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Abstract

Dynamic ridesharing services (DRS) play a major role in im-
proving the efficiency of urban transportation. User satisfac-
tion in dynamic ridesharing is determined by multiple fac-
tors such as travel time, cost, and social compatibility with
co-passengers. Existing DRS optimize profit by maximizing
the operational value for service providers or minimize travel
time for users but they neglect the social experience of riders,
which significantly influences the total value of the service to
users. We propose DROPS, a dynamic ridesharing framework
that factors the riders’ social preferences in the matching pro-
cess so as to improve the quality of the trips formed. Schedul-
ing trips for users is a multi-objective optimization that aims
to maximize the operational value for the service provider,
while simultaneously maximizing the value of the trip for the
users. The user value is estimated based on compatibility be-
tween co-passengers and the ride time. We then present a real-
time matching algorithm for trip formation. Finally, we eval-
uate our approach empirically using real-world taxi trips data,
and a population model including social preferences based on
user surveys. The results demonstrate improvement in riders’
social compatibility, without significantly affecting the vehi-
cle miles for the service provider and travel time for users.

Introduction

Dynamic ridesharing services, such as UberPool and Lyft-
Line, are becoming an increasingly popular means of com-
mute, especially in large cities (Chan and Shaheen 2012;
Bathla et al. 2018). Dynamic ridesharing is characterized
by matching multiple requests that arrive in real-time, for
a one-way and one-time trip. We consider a setting in which
a service provider operates a vehicle fleet and schedules cars
to pick up and drop off passengers in response to a stream of
requests, which includes matching requests with each other.
There are two important factors that explain the growing at-
tractiveness of DRS for customers: (i) cost effectiveness and
(ii) ease of finding a ride in large cities where it is compara-
tively hard to find a taxi otherwise. For a service provider,
dynamic ridesharing helps serve customers with possibly
fewer vehicles, thus reducing their operational cost.

A common objective for optimizing riders’ satisfaction in
existing ridesharing systems is to minimize travel time (Ma,
Zheng, and Wolfson 2013; Agatz et al. 2012; Bathla et al.
2018). In practice, however, there are many other factors that
affect user satisfaction in dynamic ridesharing, apart from
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Figure 1: An example illustrating the influence of social
preferences in trip formation. P denotes a pickup location
and D denotes a dropoff location. A trajectory that maxi-
mizes operational value to the service provider is shown in
(a). Incorporating and satisfying users’ social preferences
may lead to modification in the trajectory (b) or result in
a different trip formation (c).

travel time. Since a user could be traveling with strangers in
the ride, their compatibility plays a major role in the user’s
satisfaction. In fact, there is growing evidence that desire for
personal space and security when riding with strangers pose
a major barrier to using ridesharing for many users (Tao and
Wu 2008; Agatz et al. 2012). For example, a female pas-
senger may prefer to ride only with female co-passengers.
The user may have a different set of preferences depending
on the time of day and the location — preferences are trip-
specific and not necessarily user-specific.

Consider a scenario with three requests where r; and o
are male and r3 is a female passenger. Let these requests
arrive at the same time (Figure 1), such that optimizing the
operational value for the service provider forms a trip with
these requests (1(a)). However, this may violate the users’
social preferences and the trip may need to be altered to sat-
isfy the preferences, such as the following:

e If the passengers prefer riding with co-passengers of
the same gender but are indifferent to riding with co-
passengers of a different gender, then it is desirable to
minimize their ride time overlap in the vehicle by alter-
ing the pick up and drop off order (Figure 1(b)); and

e When the riders prefer co-passengers of the same gender
and wish to avoid co-passengers of other gender, then it
is better to form two trips (Figure 1(c)).



If the service does not provide a mechanism to express such
social preferences and forms trips that violate these prefer-
ences (as in 1(a)), the customers may not use the service.
Current DRS, however, do not account for social prefer-
ences in their optimization, despite being indicated as a ma-
jor concern for users in several surveys (Agatz et al. 2012;
Michalak et al. 1994; Furuhata et al. 2013; Svangren, Skov,
and Kjeldskov 2018).

We present DROPS (Dynamic Ridesharing Optimization
using social PreferenceS), a dynamic ridesharing framework
that facilitates incorporating social preferences of the users
in the trip formation process. A weight vector over pref-
erences indicates the importance of each factor in deter-
mining the trip value to the user. The goal is to form trips
that optimize both operational value for the service provider
and value of the trip to the passengers, which incentivizes
them to continue using the service and benefits the service
provider. The value of a trip to a user is calculated based
on their social compatibility with other co-passengers, the
ride time, and ride cost. We solve this bi-objective optimiza-
tion problem using scalarization (Roijers et al. 2013), which
solves a linear combination of the multiple objectives. The
relative importance of each objective can be controlled us-
ing the weight vector for the objectives. Given a set of riders,
we evaluate their potential shared trip using an optimal tra-
jectory planning algorithm. Candidate trips are formed using
our real-time greedy algorithm that adds customers to a trip
only if the trip’s value is above a certain threshold.

We consider three basic social factors — age, gender, and
user rating— along with a time preference indicating if the
user is in a rush. The viability of factoring social preferences
into the trips scheduling process is evaluated empirically.
The experiments examine the impact of matching with so-
cial preferences (social matching) on users and the service
provider. We test our approach on a real-world taxi trips
dataset and compare the results with that of three baselines,
each focusing on optimizing different components of the ob-
jective for trip formation. The population model and pref-
erences used in our experiments were acquired using web-
based user surveys, which was conducted in two phases and
had 489 responses. The survey was conducted specifically
to determine how different potential riders evaluate social
ridesharing. Our results show that incorporating social pref-
erences of users in the trip formation improves the overall
user satisfaction, without significantly affecting the opera-
tional cost for the service provider.

Our primary contributions are: (i) presenting DROPS, a
system for dynamic ridesharing with social preferences; (ii)
proposing a real-time greedy algorithm for trip formation;
and (iii) extensive empirical evaluation showing the benefits
of social matching in dynamic ridesharing using real-world
taxi data and a population model based on user surveys.

Related Work

Dynamic ridesharing has gained popularity since the early
2000’s due to the cost benefits it offers to the users and
service providers, apart from its contributions to sustain-
able environment resulting from efficient vehicle usage. Dy-
namic ridesharing is characterized by user requests that ar-

rive in real-time and are matched with vehicles (Levofsky
and Greenberg 2001). Another popular ridesharing setting
is the car-pooling where users travel together for a partic-
ular purpose and the trips are usually recurring (Chan and
Shaheen 2012). Our work differs from car-pooling as we fo-
cus on a dynamic ridesharing setting with a service provider
who operates the vehicle fleet instead of individual car own-
ers and trips that are typically non-recurring.

Optimizing dynamic ridesharing services has been an ac-
tive research area, attracting researchers from diverse fields
such as operations research, transportation, and artificial
intelligence (Agatz et al. 2012; Chan and Shaheen 2012;
Di Febbraro, Gattorna, and Sacco 2013; Alonso-Mora et
al. 2017). Existing literature on dynamic ridesharing can be
classified broadly based on the objective function and the
solution method employed. Optimization-based approaches
are the common solution technique employed (Santos and
Xavier 2013; Ma, Zheng, and Wolfson 2013; Di Febbraro,
Gattorna, and Sacco 2013; Biswas et al. 2017; Alonso-
Mora et al. 2017; Dickerson et al. 2018; Bei and Zhang
2018). Other approaches include partition-based (Pelzer et
al. 2015), auction-based mechanisms (Cheng, Nguyen, and
Lau 2014), and genetic algorithms (Herbawi and Weber
2012). Researchers have employed these techniques largely
to optimize the routing or travel time (Furuhata et al. 2013;
Agatz et al. 2012; Herbawi and Weber 2012; Pelzer et
al. 2015; Santos and Xavier 2013; Biswas et al. 2017).
Specifically, the commonly used objectives for determin-
ing ridesharing matches are: (i) minimizing system-wide
vehicle-miles; (ii) minimizing system-wide travel time; and
(iii) maximizing number of participants.

A critical missing component of these objectives is the
in-ride user experience. Numerous studies have outlined
the need for learning and understanding user preferences
in the context of ridesharing, beyond simple factors like
time windows (Chan and Shaheen 2012; Agatz et al. 2012;
Thaithatkul et al. 2015). Multiple surveys have acknowl-
edged that it is essential to account for users’ social pref-
erences to improve dynamic ridesharing (Agatz et al. 2012;
Di Febbraro, Gattorna, and Sacco 2013; Furuhata et al.
2013; Selker and Saphir 2010; Chan and Shaheen 2012;
Montazery and Wilson 2016; Tao and Wu 2008; Miller and
How 2017; Svangren, Skov, and Kjeldskov 2018; Bistaffa,
Farinelli, and Ramchurn 2015). To address this discrepancy,
we present a dynamic ridesharing framework that allows
for representing and satisfying the social preferences of the
users in trip formation.

Problem Formulation

The DROPS framework facilitates customizing rides to im-
prove user compatibility by incorporating the social prefer-
ences of users. Let R? denote the finite set of unserved (non-
dispatched) requests at time ¢ and V! denote the finite set of
available vehicles at time ¢. Each request r € R® is denoted
by (s, e, i, p, U). Each vehicle v € V' is denoted by the tuple
(ID,w). Refer Table 1 for the definitions of variables and
constants employed in the formulation.

We consider social preferences in each request that corre-
spond to three social factors: age, gender, and rating of users.



Additionally, we consider a time preference to indicate if the
user is in a rush. We identified these factors based on the re-
sults of our user surveys, conducted specifically to determine
user expectations in ridesharing services. The preferences
(p) are denoted as +1, —1, or 0, indicating the user’s desir-
ability, undesirability, or indifference about a certain value
of a factor. For example, a preference of 41 for rating > 4
denotes that the person prefers riding with co-passengers
who have a minimum rating of 4, and a preference of —1 for
rating < 3 denotes that the person wishes to avoid riding
with co-passengers who have a rating of 3 or below. That
is, if rating on a scale of 1 to 5 is treated as a vector, then
these preferences are denoted as (—1, —1, —1,+1,+1). The
weights 1 = [wy, wa,wy, ws]T correspond to the time, age,
gender, and rating, respectively.

A solution to an instance of this problem is a set of trips A,
where each trip A € A is a matching of requests to a vehicle
and is denoted by (R, v, 7). The value of a trip is denoted by
V(). The objective is to maximize the cumulative value of
all trips dispatched in a given horizon H,

max Z Z V(A).

teH A\eA?t

Multi-objective formulation Since the goal is to sched-
ule trips that maximize the operational value for the service
provider as well as maximizing the overall user value, this
is naturally a bi-objective optimization. To solve this, we
employ scalarization (Roijers et al. 2013), which projects a
multi-objective value to a single scalar value by parameter-
izing the objectives using a weight vector. The weight value
for each objective indicates its relative importance, thus re-
sulting in a single objective function for optimization. Let
B, denote the weight corresponding to the operational value
and let 3, denote the weight corresponding to the user value.
Then, VA, the trip value is:

V) =80 ) (e —dy) = +Bu Y (ar +dr) (D)

rERy reERy

———

operational value user value

The operational value and the user value are measured in
dollars ($) and normalized to the same scale before scalar-
ization. The operational value to the service provider de-
pends on the cost of operating the vehicle for the trip c}
and the amount paid by the riders, which is the difference
between the amount charged for the trip (z,.) and the dis-
count offered for using ridesharing (d,.). The value of the
trip to a user depends on the user utility (c,-) and the dis-
count gained for using ridesharing (d,.). The user utility («,.)
is the difference between the users’ social compatibility with
all their co-passengers and the extra travel time incurred by
using ridesharing. The social compatibility for a request is
calculated as the cumulative weighted difference between
the preferences p,. and demographics of each co-passenger.

We now explain the social utility calculation using a
simple example. Consider two requests r; (female) and 75
(male) that arrive at the same time and have the same source
and destination coordinates, same age (30), and rating (4).

Variables Definitions

At Set of trips formed at time ¢

V(N) Value of trip A

Bos Bu scalarization weights

Ry ={r1,...7} | Setof requests matched for the trip

cx Cost of using the vehicle for the trip
corresponding to the ride route 7

Wy Passenger capacity of vehicle

Sy, €r Start (pick-up), end (drop-off)
locations of r for the trip

Qy User’s social utility

T, Amount charged to r for the trip

d, Discount for using ridesharing

iy Request initiation time

Dr Social and time preferences of r

Wy User’s weights for preferences p,.

U, User demographics: {age, gender,
rating}

1D, Vehicle ID

Table 1: Notations

rq prefers (4-1) female co-passengers with age in the range
20-40 with rating > 4 and expresses undesirability (—1) for
all other values of social factors. Let the weights of these so-
cial preferences be wi;, =[0.3,0.3,0.2,0.5]7, corresponding
to time, age, gender, and rating. The social compatibility for
71 with respect to 72 is 0.3 — 0.2 + 0.5 = 0.6. Let the extra
trip time be 2 minutes, then a,;, = 0.6 — 0.3 %2 = 0.

Solution Approach

Given a set of requests and vehicles, our solution approach
consists of two components: (i) trip formation and (ii) trip
dispatch. Figure 2 is an illustration of our solution ap-
proach. In each decision cycle, the trip formation component
matches requests with each other and to vehicles, and the
dispatch component decides which trips are dispatched. We
restrict the scope of matching in this paper to requests and
vehicles that have not been dispatched. That is, we do not
consider a vehicle en-route (already driving on the road) in
the scheduling process and therefore do not match requests
to such vehicles. The route planner calculates the optimal
trajectory for picking up and dropping off a given set of re-
quests.

Trip Formation

In this phase, requests are matched with other requests and
assigned a vehicle to form a trip. The matching is performed
using a greedy approach outlined in Algorithm 1. The in-
put to the algorithm is the set of requests and a trip value
threshold § that indicates the required minimum improve-
ment in trip value to form trips. The algorithm adds a request
to the best trip (maximum improvement) that improves the
trip value at least by a factor of ¢ and if the trip size has
not exceeded the maximum capacity of the vehicle (Lines
7-16). Standard hyperparameter tuning or sample average
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Figure 2: Overview of the solution method.

approximation (Kleywegt, Shapiro, and Homem-de Mello
2002) may be used to estimate J. The trip value is estimated
using Equation 1.

Each request is assigned to the best trip that satisfies the
threshold improvement. If no such trip is found, then a new
trip is created with the request (Lines 19-22). This ensures
that all requests are associated with a trip. The route planner
computes trajectories that determine the pick up and drop
off order for a given set of requests. All possible trajectories
are generated and the one that maximizes the trip value for
a given set of requests is selected as the route 7 for the trip.
During the trip formation, the best route is updated whenever
a new request is added to a trip (Line 8, 21). The output of
this algorithm is the set of all trips formed, A’

Partitioning Requests for Scalability The computational
complexity of the matching algorithm discussed above in-
creases rapidly with the increase in number of requests. To
counter this computational complexity, we exploit the notion
of independence among requests. Two requests ¢ and r are
said to be independent if serving them together in the same
trip is not desirable in terms of trip value. Hence, all the re-
quests over different days or requests with non-overlapping
source-destination pairs are independent. The requests can
be partitioned based on their dependence and matches may
be formed among each partition in parallel. Sometimes, it is
non-trivial to estimate an exact partitioning of requests with
respect to routes, without forming trips and calculating the
best route possible. In such cases, the underlying map may
be partitioned into geographic zones to form trips in each
zone independently by considering the requests originating
in that zone, as in our experiments.

Trip Dispatch

The trips formed in the matching phase are dispatched in this
phase if at least one of the following conditions is satisfied:
(i) trip value is above the predefined dispatch threshold; or
(ii) a request in the trip has remained unserved for a certain
period of time since its arrival (queue time). The dispatch
threshold for trip value and the queue time for the requests
are determined by the service provider. For example, all re-
quests that are unserved for five minutes or more since their
arrival time may be dispatched irrespective of the trip value,
depending on vehicle availability. In our experiments, trips

Algorithm 1: Greedy Matching (R¢, §)
1 AT
2 foreachr € R’ do

3 matched = false
4 | if|A"| > O then
5 Abesta >\rem <~ @
6 Best_Value = —c0
7 foreach \ € A’ with |Ry| < w do
8 Calculate best route for X' = \ +r
9 if W > §and V(N') > Best_Value
then
10 )\T'BTVL — >\7 Abest — )\,
1 Best_Value = V' (Apest)
12 matched = true
13 end
14 end
15 if matched = true then
16 ‘ AY e (A"\Arem) U Apest
17 end
18 end
19 if matched = false then
20 Create new trip A with request r
21 Calculate best route for A
2 At — ATU N
23 end
24 end

25 return A’

that satisfy the queue time threshold are given a higher pri-
ority over the trips with lower queue time but higher trip
value. This ensures that certain requests do not remain un-
served forever due to lower trip value. The trips are then
dispatched based on availability of vehicles, V!. At the end
of decision cycle ¢, all unserved requests — requests in trips
that are not dispatched — are added to the requests set for
the next decision cycle, R!*1.

Experimental Results

The experiments evaluate the impact of using social prefer-
ences in ridesharing, with respect to users and the service
provider. We built a realistic simulator of ridesharing using
the Chicago taxi trips dataset' and a population model based
on extensive user surveys. We compare the results obtained
using social preferences in dynamic ridesharing matching
(SM) with that of three baselines: (B1) maximizing only the
operational value, 5, = 0,5, = 1; (B2) maximizing only
user value, 3, = 1, 8, = 0; and (B3) maximizing the com-
prehensive trip value in Equation 1 but without considering
user’s social preferences corresponding to age, gender, and
rating, w, = 0, wyg = 0, ws = 0, for the trip formation. Al-
gorithm 1 is used to form trips using each baseline objective.

The algorithms and the simulation system were imple-
mented by us on an Intel Xeon 3.10 GHz computer with
16GB of RAM, using a homogeneous vehicle fleet with a

"https://data.cityofchicago.org/Transportation/Taxi-
Trips/wrvz-psew
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Figure 3: Heat map of the operational (Op.) value and user value corresponding to different weights in each zone.

Figure 4: A map of Chicago divided into zones.

seat capacity of 4 for the evaluation. Each decision cycle is
30 seconds in real-time and the horizon H is one day. We
assume that the number of vehicles is not bounded since the
benefits of social matching are best illustrated in this case
and all techniques are equally affected by vehicle restriction.
We set the trip threshold § to zero for the greedy algorithm;
requests are added to the best trips possible as long as the
current value of the trip is not diminished. This allows us
to examine the benefit of social matching uniformly across
zones by using a conservative value. However, in practice
this hyperparameter may be tuned to further optimize per-
formance subject to the service provider’s objective. The re-
quest queue time threshold for dispatch is set to five minutes.
The travel time and distances are calculated using straight
line distances between the coordinates and a vehicle speed of
30 miles per hour. While these experiments do not account
for the actual routes and traffic conditions, these factors are
not likely to change the relative merits of each approach and
the conclusions of the study.

Population Model and Dataset

The population model considered in our experiments is
based on the results of online surveys that was conducted
in North America. The survey had 489 responses which in-
dicated that users would like to be matched with people who
are similar to them. The demographic information such as
age and gender, for our experiments, is drawn from the ac-

tual Chicago demographic distributions>. The preferences
(p) and the weights () are based on the survey results. The
survey also indicates that some users are unwilling to use
ridesharing when social preferences are not taken into ac-
count. To reflect this, certain users were marked as reluctant
for ridesharing in the absence of social matching and these
users were always dispatched as solo rides, when forming
trips with the baseline objectives.

The Chicago taxi trips data consists of trip-specific infor-
mation such as start time and end time of the taxi ride, trip
duration, trip fare, and the latitude and longitude coordinates
for pick up and drop off locations along with the geographic
zone corresponding to these locations. A map of Chicago di-
vided into zones® is shown in Figure 4. We partition the data
from each zone into training and testing sets. The weights
for scalarization were estimated empirically using the train-
ing data (Figure 3). In Figure 3, the x-axis is the weight for
operational value (3,) and the y-axis denotes the weight cor-
responding to user value (3,). The weights used for the test
sets are 5, = 0.8 and 3, = 0.6 for zones 8 and 28, and
we used 3, = 0.5 and 8, = 0.5 for experiments on zone
56. Our algorithm is evaluated along different metrics on the
test set which uses data from two consecutive weeks in April
2015. We consider requests originating in zones 8, 28, and
56, whose requests densities are high, medium, and low re-
spectively. The average number of requests per day in each
of these zones is 20000, 7000, and 1500 respectively.

Analysis of Tradeoffs

Since user value and the operational value are often com-
peting metrics, we analyze the quality of trips formed with
respect to each of these.

Impact on Users We measure the impact on users based
on the total user value (Figure 5), average social utility per
minute (Figure 6), and the increase in ride time, relative to a
solo trip (Figure 7).

Trips formed by maximizing operational value (B;) have
the least user value across all zones, as expected. Our ap-
proach (SM) achieves user value close to that of optimiz-

“http://chicago.areaconnect.com/statistics.htm
*https://en.wikipedia.org/wiki/Community_areas_in_Chicago
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Figure 7: Average increase in ride time of users compared to
solo rides. Our approach, on average, increases the ride time
by at most 2.5 minutes, well within the acceptable range
found in our user surveys.

ing for user value alone (B3), and sometimes better than
Bs. This is because, in some cases, the values of the trips
formed by optimizing B> objective may not meet the dis-
patch threshold in which the case the trips are dispatched
after five minutes, which eventually reduces the user value.
Our approach overcomes this drawback by optimizing for
both the objectives, providing greater cumulative value for a
given trip and enabling it to be dispatched more quickly.
The social utility («,.) per minute measures the average
social compatibility of users with their co-passengers. To ac-
count for the different ride times of the trips, we measure the

average utility per minute, along with standard error (Fig-
ure 6). We observe that SM consistently performs similar to
or better than B, showing that the user value is improved
through better matching, and not merely based on the ride
time or discount offered.

We also evaluated the increase in ride time of the different
techniques, compared to solo ride (Figure 7). The average
ride times are in the range 10-20 minutes for requests origi-
nating in zones of interest. Though the increase in ride time
of our technique is around three minutes, note that rideshar-
ing, in general, incurs additional ride time. The increase in
ride time of our technique is well within the range that users
consider acceptable (at most 5 minutes) according to the sur-
vey results. The social compatibility typically offsets the in-
crease in ride time for the users, thus resulting in increased
user utility when forming trips using our approach.

Impact on the Service Provider The impact on service
provider is determined based on the operational value and
the total miles driven, to give a sense of degree of variation
induced by social matching on the trip routes and quality of
service. As expected, objective By achieves the highest op-
erational value and maximizing Bs objective has the lowest
operational value (Figure 8). The operational value achieved
by our approach (SM) is closer to that of By, with a slightly
higher miles driven (Figure 9) and higher user utility. The to-
tal number of trips formed by our approach is also compara-
ble to that of B;. This shows that our approach improves the
quality of trips without significantly affecting the total miles
driven or the cost of operating the service by the provider.
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Scalability and Robustness

Since matching is performed every 30 seconds, it is impor-
tant to ensure that the matching algorithm is fast so that it
may be effectively used in real-time. The run time (in sec-
onds) of our matching algorithm is 0.5 on average in the
zone with high request density (zone 8), 0.12 in zone 28, and
0.003 in zone 56, demonstrating the scalability of DROPS.

We also compared our matching algorithm to a hindsight
greedy matching with access to all the requests in a day, in-
cluding future ones. The purpose of this experiment is to
evaluate the gain in operational value and user value that
could be achieved when knowledge of future requests is
available. We compare the total operational value obtained
using our approach with that of optimizing only for oper-
ational value with all requests in a day. Similarly, the total
user value obtained with our approach, with requests arriv-
ing in real-time, is compared with that of optimizing for user
value only and with access to all requests in a day. Trips are
formed using the best-fit greedy algorithm (Algorithm 1) for
our approach and for the hindsight evaluation.

The results, summarized in Table 2, show that our ap-
proach achieves at least ~89% of the operational value and
up to ~84% of the user value compared to the hindsight

Metri Zone Zone 8 | Zone 28 | Zone 56
etrics

Operational Value | 91.96% | 93.03% | 89.87%
User Value 83.62% | 82.43% | 66.71%

Table 2: Performance relative to hindsight optimization.

matching in all three zones, indicating that any prediction
method of future requests would yield very limited perfor-
mance gains in the operational value. However, some im-
provements in user value could be achieved with knowledge
of future requests by forming trips where the users have a
higher social compatibility with co-passengers.

Conclusion and Future Work

Dynamic ridesharing is an increasingly appealing commuter
option. However, numerous surveys have indicated that
users’ concerns, primarily about the social characteristics of
co-passengers, pose a major barrier to using ridesharing for
a segment of the population. We present the DROPS system
for optimizing dynamic ridesharing with social preferences
and present an efficient real-time matching algorithm that
can handle effectively high density zones.

Our results demonstrate that factoring social preferences
into the matching process helps improve the user value,
without significantly affecting the operational value to the
service provider. Furthermore, survey results indicate that
services that perform social matching are likely to incen-
tivize more individuals to use the service. We conclude that
while social matching is beneficial overall, it is not always
guaranteed to result in improved performance. Factoring so-
cial preferences into the matching process is most beneficial
in zones with a high request density per decision cycle and
greater compatibility among ridesharing users.

In the future, we aim to examine ways to extend the
matching model to consider nearby trips that have already
been dispatched and are currently en-route. We will also



consider more complex ways to factor the competing ob-
jectives using more general multi-objective planning algo-
rithms (Wray, Zilberstein, and Mouaddib 2015). Addition-
ally, based on the performance analysis of our approach with
that of a hindsight trip formation, we aim to employ a pre-
dictive model for future requests to improve the user value.
While we anticipate some performance gains, we do not ex-
pect the relative benefits of social matching to diminish.
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