
Compression of Deep Neural Networks by combining
pruning and low rank decomposition

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large number of weights in deep neural networks make the models difficult to be1

deployed in low memory environments such as, mobile phones, IOT edge devices2

as well as "inferencing as a service" environments on the cloud. Prior work has3

considered reduction in the size of the models, through compression techniques4

like weight pruning, filter pruning, etc. or through low-rank decomposition of the5

convolution layers. In this paper, we demonstrate the use of multiple techniques to6

achieve not only higher model compression but also reduce the compute resources7

required during inferencing. We do filter pruning followed by low-rank decom-8

position using Tucker decomposition for model compression. We show that our9

approach achieves upto 57% higher model compression when compared to either10

Tucker Decomposition or Filter pruning alone at similar accuracy for GoogleNet.11

Also, it reduces the Flops by upto 48% thereby making the inferencing faster.12

1 Introduction13

Deep neural networks are now being used extensively for a variety of artificial intelligence applications14

ranging from computer vision [19] to speech recognition [11] and natural language processing [5].15

In this paper, we focus particularly on convolutional neural networks (CNNs) which have become16

ubiquitous in object recognition, image classification, and retrieval (see [17, 8, 10, 29]). As datasets17

increase in size, networks also increase in complexity, number of layers and parameters in order18

to absorb the supervision. The increased size of the networks makes it increasingly difficult for19

the model to be deployed in low memory environments such as, mobile phones, IOT edge devices20

etc. Recent work has considered reducing the size of networks with limited loss of accuracy in the21

prediction, so that the model can fit in the memory of low resource systems. For example, in one22

class of approaches, pruning of the weights of a trained CNN [12] or pruning at the level of feature23

maps and kernels [2, 24] is done to reduce the model size. Low-bit precision and weight quantization24

have also been used both to store the CNN parameters as well as for training and inferencing25

with these models (see half-precision networks [1], XNOR-Net [25], DoReFa-Net [30]), network26

binarization [6], ternary weight networks [14, 21, 31], vector quantization [9, 22], HashedNets [4]27

for examples). Recently, there have been some work to transform the convolutional filters to low rank28

filters using various matrix-factorization and clustering techniques [7, 16, 18, 20, 26] and speeding29

up computations using FFT [23]. More recently there has been effort to come up with new network30

architectures to make them more efficient by reducing the model size, working memory and inference31

time. Networks like SqueezeNet [15] and MobileNet [13] restricts their kernel sizes to 1x1 and 3x332

to reduce the compute and memory requirements and to make inferencing faster.33

In this paper, we focus on transfer learning. In such a setting, filter pruning is effective in removing34

filters that are not relevant for the incremental data. Low rank decomposition techniques on the35

other hand reduce the dimensions of the weight tensors without losing (much) information. In this36

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.



paper, we study these complementary techniques and show that by combining these techniques, we37

achieve an additional 57% model compression when compared to either filter pruning or Tucker38

Decomposition for popular models like GoogleNet. Also, it reduces the Flops by upto 48% thereby39

making the inferencing on these networks very fast. The rest of the paper is organized as follows.40

In Section 2, we describe our methodology of combining filter pruning with tensor decomposition.41

Our experimental results under different settings are presented in Section 3. Finally, we present our42

conclusions in Section 4.43

2 Methodology44

We briefly describe Tucker decomposition and filter pruning approaches from prior work followed by45

our approach for combining these techniques.46

Tucker Decomposition: Tucker decomposition has been widely used as a Low-Rank factorization47

method for decomposing Convolution and Fully connected layers in CNN [18]. It computes a Higher48

Order Singular Value Decomposition(HOSVD) of a n-D Tensor along each of it’s dimensions/modes.49

For CNNs, the convolution layer is a 4D Tensor where the first 2 dimensions are the output and input50

of that layer and the remaining 2 dimensions are the spacial dimensions. The Tucker decomposition51

of this 4D tensor results in a set of 2D-matrices U along each of the dimensions of the tensor (also52

called modes) and a core tensor G. A trade-off between space and accuracy can be achieved by53

varying the ranks of the output core tensor and factor matrices.54

Ki,j,s,t =
∑R1

r1=1

∑R2

r2=1

∑R3

r3=1

∑R4

r4=1 Gr1,r2,r3,r4 × U1
i,r1

× U2
j,r2

× U3
s,r3 × U4

t,r4 (1)55

Filter Pruning: Pruning filters from convolution layers is a standard method of compressing the56

CNNs [24]. There are several methods of removing filter from CNNs based on their importance.57

We have followed the techniques suggested in [24] where the filters are removed by minimizing58

the Taylor series expansion of the error introduced by removing a filter as it yields better results. A59

threshold parameter provides a tradeoff between space and accuracy by controlling the number of60

filters to be pruned.61

Our Approach: In our proposed method we first perform filter pruning with different pruning62

percentages (20%, 30%, 40% & 50%). For each of these filter pruned models, we use Tucker63

decomposition to further reduce the model size and flops required during inferencing. Since the64

kernel size for CNNs is usually small (of the order of 1x1, 3x3, 5x5 etc.), Tucker decomposition is65

applied only on mode-1 and mode-2 of the 4-D weight Tensor of a particular layer. Thus, R3 & R4 in66

(1) are equal to s & t respectively and the ranks R1 & R2 are determined using Variational Bayesian67

Matrix Factorization (VBMF) as described in [18]. In order to exploit the trade-off between space68

and accuracy we vary the threshold parameter of VBMF (varying from 0.8 to 1.4) which determines69

the low-rank for the approximation. All the implementations were done using Caffe.70

Incremental Training: Unlike [18] we perform layer-wise Tucker decomposition in an incremental71

manner where we decompose one layer at a time and fine-tune entire network for 2 epochs before72

proceeding to the next layer. This helps the network to regain the accuracy lost due to low rank73

approximation. After layer-wise decomposition the entire network is fine-tuned for 50 epochs to get74

to the base accuracy.75

3 Experimental Results76

Models Used. We demonstrate our results on state-of-the-art deep neural network GoogleNet [27].77

The base model is trained on ImageNet-1K dataset. The datasets used for transfer learning are78

Food101 [3] and Bird200 [28].79

Baseline. Our baseline considers the test accuracy achieved by a model compressed by applying80

the strategy similar to the one presented in [18], where low rank decomposition of the 3x3 and81

5x5 convolution tensors are effected layer by layer employing (i) determining the rank R3 and R482

by applying global analytic VBMF on mode-3 matricization and mode-4 matricization of kernel83

tensors (ii) Tucker decomposition on the tensor (iii) fine-tune the entire network with standard84

back-propagation. Note that the one-shot whole network decomposition presented in [18] produces85

worse test accuracy (for the same model size/flops) than the baseline used here, and hence is skipped.86

2



(a) GoogleNet,Food101 (MFlops vs Accuracy) (b) GoogleNet,Food101 (Modelsize vs Accuracy)

(c) GoogleNet,Bird200 (MFlops vs Accuracy) (d) GoogleNet,Bird200 (Modelsize vs Accuracy)

Figure 1: Accuracy comparison of combining filter pruning with tensor decomposition over baseline.

Comparison with baseline. We have compared the test accuracy of our approach of combining filter87

pruning with tensor decomposition with the baseline for GoogleNet for various compression levels.88

Thus, while the baseline attains a particular model size by employing only Tucker decomposition,89

the same model size is achieved in our approach by a appropriate combination of filter pruning and90

tensor decomposition. In an analogous manner, the accuracy of our approach is compared with the91

baseline for the same computations (FLOPS) of the compressed model.92

Figure 1c-1b shows the accuracy gains obtained using our algorithm over the baseline for differ-93

ent compression levels based on model size and computational flops. Since the baseline (tensor94

decomposition by rank determination through VBMF) does not involve the 1x1 tensors, we show95

the comparisons for both the scenarios where the 1x1 filters are included (and excluded) in the filter96

pruning step. We first observe that for each of the compression mechanisms, the drop in accuracy97

is initially small for some level of compression, but increases drastically as model size or flops98

decreases. Obviously, pruning the 1x1 filters lead to further reduction in the model size and flops99

over the scenario when they are not; however even if we keep the 1x1 filters intact, there is significant100

increase in the test accuracy for the compressed model obtained by combination of filter pruning and101

tensor decomposition over the model of same size (or flops) obtained just by tensor decomposition.102

4 Conclusions and Future Work103

We show that our approach of filter pruning followed by low-rank decomposition using Tucker104

decomposition achieves higher model compression and lower inference complexity when compared105

to either Tucker Decomposition or Filter pruning alone at similar accuracy for GoogleNet. A future106

work in this aspect is to incorporate the filter pruning process in the tensor decomposition itself.107

3



References108

[1] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro,109

Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse Engel,110

Linxi Fan, Christopher Fougner, Tony Han, Awni Y. Hannun, Billy Jun, Patrick LeGresley,111

Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman,112

Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang,113

Bo Xiao, Dani Yogatama, Jun Zhan, and Zhenyao Zhu. Deep speech 2: End-to-end speech114

recognition in english and mandarin. CoRR, abs/1512.02595, 2015.115

[2] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional116

neural networks. JETC, 13(3):32:1–32:18, 2017.117

[3] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative118

components with random forests. In European Conference on Computer Vision, 2014.119

[4] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Com-120

pressing neural networks with the hashing trick. In Proceedings of the 32nd International121

Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 2285–2294,122

2015.123

[5] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel124

Kuksa. Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12:2493–2537,125

November 2011.126

[6] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with127

weights and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016.128

[7] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting129

linear structure within convolutional networks for efficient evaluation. In Proceedings of the130

27th International Conference on Neural Information Processing Systems - Volume 1, NIPS’14,131

pages 1269–1277, Cambridge, MA, USA, 2014. MIT Press.132

[8] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor133

Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In134

Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing,135

China, 21-26 June 2014, pages 647–655, 2014.136

[9] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. Compressing deep convolutional137

networks using vector quantization. CoRR, abs/1412.6115, 2014.138

[10] Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik. Multi-scale orderless pooling139

of deep convolutional activation features. In Computer Vision - ECCV 2014 - 13th European140

Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII, pages 392–407,141

2014.142

[11] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional143

LSTM and other neural network architectures. Neural Networks, 18(5-6):602–610, 2005.144

[12] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural145

network with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015.146

[13] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias147

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural148

networks for mobile vision applications. CoRR, abs/1704.04861, 2017.149

[14] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-150

tized neural networks: Training neural networks with low precision weights and activations.151

CoRR, abs/1609.07061, 2016.152

[15] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and153

Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb154

model size. arXiv:1602.07360, 2016.155

4



[16] Yani Ioannou, Duncan P. Robertson, Roberto Cipolla, and Antonio Criminisi. Deep roots:156

Improving CNN efficiency with hierarchical filter groups. In 2017 IEEE Conference on157

Computer Vision and Pattern Recognition,CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,158

pages 5977–5986, 2017.159

[17] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross B. Girshick,160

Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature161

embedding. In Proceedings of the ACM International Conference on Multimedia, MM ’14,162

Orlando, FL, USA, November 03 - 07, 2014, pages 675–678, 2014.163

[18] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin.164

Compression of deep convolutional neural networks for fast and low power mobile applications.165

CoRR, abs/1511.06530, 2015.166

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep167

convolutional neural networks. In Proceedings of the 25th International Conference on Neural168

Information Processing Systems - Volume 1, NIPS’12, pages 1097–1105, 2012.169

[20] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.170

Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint171

arXiv:1412.6553, 2014.172

[21] Fengfu Li and Bin Liu. Ternary weight networks. CoRR, abs/1605.04711, 2016.173

[22] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. Neural networks174

with few multiplications. CoRR, abs/1510.03009, 2015.175

[23] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks176

through ffts. arXiv preprint arXiv:1312.5851, 2013.177

[24] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional178

neural networks for resource efficient transfer learning. CoRR, abs/1611.06440, 2016.179

[25] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet180

classification using binary convolutional neural networks. In Computer Vision - ECCV 2016 -181

14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,182

Part IV, pages 525–542, 2016.183

[26] Aruni RoyChowdhury, Prakhar Sharma, Erik Learned-Miller, and Aruni Roy. Reducing184

duplicate filters in deep neural networks. In NIPS workshop on Deep Learning: Bridging185

Theory and Practice, 2017.186

[27] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,187

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.188

CoRR, abs/1409.4842, 2014.189

[28] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The190

caltech-ucsd birds-200-2011 dataset, 2011.191

[29] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In192

Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September193

6-12, 2014, Proceedings, Part I, pages 818–833, 2014.194

[30] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net:195

Training low bitwidth convolutional neural networks with low bitwidth gradients. CoRR,196

abs/1606.06160, 2016.197

[31] Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization.198

CoRR, abs/1612.01064, 2016.199

5


	Introduction
	Methodology
	Experimental Results
	Conclusions and Future Work

