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Abstract

Machine learning models for question-answering (QA), where given a question1

and a passage, the learner must select some span in the passage as an answer, are2

known to be brittle. By inserting a single nuisance sentence into the passage, an3

adversary can fool the model into selecting the wrong span. A promising new4

approach for QA decomposes the task into two stages: (i) select relevant sentences5

from the passage; and (ii) select a span among those sentences. Intuitively, if6

the sentence selector excludes the offending sentence, then the downstream span7

selector will be robust. While recent work has hinted at the potential robustness8

of two-stage QA, these methods have never, to our knowledge, been explicitly9

combined with adversarial training. This paper offers a thorough empirical in-10

vestigation of adversarial robustness, demonstrating that although the two-stage11

approach lags behind single-stage span selection, adversarial training improves its12

performance significantly, leading to an improvement of over 22 points in F1 score13

over the adversarially-trained single-stage model.14

1 Introduction15

Over the last few years, passage-based question-answering (commonly known by the misnomer16

reading comprehension and hereafter denoted QA) has emerged as a popular and challenging task17

that tests the capabilities of today’s deep-learning models. Given a question and an associated context,18

such as a passage or a document, QA typically requires either selecting a span from the context as an19

answer, choosing one among multiple answer choices (classification) or generating an answer from20

scratch. In this paper, we focus on the span-selection variant. Recent progress in this field has been21

spurred by the availability of many large-scale datasets [13, 15, 8]. Several complex neural models22

[2, 6, 18] have shown promising results on this challenging task, some even purporting to beat the23

reported human performance on some datasets [4].124

However, performance here denotes only accuracy on i.i.d. holdout data. While humans exhibit a25

much greater ability to generalize off-manifold, supervised learning models tend to break, especially26

under adversarial perturbations, as demonstrated by [14] with images. Recently, Jia and Liang [7]27

showed that neural QA models suffer from an analogous vulnerability by appending a single nuisance28

sentence to the context of passages from the SQuAD 1.1 dataset [13] and fooling many state-of-the-art29

models into selecting the wrong span (Figure 1). While humans simply ignore the intruding sentence,30

QA models are easily fooled, raising concerns regarding whether these models are sufficiently robust31

to be deployed for QA tasks in the wild, or if they depend too heavily upon spurious correlations in32

1While many QA datasets have emerged, they are often synthetically generated and their difficulty remains
poorly characterized. Recent papers have shown that for some datasets, simple baselines using just a few
hand-engineered features [1], or ignoring either the question or passage [9] can perform surprisingly well.
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the training and development datasets. These demonstrations underscore the necessity for evaluating33

QA models under adversarial conditions.34

Only a few subsequent papers have followed up on [7], proposing solutions to make QA models more35

robust to such adversarial attacks. Recently, Min et al. [10] proposed a two-stage model consisting36

of both a sentence selector and a span selector. They showed that providing a minimal context,37

consisting of just few relevant sentences to the span selector, offers benefits not only in terms of38

interpretability (by identifying the relevant pieces of evidence) and computational efficiency, but also39

results in greater robustness to the aforementioned adversarial attack. This is a promising direction40

towards making QA models more robust, since achieving robustness in the overall system requires41

only that we make the context selection model robust. So long as the context selector filters out42

irrelevant sentences (including the adversarial sentence) the downstream model will be safe.43

In this work, we investigate this two-stage approach (minimal context selection followed by span44

selection) finding that the approach is not, out of the box, more robust than the single-stage approach45

(span selection)—the accuracy of the minimal context selection model suffers under adversarial eval-46

uation and earlier reported gains appear to stem partly from an artifact in the evaluation. However, we47

find that sentence selector can be made more robust through adversarial training [5], and importantly,48

perform significantly better than an adversarially-trained single-stage model.49

Article: Super Bowl 50
Paragraph: “Peyton Manning became the first quarter-back ever to lead two different
teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super
Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory
in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of
Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”
Question: “What is the name of the quarterback who was 38 in Super Bowl XXXIII?”
Original Prediction: John Elway
Prediction under adversary: Jeff Dean

50

Figure 1: A state-of-the-art QA model originally gets the answer correct, but is fooled by the addition
of an adversarial distracting sentence (in blue). Example taken from [7].51

2 Methods52

Span Selection Models: In our investigation, we focus on two span-selection models: DrQA53

[2] and the Mnemonic Reinforced Reader [6]. DrQA uses self-attention [16] over the question54

tokens to learn a fixed-length question representation that is then used to score potential spans.55

The Mnemonic Reinforced Reader uses several layers of co-attention between the question and the56

context, memorizing and utilizing attention output from previous layers to compute the later ones.57

Additionally, both models employ hand-crafted features like Part-of-Speech (PoS) tags, Named Entity58

Recognition (NER) tags, and other lexical features, in order to achieve competitive performance59

on the task. We follow the reported architecture and hyperparameter settings exactly, referring the60

readers to the source papers for more details.61

Sentence Selection Model: We base our implementation of the sentence selector model on the62

DrQA architecture [2]. As in DrQA, we encode the question and every sentence in the passage63

independently using a BiLSTM. We then use self-attention to compute fixed-sized representations of64

the question qenc and each sentence denci ∀i ∈ {1, ..., N}, where N is the number of sentences in the65

passage. We then compute a scalar score si using a bilinear transformation si = qencWdenci . These66

scores are then normalized over the passage using a softmax. For supervision, we use the sentences67

containing the answer span as gold sentences and minimize a cross-entropy loss objective. Figure 268

contains a schematic diagram of the two-stage approach.69

Adversarial Training: Jia and Liang [7] produce an adversarial sentence for a given passage and70

question according to the following procedure: (1) The question is perturbed by (i) substituting71

antonyms for common question words and (ii) substituting nearest neighbours (determined via Glove72

[11] embeddings) for named entities, to reduce the likelihood of the gold answer being the correct73

answer to the perturbed question. For example, “What city did Tesla move to in 1880?” could become74

“What city did Tadakatsu move to in 1881?”; (2) Generate a fake answer that matches the type of the75
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Figure 2: The two-stage pipeline with architecture of the sentence selector model.

original answer (e.g., Prague→ Chicago, etc.); (3) The fake answer and the altered question are76

combined into a declarative sentence based on a set of handcrafted rules (“Tadakatsu moved to the77

city of Chicago in 1881.”).78

In this paper, we focus on adversarial training through data augmentation: for every training example,79

x = (p, q, a), where p is the paragraph, q is the question and a is the answer, we introduce adver-80

sarially perturbed example, x′ = (p′, q, a), and train both the span selection and sentence selection81

models on Daug = {xi|i = 1, ..., N}
⋃
{x′

i|i = 1, ..., N}, where N is the size of the original82

training dataset. We focus on two different adversaries for training: ADDSENT, in which a distractor83

sentence similar to the question is appended to the end of the paragraph, and ADDRANDOM (similar84

to ADDSENTDIVERSE in [17]), in which the position within the paragraph, where the distractor85

sentence is added is chosen uniformly at random. Since the datasets considered in our paper do not86

require more than one sentence in order to answer the question for a large fraction of examples (as87

discovered by [10]), adding the distractor sentence anywhere in the paragraph shouldn’t make the88

reasoning process significantly more difficult as compared to adding it at the end. We adversarially89

evaluate all our models on ADDSENT, ADDRANDOM and additionally on ADDMODSENT, in which90

the distractor sentence is added to the beginning of the paragraph.91

3 Experimental Evaluation92

Setup: We train the sentence selector and the span selection model on SQuAD [13], which contains93

∼5-sentence long contexts from Wikipedia articles. We train two different QA models: DrQA [2] and94

Mnemonic Reader [6], comparing the two-stage minimal context selection approach (MINIMAL) to95

single-stage models using the full context (FULL). Our metrics measure (i) how frequently predicted96

spans exactly match the gold span (EM) and (ii) an F1 score calculated by treating the spans as bags97

of words. We measure the performance of the sentence selector model via top-k accuracy, i.e., how98

often the oracle sentence is among the top-k selected sentences. We use the PoS, NER and lexical99

features for both models. In the two-stage set-up, the top-k sentences from the sentence selector are100

passed on to the span selection model. We choose k = 1 for SQuAD dataset.101

Results: Our results are summarized in Table 1. Without adversarial training, MINIMAL lags102

behind the FULL model by a few points on the original development data, but this difference is103

exacerbated on the adversarial development sets. This indicates that the two-stage approach is not104

robust to adversarial inputs without any adversarial training. This is evident from Table 2, where105

upon adversarial evaluation, sentence selector top-k accuracy drops by over 50 points. In fact, it106

selects the distractor sentence in over 95% of the instances where it fails to select the oracle sentence107

on ADDSENT dataset for SQuAD.108

Under adversarial training with the ADDSENT adversary, both the MINIMAL and FULL improve109

significantly as measured on the ADDSENT test set, but MINIMAL still lags behind FULL by 6.9110

points (resp. 4.8 points) for DrQA (resp. Mnemonic Reader). However, MINIMAL beats FULL on111
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ADDMODSENT and ADDRANDOM adversaries by 17.3 points (resp. 6.8 points) for DrQA (resp.112

Mnemonic Reader). This indicates that through adversarial training on ADDSENT, the FULL model113

has learnt to ignore the last sentence in the context, and as a result, it performs worse on adversaries114

where the distracting sentence doesn’t occur in the end. When trained on ADDRANDOM adversary,115

the MINIMAL beats FULL by 25.5 points (resp. 22.8 points) on all adversarial test sets for DrQA116

(resp. Mnemonic Reader), thereby indicating that MINIMAL can be made more robust to adversarial117

examples as compared to FULL through adversarial training.118

SQuAD + DrQA
Setting Model Type DEV ADDSENT ADDMODSENT ADDRANDOM

F1 EM F1 EM F1 EM F1 EM

Original FULL 78.8 69.4 42.4 36.4 52.4 44.8 50.4 42.6
MINIMAL 76.8 67.8 40.9 35.3 45.9 38.6 44.8 37.3

Adv. Training
(ADDSENT)

FULL 78.2 68.7 75.0 65.9 52.1 44.8 60.7 52.0
MINIMAL 76.8 67.8 68.1 60.4 71.9 63.2 75.6 65.9

Adv. Training
(ADDRANDOM)

FULL 78.6 69.1 45.0 31.5 40.8 25.5 46.9 31.9
MINIMAL 76.6 67.4 65.3 57.7 69.4 60.7 74.6 64.7

SQuAD + Mnemonic Reader

Original FULL 81.4 72.6 45.6 39.8 47.9 42.0 45.6 38.6
MINIMAL 77.9 71.5 40.6 35.8 42.4 37.1 44.9 37.8

Adv. Training
(ADDSENT)

FULL 80.6 71.5 73.6 64.2 51.6 45.2 71.4 62.8
MINIMAL 77.9 69.1 68.8 62.1 62.6 56.0 73.9 63.8

Adv. Training
(ADDRANDOM)

FULL 81.3 72.6 43.5 28.8 42.8 30.4 41.6 25.4
MINIMAL 77.5 68.6 65.6 59.0 58.9 52.8 71.8 65.3

Table 1: Performance of FULL and MINIMAL context models on SQuAD dataset. We explore two
different QA models: DrQA [2] and Mnemonic Reader [6].

Dataset DEV ADDSENT ADDMODSENT ADDRANDOM

SQuAD 90.1 45.9 36.9 36.9

Table 2: Sentence selector top-k accuracy for SQuAD (k = 1).

4 Related Work119

Several prior works [10, 12, 3] consider sentence selection as a sub-task of question answering.120

[3] construct document summaries using reinforcement learning, feeding these summaries to the121

downstream QA model. [12] view extractive question answering as a search problem and iteratively122

refine the sentence, start and end spans. Both these models train the sentence selection and span123

selection models jointly.124

In contrast, [10] take a two-stage approach and demonstrate robustness to adversarial examples.125

Several papers [6, 10] have evaluated their QA models built for the SQuAD dataset on the adversarial126

datasets provided by [7], but there hasn’t been much work on how to utilize these adversaries to127

improve the robustness of the models. [17] train and test their models on multiple adversaries.128

However, they had to include additional semantic features to make the adversarially trained models129

robust. We show that in absence of any such additional features, the span selection model fails despite130

being adversarially trained, while the two-stage approach performs significantly better.131

5 Conclusion and Future Work132

This paper evaluates the adversarial robustness of two-stage QA models. We find that the approach133

remains susceptible to adversarial attacks. However, under adversarial training, the modular approach134

performs significantly better than the single-stage model (22 points in F1 on adversarial evaluation).135

Our findings add evidence that two-stage QA is a promising direction for building robust QA models.136

While this works presumes explicit supervision for training the sentence selector, we plan in future137

work to consider datasets and tasks that require implicit modeling of sentence selection.138
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