model which is adaptive to various kinds of traffic. For this, a multi-lane113

multi-agent setting with the urban traffic environment setup is considered in our self-developed114

simulator KyberSim, which is similar to the commonly used traffic simulator SUMO and e-115

quipped with realistic kinematics and dynamic for the ego car. To be specific, more than 700116

scenarios as training scenarios are constructed, and each scenario is a 4km-long track consist-117

ing of 3 lanes where the social cars are driving. The numbers of social cars involved in the118

traffic is randomly chosen in [0, 100] ∩ Z. The average traffic speed of one scenario is set119

to Ve = {5km/h, 10km/h, 20km/h, 30km/h, 40km/h, 50km/h, 60km/h, 70km/h}, with the120

variance set to Vσ = {3km/h, 5km/h, 8km/h, 10km/h, 12km/h}. Denote “gap" as the dis-121

tance between two adjacent social cars in the same lane, then the initial average gap of one s-122

cenario is set to gape = {30m, 50m, 80m, 100m, 120m, 150m, 200m}, with the variance set to123

gapσ = {10m, 30m, 50m, 60m, 80m}. For the sake of simplicity we do not allow any social car to124

change lanes. The distance between the ego car’s starting location and the track’s starting point is125

distributed randomly in [0m, 200m] and the ego car locates randomly in the three lanes at the initial126

time. From such design, various kinds of traffic scenarios emerge including “super slow dense ",“slow127

dense",“intermediate dense", “fast dense", “slow sparse", “intermediate spare", “fast spare", “slow128

uniform ", “intermediate uniform",“fast uniform", and so on. We also construct 200 other scenarios129

as testing scenarios, each of which belongs to one of the existing traffic types listed above.130

We also incorporate an optimization method and a controller in the low-level module to generate131

a sequence of low-level actions that can make a car change between adjacent lanes or follow the132

front car while avoiding collisions. Since collisions are never allowed during training or testing, the133

learning process truly focuses on learning only the efficiency and generality of the high level strategy.134

The performance of the lane change making policy will be evaluated on the testing scenarios in terms135

of the average speed and the average number of lane change for passing the track under different136

types of traffic. The model with higher average speed and lower number of change is better.137

3.2 Implementations138

Outputs For lane change maneuvers, we break down the high level decisions into the following 3139

actions that can be taken at any time step: (1) 0: go straight, (2) 1: turn left, (3) 2: turn right. The ego140

car will execute 0 for fixed 20 simulator steps and 1 or 2 for 60 to 120 simulator steps, according to141

the command timing.142

Inputs The specific inputs in our implementation are shown in Table 1, where gap is the longitudinal143

distance between two adjacent cars in the same lane. It is intuitive that all gaps and speeds involved144

on road can jointly reveal the key characteristics of the traffic, which are therefore feasible as long145

range information. The non-perceivable lane or missing entities are indicated by a dedicated value.146

To obtain a more flexible perception scope, relative distance and speed to the ego car is adopted,147

whose ranges are set to be [0, 12.5] and [0, 2] respectively.148

Rewards Design The overall design philosophy of the reward function is to encourage the higher149

speed with the least number of lane change, since changing itself is risky and time-consuming150

compared with following behavior in reality. In addition, the degree of punishment should vary151

adaptively as the environment changes to conform to the actual situations.152

For a transition (S, a, S′), the reward function is defined as153

R(S, a, S′) =

{
V ′, if a = 0,
c · κl · κg · V ′, if a 6= 0,

(1)

where c = 0.3 is the penalty factor for change action and κl and κg are shrinkage coefficients154

concerning the short-term gain and the long-term benefit for change respectively. κl is computed155

as Te/T , where T is the time cost for executing action a and Te is the average changing cost in the156

recent time window, where the window size is set to 500. We remark that in KyberSim and of course157

in real environments, the ego car will spend distinctly more time changing independently of its speed158
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Table 1: Inputs of the Network

Ego information
v Speed of the ego car
Short range information
p_dist, p_v_L longitudinal distance and speed of the preceding car in the left lane
p_dist_M , p_v_M longitudinal distance and speed of the preceding car in the current lane
p_dist_R, p_v_R longitudinal distance and speed of the preceding car in the right lane
f_dist_L, f_v_L longitudinal distance and speed of the following car in the left lane
f_dist_M ,f_v_M longitudinal distance and speed of the following car in the current lane
f_dist_R, f_v_R longitudinal distance and speed of the following car in the right lane
Long range information
gap_L average gap of all cars in the left lanes
gap_M average gap of all cars in the current lane
gap_R average gap of all cars in the right lanes
v_L average speed of all cars in the left lanes
v_M average speed of all cars in the current lane
v_R average speed of all cars in the right lanes

if the timing is locally unreasonable, since the ego car has to slow down to follow the car in the goal159

lane. It can been seen that κl encourages locally reasonable change while penalize the opposite case,160

which plays a role from a short range perspective. κg is computed as gapG/gapM , where gapG and161

gapM are defined in Table 1. It is a way of measuring the sparsity gain, aiming at encouraging the162

change from the denser lane to the smoother side and penalize the opposite case, which is designed163

from a long range perspective. Using the product of κg and κl, mutual compensation is produced to164

obtain a synthetically optimal policy.165

Network We use a network with solely fully-connected layers, including two hidden layers with166

300 and 600 neurons respectively. On the output layer there is a neuron for each action. The given167

value for each action is its estimated Q-value.168

Hyper Parameters The network is trained with 1 million iterations. The number of actor processes169

is set to 6. The discount factor γ = 0.3, the batch size for one update is 96, the update period for the170

target network is Itarget = 1000 and the capacity of N = 300000. We adopt ε-greedy exploration,171

where ε is annealed from 1.0 to 0.1. As optimization method for our DQN we use the Adam algorithm172

with a learning rate of 10−5.173

4 Evaluation174

We use four different traffic types for assessing the properties of the proposed approach. 200 testing175

scenarios are grouped into 4 traffic types including “super dense", “dense",“uniform" and “sparse".176

Each type consists of a dozen of scenarios with different average speeds for social cars. For each177

traffic type, we test our approach under all its member scenarios for 5 times to obtain the average178

score.179

Table 2: Comparison between our approach and a greedy rule-based baseline on 4 traffic types.

Super Dense Dense Uniform Sparse
Baseline Ours Baseline Ours Baseline Ours Baseline Ours

Avg Speed(km/h) 6.46 6.44 11.8 12.02 51 49.6 58 67
Ave Count 473 14.4 61.8 12 12 18.6 4.8 6.2

Soft Changes Per(%) 0 15 0 0 0 9 0 30

We first compare our approach with a rule-based greedy baseline, where the ego car makes a lane180

change once there exists a social car in front of the ego car for more than 2 seconds, and at the same181

time, the front car in the neighbor lane is further to the ego car.182

The benchmark results are summarized in Table 2. In non-dense traffic, our approach is able to183

achieve almost the same or higher average speed compared with the baseline with relatively more184

changing activities, and in dense traffic, the advantage is more obvious that the baseline policy makes185

too many unnecessary lane change decisions. From this we can see that rule-based polices are hard to186

generalize to different types of traffic even though it can be designed perfectly for some fixed traffic187

type. To evaluate the intelligence of our model, we also record the percentage of “soft unreasonable"188

changes, which means, the ego car is in the right most or left most lane and the preceding car in the189

goal lane is nearer than the preceding car in the current lane. It can been seen that such changes might190
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be locally unreasonable yet potentially globally reasonable. From Table 2, our approach enjoys some191

percentage of soft changes while the baseline does not, demonstrating the long term planning ability192

of our approach. Figure 1 is an example to illustrate the superiority of the “soft changes", that the ego193

car sacrifices a short term gain to optimize its long term return.194

Figure 1: (upper) The ego car is driving in the right most lane and the action change left is made,
which is locally unreasonable; (middle) Subsequently, the ego car makes left change again; (lower)
After following for a while in the left lane, the ego car changes back to the middle lane. By executing
above three processes together a higher speed can be achieved.

Long Range Information Effects To evaluate the performance gain brought in by global informa-195

tion, we add a pure short approach and a pure long approach for comparison, where the input of196

the former is S = (v, Sshort) and they share the same reward function with κl = κg = 1.197

Total training set is used for training and the implementations are the same as introduced in Section198

3.2. It can be seen from Figure 2 that the long range solution enjoys much better performance than199

short range one, even though they share the same reward function. In addition, flexible reward design200

can both improve the performance of the model and speed up the training process significantly.201

Figure 2: Learning speed comparison for 3 approaches

5 Conclusion and Future Works202

In this paper, we investigate the problem of autonomous lane changing for self driving vehicles in a203

multi-lane, multi-agent setting. Reinforcement learning method is adopted for training a high-level204

policy for tactical decision making. To obtain a comprehensive model adaptive to as wide traffic205

types as possible, training is carried out based on more than 700 handcrafted traffic scenarios with206

various types of traffic involved. A new asynchronous DQN architecture is proposed to handle the207

training sample diversity while improving the training efficiency. Moreover, we also propose a new208

state representation that contains both short range information and long range information, aiming at209

retaining the merit of each individual representation while refining them in terms of generalization210

ability, training efficiency as well as adaptive capacity. The generated policy is evaluated on 200211

other testing scenarios in a simulator, the results demonstrate that our approach enjoys the better212

generality ability then a rule-based baseline, and posses better intelligence and flexibility. Of course,213

there still exist some improvements in future, for instance, the comparison between our asynchronous214

DQN architecture and A3C framework needs to be conducted, the benefits brought in by long range215

information need to be tested on other self-driving applications.216
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