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ABSTRACT 

 
We present a framework for automatically ordering image patches that enables in-depth 

analysis of dataset relationship to learnability of a classification task using 

convolutional neural network. An image patch is a grou p of pixels resid ing in a 

contin u ou s area contain e d in the sample . Our preliminary experimental results show that 

an informed smart shuffling of patches at a sample level can expedite training by 

exposing important features at early stages of training. In addition, we conduct 

systematic experiments and provide evidence that CNN’s generalization capabilities do 

not correlate with human recognizable features present in training samples. We utilized  

the framework not only to show that spatial locality of features within samples do not 

correlate with generalization, but also to expedite convergence while achieving similar 

generalization performance. Using multiple network architectures and datasets, we 

show that ordering image regions using mutual information measure between adjacent 

patches, enables CNNs to converge in a third of the total steps required to train the same 

network without patch ordering. 
 

 

1    INTRODUCTION 

 
Adva nc e s in Deep Lear nin g (DL) and Conv olu tio na l Neura l Netw or ks (CNN ) have dram at ic a l l y  

impro ve d the state- of -the - ar t in compu te r vision tasks.  Many of these brea kth ro ug h s are attribute d to the 

succe ssiv e featu re ext rac t ion and an increa sin g abst r a ct repre se nta t ion of the underly ing training dat a 

using multi - stag e simple oper at ion s such as conv olut io n. These opera t ion s posse ss seve ra l mod e l  

para m ete r s such as conv olut ion filter whic h are traine d to ampli f y and refine infor m a tio n that are relev a n t  

to the classi fic a tio n, and to suppr e ss irrele v an t infor m at io n (Ian Goodfellow et al., 2006). The traini n g  

proce d u re uses backp ro p a ga tio n algori thm with super vision . This algorith m comb ine d with Stocha s t i c  

Gradie nt Desc e nt (SGD ), attem pts to minim iz e the over al l erro r or devia tio n from true label by compu t i n g  

the error grad ien t of each para m e te r and by perfo rm in g smal l upda te s in the opposi te direct io n. Desp i t e  

thei r succ e ss, theore tic a l char ac te riz at ion of deep learnin g and CNN s is still at its infanc y and valua b l e  

corre lat io ns such as numbe r of layer s need ed to achie ve a certain perfo rm a n c e are not wel l under sto o d .  

However, the success of deep learning has spawned many research avenues in order to explain deep 

network’s exceptional generalization performance (Saxe et al., 2018) (Mehta and Schwab, 2014) (Pai, 

2016; Tishby and Zaslavsky, 2015). One promising theoretical characterization of deep learning that 

supports an intuition that motivated this work is the characterization that uses an information theoretic 

view of feature extraction. In particular it is based on the information bottleneck (IB) method which is 

concerned with the problem of how one extracts an efficient representation of relevant information 

contained in a large set of features (Slonim, 2002). Saxe et al., (2018) proposes to study deep learning 

through the lens of information theory using the IB principle. In this characterization, deep learning is 

modeled as a representation learning. Each layer of a deep neural network can be seen as a set of 

summary statistics which contain some of the information present in the training set, while retaining as 

much information about the target output as possible (Saxe et al., 2018). In this context a relevant 

information, of a cat vs dog classification task for instance, is the information pat tern present in all the 

cat samples useful for predicting any picture of a cat. With this view, the amount of information relating 

the training set and the labels encoded in the hidden layers can be measured over the course of training 

(Tishby and Zaslavsky, 2015). Inspired by this view, we use information theoretic measures of entropy 

extended to measure image characteristics, to develop preprocessing techniques that enable rob ust 

features extraction during training. One relev a nt insigh t prese nte d in these pape r s is that the goal of DL 

is to captu re and efficie n tly repr e se nt the relev a nt inform a t ion in the input varia b le that desc rib e the outp u t  

variab le.  This is equiv ale nt to the IB meth od whose goal is to find maxim a lly comp re sse d mappin g of  
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the input while prese rvin g as much relev a nt inform at ion of the output as possible . This chara cte riz a t i o n  

leads us to ask the quest io n: 

 
1 Can we utilize inform a tio n theoret ic techniq ue s for imag e s to make trainin g efficie nt? Part ic ula rly, 

can we prep roc e ss training set and feature maps such that the relev an t inform at io n is captu re d in the 

early stage s of training ? 
 

In superv ise d learnin g, we are intere sted in good featu re repre se nta tio n s of the input patte rn that ena b l e  

good predict io n of the label (Janocha and Czarnecki, 2017). As a result , a training set for ima g e  

classi fic a tio n tasks that employ superv ise d learnin g, is const r uc te d with the help of huma n labele r .  For 
instan ce , for a cat vs dog classi fica t ion proble m , the huma n labele r must cate go riz e each sample into 

eithe r one of the classe s. Durin g this proce ss, the labele r must recog niz e and classi fy each input usin g  

thei r own expe rie nc e and distin guis hing capa b il i tie s. Considering this, a natural question we first must 
answer before addressing the question above is : 

 

 Does human classi fic a tio n perfo rm a nc e on the training dataset affect learna bi l ity of the task? 

 
In other word s, can the netw or ks learn from ‘scra m ble d ’ sample s that cann ot be classi fie d by the nak e d  

eye? This questio n was investig a ted in Zhang et al. (2016) with intrig uin g outco m e s. The aut h o r s 

prese nte d resul ts that indicate that CNN s are capa ble of easi ly fitting trainin g set conta inin g sample s that  
have no corr ela tio n with labels (see Fig.  3 for illust ra tio n ).  These resul ts have us recon side r the tradi ti o n a l  

view that netw or ks build hiera rc hy of featu re s in incre asin g abst r a ct ion , i.e., learn combin at ion pixels that  

make edges in the lower layers, learn combin at ion s of edge s that make up objec t parts in the mid d l e  
layers, learn combin at ion s of parts that make up an object the next layer etc. . . . This view is challe n g e d  

by the finding s highl ig hte d in Zhang et al. (2016) and in this pape r (see sectio n V for detail ) .  We use the 

infor m at io n theor et ic chara cte riz a tio n of deep learnin g to shed light on the quest ion s by deve lo p i n g  
prepr oc e ssin g and learnin g techniq u es that reduc e conv er ge n c e time by improv ing featu re s ext ra c t i o n  

from imag e s using mul ti la ye r e d CNN s. We first rule out that huma n reco gn iza b le featur e s matc hin g lab e l s  

are not nece ssa r y for CNN s and that they are able to fit trainin g set contain ing scram b led samp les wi t h 
minim a l impa ct on gene ra l iza t ion . Equip p ed with this resul t we then utilize simi la rity and inform a t i o n  

theore ti c measur es of imag e char a cte ristic s to prep ro c e ss and ease featu re extra c tio n from image s dur i n g  

training . Our methods aim to expose important features of each training sample earlier in training by 
reorganizing image regions. The contrib ut ion of our appro ac h are: 

 

1.  We provid e a framework and algori thm s for prepro c e ssing datase t to reorder image patches usin g 
techniq ue s that minim iz e mutual entro p y of adjacent image patches of each training sample.     As 

the resul ts demon st ra te , orga niz ing patch es , of each training sample using measures such as entropy 

of a patch and mutual inform a t ion index betwe e n patch es enable faste r conv e rg e nc e . 
 

2. We prese nt several techniqu e s for rankin g samp les that use inform a tio n theore tic measur e s of the 

relat io nsh ip betwe e n adjac e nt patche s and prese nt resul ts that show faste r conv e rg en c e comp ar e d to 
stand a rd training .   

 

Inception (Szegedy et al., 2015) architecture, known for achieving exceptional results on image 

classification tasks, is used for evaluation. The network is first evaluated on the corresponding datasets 

to create baseline reference performance metrics for comparison. For each network we used Adams 

optimization technique with cross -entropy loss to gather emperical training, validation and test data.  

 

The remaining content is presented as follows. In section 2, we present the patch ordering approach and 

highlight the design and implementation of algorithms used to preprocess data and feature maps based on 

patch ordering. In Section 3, we discuss the experimental setup. Then, section 4 presents analysis of our 

results obtained by training Inception using multiple unmodified and patch-ordered datasets. Finally, we 

conclude by offering our insight as to why the outcomes are important for deep learning and future 

generation networks. 

 

2  PATCH ORDERING FOR ROBUST FEATURE EXTRACTION  
 

The succe ss of CNNs stem from thei r abili ty to autom a tic a lly learn featur e extra cto rs . Durin g traini n g , 

CNN s const r uc t hierar c hy of featu re repr e se ntat io ns and use super po sit io n of the hiera rc hic al featur es   
 

                                                                         
1 This work is supported in part by NSF award # 1301885  
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when gene r al izin g to unse en input (Ian Goodfellow et al. 2006).  How e v er , we belie ve learnability of a 

classi fic a tio n task is close ly relate d to the amoun t of infor m a tio n conta ine d in the datas et that ena b l e  

disting uish a bi li ty of one class from the others.  To furth e r explo re this claim , we developed techniques  
and condu cte d seve ral expe rim e nts by prep ro ce ssin g training set using vario u s techniq u es .  Th e 

techniq ue s and the gene ral proce d ur e used are describ e d below . The resul ts are summ a riz e d in sectio n 4. 
 

2.1  PATC H ORDER I N G 

 
Our intuit io n is that some order ing at a sample level can exped ite trainin g by expo sing featu re s that  are 
importa nt for sepa ra tin g the classe s in the early stage s of training . 

 

For illust ra t ion , consid e r the toy image s in Fig. 1. If a person with know le dg e of the numb e r syste m , wa s 

asked to classi fy or label the two image s, they can give sever al answ e rs depe nd ing on thei r expe rie n c e s . 

At first glanc e , they can label a) as ‘larg e numb e r 1’ and b) as ‘larg e numb e r 2’. If they were asked to 

give more detai l s , upon elabor at ion of the conte xt , the labeler can quick ly scan a) and real iz e that it is a 

pictur e of digit s 0 throu gh 9.  Simila rly , b) would be classi fied as such, but analyz in g and classi fyin g b) 
can cost more time beca us e the labele r must ensure ever y digit is prese nt (we enco ur a ge the reade rs to do  

the expe rim en t). It’s the time cost that is of intere st to us in the conte xt of learnin g system s. The mer e  

order ing of the numb e rs enable s the labeler to classi f y a) faste r than b). 

 Given this intui tio n , we aske d if orde ring patche s of trainin g imag es such that the adjac e nt patch e s  are 
‘close r’ to each other by simila ri ty measur e , could expe di te training and improv e gene ra liz a t ion .  Based  

on the menta l exer cise , the proce d ur e can intuit ive ly be justi fie d by the fact that toy sample a) is easie r to 

classi f y beca use , as our eyes scan from left to right the featu re s (0,1,2 . . .) are captur ed in orde r.  Whe r e a s  
it might take sever al scan s of b) to deter min e the same outcom e . Convo lut ion based featur e ext ra cto rs use 

a simi lar conc e pt to captu re featu re s used to disting uish one class from the others. The featu re s are 

ext rac te d by scan nin g the input imag e using conv olut ion filter s.  The output of conv olut ion at each spa t i a l  
locatio n are then stack e d to const ru ct the featu re map.  Imple m e nta t ion of this oper at ion in most dee p  

learnin g frame w or ks maintain spat ia l locatio ns of featur e s whic h then can be obtain e d by deco n vo lut i o n .  

In other word s, there is a one-to -o n e mappin g betw e e n the locatio n of a featu re in a feature map and i t s  
locatio n on the origina l input (Fig.2 .). Note that the featur e map not only encod e s the featu re (ear or hea d ) 

but it also implic it l y encod e s the locatio n of the featu re on the input imag e (gree n arro w in Fig. 2.). Th e 

enco din g of locat io n is requir e d for detect io n and local iz at io n tasks but not for classi fic a tio n tas k s .  
Another questio n that arise s from these observ a tio ns is: 

 

Can we control feature map constr uc tio n such that the resul tin g feature map has char ac te rist ic s that 
enable s efficie nt learnin g while main tainin g or improv ing gene ra liza tio n? 

 

To answ e r this quest io n, we searched for DL characterization that aligns with this intuition and found 

the work of Tishby and Zaslavsky (2015) captures this intuition by relating DL training from images to 

the Information Bottleneck principle (discussed below). While the authors discuss IB in the context of 
the entire training set and end-to-end training of deep networks, our exploration is limited to individual 

training samples and aim to expose information that can be captured and presented to the network. We  

deve lop e d techn iqu e s to reco nst r uc t training image s by brea king up the inputs into equal sized pat c h e s 
and reco n st r uc t them using the conce pt of orde ring (Fig.3 ). Infor m at io n-th e or y- ba se d and tradit ion a l  

 

 
 

 1            

             

    

 2             
 



Unde r revie w as a conf er e nc e pape r at ICLR 2019 

4 

 

  

 
measu re s of imag es were used for ranking and orde ring . These measu re s can gene r al ly be divide d into 

two: 

 
1.  Standalone measures –mea su re some char a cte rist ic of a patch. For exam ple , the peak signal - to-

noise ratio meas ur e retur ns a ratio betw e en maxim u m useful signal to the amoun t of noise prese nt in 

a patch .   
 

2.  Similarity measures – these measures on the other hand, compare a pair of patch e s.  The comp a r i s o n  

measu re s can be measur e s of simila ri ty or dissim i la ri ty like L1-no rm  and structu ral simi la rity or 
infor m at io n-th e or et ic -m ea su re s that comp a re distri b ut ion of pixel value s such as joint ent rop y.  Th e 

measu re s discu sse d in subsec t ion s below  are L1-n o rm , L2-n o rm , Struc tur al Simi lari ty , Joint Entr o p y , 

KL-D iv e rg en c e , and Mutua l Infor m at io n. 

 

Below we summarize the measures and present the sorting and reconstruction algorithm. The results are 

summarized in Section 4. 

 

2.1 .1  ENT RO PY -B A SE D MEA SU R E S FOR PATC H  ORD E R IN G  

 

2.1 .1 .1   ENTROPY  

 
Information theory provides a theoretical foundation to quantify information content, or the uncertainty, 

of a random variable represented as a distribution (Cover and Thomas, 2006; Feixas et al., 2014). 

Information theoretic measures of content can be extended to image processing and computer vision 

(Leff and Rex, 1990). One such measure is entropy. Intuitively, entropy measures how much relevant 

information is contained within an image when representing an image as a discrete information source 

that is random (Feixas et al., 2014). Formally, let X be a discrete random variable with alphabet 𝜒 and a 

probability mass function 𝑝(𝑥), 𝑥 ∈ 𝜒. The Shannon entropy or information content of  𝑋 is defined as  

 

𝐸(𝑋) =  ∑ 𝑝(𝑥) log
1

𝑝(𝑥)
𝑥∈𝜒

                                                                                  (1) 

 

where 0log ∞ = 0  and the base of the logarithm determines the unit, e.g. if base 2 the measure is in bits 

etc. (Bonev, 2010). The term 𝑙𝑜𝑔
1

𝑝(𝑥)
 can be viewed as the amount of information gained by observing 

the outcome 𝑝(𝑥). This measure can be extended to analyze images as realizations of random variables 

(Feixas et al., 2014). A simple model would assume that each pixel is an independent and identically  

distributed random variable (i.i.d) realization (Feixas et al., 2014). When dealing with discrete images, 

we express all entropies with sums. One can obtain the probability distribution associated with each  

image by binning the pixel values into histograms. The normalized histogram can be used as an estimate 

of the underlying probability of pixel intensities, i.e., 𝑝(𝑖) = 𝑏𝑠(𝑖)/𝑁, where 𝑏𝑠(𝑖) denotes the histogram 

entry of intensity value 𝑖 in sample 𝑆 and 𝑁 is the total number of pixels of 𝑆. With this model the entropy 

of an image 𝑆 can be computed using: 

 

𝐸(𝑆) = ∑ 𝑏𝑠(𝑖) log
𝑁

𝑏𝑠(𝑖)𝑖∈𝜒(𝑠),𝑠∈𝑇𝑠

,                                                                    (2) 

 

 

Figure 3. An illustration of patch ordering. a) Input image, b) reconstruction of the input using structural 

similarity of patches and c) feature map generated by convolving b). Note that the encoding of spatial 

location of a feature is not present in the feature map.    is reconstructed  

  .          
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where  𝑇𝑠 = {(𝑥𝑛 ,𝑦𝑛
):1 ≤ 𝑛 ≤ 𝑁}   is the training set comprising both the input values 𝑥𝑛 and 

corresponding desired output values 𝑦𝑛 . N is the total number of examples in the training set. 𝜒(𝑠)  

represents the image as a vector of pixel values. While individual entropy is the basic index used for 

ordering, we also consider strategies that relate two image patches. These measures include joint 

entropy(Feixas et al., 2014), kl-divergence (Szeliski, 2010), and mutual information(Russakoff et al., 

2004) . 

 
2.1 .1 .2  JOIN T ENTR O P Y 

 
By considering two random variables (𝑋, 𝑌) as a single vector-valued random variable, we can define 

the joint entropy 𝐽𝐸(𝑋, 𝑌) of pair of variables with joint distribution 𝑝(𝑥, 𝑦) as follows:  

 

𝐽𝐸(𝑌, 𝑋) =  − ∑ ∑ 𝑝(𝑥, 𝑦) log𝑝(𝑥, 𝑦)

𝑦𝑥

.                                                    (3) 

 

When we model images as random variables, the joint entropy is computed by gathering joint histogram 

between the two images. For two patches, 𝑝1 , 𝑝2 ∈ 𝑆𝑖  ∈ 𝑇𝑠 the joint entropy is given by:  

 

𝐽𝐸(𝑝1 , 𝑝2
) =  ∑ 𝑏𝑠

(𝑖) log𝑏𝑠
(𝑖)

𝑖

,                                                                    (4) 

where 𝑏𝑠(𝑖) is the 𝑖𝑡ℎ value of joint histogram between the two patches.  
 

2.1 .1 .3  MUT UA L INFO R M A TI ON  
 

Mutual information (MI) is the measure of the statistical dependency between two or more random 

variables (Feixas et al., 2014). The mutual information of two random variables 𝑋 and 𝑌 can be defined 

in terms of the individual entropies of both 𝑋 and 𝑌 and the joint entropy of the two variables 𝐽𝐸(𝑋, 𝑌). 

Assuming pixel values of the patches  𝑝1 , 𝑝2  the mutual information between the two patches is  

 

𝑀𝐼(𝑝1 , 𝑝2
) =  𝐸(𝑝1

) + 𝐸(𝑝2
) − 𝐽𝐸(𝑝1 , 𝑝2

).                                                           (5) 
 

As noted in Russakoff et al. (2004), maximizing the mutual information between patches seems to try 

and find the most complex overlapping regions by maximizing the individual entropies such that they 

explain each other well by minimizing the joint entropy. As image similarity measure, MI has been found 

to be successful in many application domains . 

 

2.1 .2  ADITIONAL MEASURES  

 

2.1 .2 .1       KULL B AC K -L EIB LER (K-L ) DIVER G EN C E 

 
K-L Divergence is another measure we use to assess similarity of patches with in a sample. It’s a natural 

distance measure from a pixel distribution 𝑝1  to another distribution  𝑝2  and is defined as:  

 

𝐷𝑘||𝐿
(𝑝1 , 𝑝2

) = ∑ 𝑝1 𝑖
log

𝑝1𝑖

𝑝2 𝑖𝑖

 ,                                                                              (6)  

 

where 𝑖 the index of a pixel value taken from the distributions. 

 

2.1 .2 .2  L1 NORM  

 

Given two equal sized vectors 𝑎 and 𝑏 representing two patches of an image, the 𝐿1 distance (Mitchell, 

2010) is defined as 

𝐿1
(𝑝1 , 𝑝2

) = ||𝑝1 − 𝑝2
|| =  ∑|𝑝1𝑖

− 𝑝2 𝑖
|

𝑖=1

,                                                              (7)  

 

 

This is sum of lengths between corresponding pixel value at index i over the size of the patch. 

 

2.1 .2 .3  L2 NORM  
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L2 norm is a common measure used to assess similarity between images.  

 

 

𝐿2
(𝑝1 , 𝑝2

) = ||𝑝1 − 𝑝2
||

2
= √∑(𝑝1𝑖

− 𝑝2 𝑖
)2

𝑖 =1

.                                                     (8) 

 

This can be interpreted as the Euclidean distance between the two vectors 𝑝1  and 𝑝2  representing the 

patches  (Mitchell, 2010). 

 

2.1 .2 .4  STRUCTURAL SIMILARITY INDEX (SSIM)  

 

SSIM is usually used for predicting image quality using a reference image. Given two vectors 𝒑𝟏 and 

𝒑𝟐 the SSIM index (Horé and Ziou, 2010) is given by:  
 

𝑆𝑆𝐼𝑀(𝑝2
) =

(2µ𝑝1
𝜇𝑝2

+ 𝐶1)(2𝜎𝑝1𝑝2
+ 𝐶2)

(µ𝑝1

2 + µ𝑝2
2 + 𝐶1)(𝜎𝑝1

2 + 𝜎𝑝2
2 + 𝐶2)

                                          (9) 

 

where the terms µ and 𝜎 are the mean and variances of the two vectors and  𝜎𝑝1𝑝2
 is the covariance of 

𝑝1   and 𝑝2 . See (Horé and Ziou, 2010) for detail on this measure. 

 

Table 1: Patch Ordering and Reconstruction (POR) Algorithm. The function Generate-Patches  generates 

equal sized patches of the input image. Compute-Individual-Index calculates the index of a given patch 

when the MeasureType is of type standalone while Compute-Mutual-Index computes an index of 

similarity between two patches. Sort-Pachtes  sorts the patches according to indices and Reconstruct-

Sample constructs a sample using sorted patches. For computational efficiency 𝑷𝒂𝒕𝒄𝒉𝑺𝒊𝒛𝒆  is taken from 

(4x4, 8x8, 16x16) and all samples are resized to 32x32 prior to preprocessing. Since the dataset consists 

of color (RGB) images the algorithm computes the index of each channels and returns the average.  

Require:  𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐓𝐲𝐩𝐞, 𝐏𝐚𝐭𝐜𝐡𝐒𝐢𝐳𝐞  

1. Obtain training batch 𝑩 of size  𝐁𝐚𝐭𝐜𝐡𝐒𝐢𝐳𝐞  

For 𝒊 = 𝟏 𝐭𝐨 𝐁𝐚𝐭𝐜𝐡𝐒𝐢𝐳𝐞  do: 

          For each input image 𝐱 𝐢  𝒊𝒏 𝐁,𝐝𝐨: 
a.  𝒑𝒓 = 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆 − 𝑷𝒂𝒕𝒄𝒉𝒆𝒔(𝒙𝒊)  r: 0, …, number of   

patches in 𝒙𝒊 

b. 𝐈𝐟 MeasureType is standalone 

i.𝑪𝒐𝒎𝒑𝒖𝒕𝒆 − 𝑰𝒏𝒅𝒊𝒗𝒊𝒅𝒖𝒂𝒍 − 𝑰𝒏𝒅𝒆𝒙(𝒑𝒓) 

c. 𝐎𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞  

i.Select a reference patch 𝒑𝟎  

ii.𝑪𝒐𝒎𝒑𝒖𝒕𝒆 − 𝑰𝒏𝒅𝒊𝒗𝒊𝒅𝒖𝒂𝒍 − 𝑰𝒏𝒅𝒆𝒙  (𝒑𝒓 , 𝒑𝟎) 

d. Sort-Pachtes in order according to MeasureType and 

indices  

e. Reconstruct-Sample( 𝑿𝒊
′) 

2. Train network on 𝑩 

3. Repeat 

End 

Return 𝑵𝒆𝒕𝒘𝒐𝒓𝒌  

 

2.1 .2 .5  PEAK SIGNAL TO NOISE RATIO (PSNR) 

 

PSNR (Horé and Ziou, 2010) is another objective metric widely used in CODECs to assess picture 

quality. PSNR can be defined in terms of the mean squared error (MSE). The MSE of two metrices  

having the same size N is defined as: 
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𝑀𝑆𝐸(𝑎, 𝑏) =  
1

𝑁2
∑ ∑(𝑎𝑖𝑗 − 𝑏𝑖𝑗 )

2

𝑁

𝑗

𝑁

𝑖

.                                                             (10) 

 

The PSNR measure of two patches 𝑝1  and 𝑝2  can then be expressed as:  

 

 

𝑃𝑆𝑁𝑅 = 20 log10(
𝑀𝐴𝑋

√𝑀𝑆𝐸(𝑝1 , 𝑝2 )
),                                                                                (11)  

 

where 𝑀𝐴𝑋  is the maximum possible pixel value of the reference patch 𝑝1 .  

 

3            EXPERIMENTAL SETUPS 

 
 

3.1  DAT AS E TS 
 

For evaluation we used CATSvsDOGS (Parkhi et al., 2012) and CIFAR100 (Krizhevsky and Hinton, 

2009). The techniques described above along with the several network architectures, were employed to 

learn and classify these datasets. To gather enough data that enable characterization of each 

preprocessing technique, we set up a consistent training environment with fixed network architecture s, 

training procedure, as well as hyper parameters configuration. The results are summarized in section 4. 

 

4     RESULTS AND ANALYSIS 

 

We performed two sets of experiments to determine the impacts of algorithm POR (Table 1) on training. 
The first experiment was designed to determine correlation between the preprocessing techniques and 

network training performance while the second was conducted to characterize the impact of granularity  

of patches on training. Below we present the analysis  of results obtained using each approach. The results 
are summarized in Figs. 4 and 5. 

 

4.1      PATC H ORD ER I NG  

 

Figure 4 shows results obtained when training Inception network to classify CIFAR100 (Top) and Cats 

vs Dogs (Bottom) datasets using slow learning rate and Adams optimization (Janocha and Czarnecki, 

2017). Plots on the right side depict test performance of the network at different iterations. In both setups, 

the mutual information technique speeds up learning rate more than all others while some techniques 

degrade the learning rate compared to regular training.  

However, all techniques converge to the same performance as the regular training when trained for 10000 

iterations. Given these results we answer the questions posed in the earlier sections. The question of  

whether ordering patches of the input based on some measure to help training can partially be answered 

by the empirical evidence that indicate reconstructing the input using the MI measure enables faster 

convergence. Dataset reordered using the MI measure achieves similar accuracy as the unmodified dataset 

in ¼ of the total iterations.  In support of this we hypothesize that informed ordering techniques enable 

robust feature extraction and make learning efficient. To conclusively prove this hypothesis, one must 

consider variety of experimental setup. For instance, to rule out other factors for the observed results, we  

must perform similar experiments using different datasets, learning techniques, hyper parameter 

configuration and network architectures. 

 

Given that most of these techniques remove human recognizable features by reordering (Figure 3) and 

the experimental results that not all ordering techniques compromise training or testing accuracy, we 

make the following claim:  

 

Training and generalization performance of classification networks based on the deep convolutional 

neural network architecture is uncorrelated with human ability to separate the training set into the 

various classes. 

4.2     PATC H ORDE R IN G IMPAC T ON TRAI NI NG 
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In this section we provide analysis of the impact of the patch-ordering preprocessing technique on training 

convolutional neural networks.  

Let us consider the mutual information (MI) metric, which outperforms all other metrics. As mentioned 

in previous sections the MI index is used as a measure of statistical dependency between patches for patch 

ordering. Given two patches (also applies to images) 𝑝1 , 𝑝2  the mutual information formula (Eqn. 5) 

computes an index that describes how well you can predict 𝑝2  given the pixel values in 𝑝1 . This measures 

the amount of information that image 𝑝1  contains about 𝑝2 . When this index is used to order patches of 

an input, the result consists of patches ordered in descending order according to their MI index. For 

instance, consider a 32 by 32 wide image with sixteen 8 by 8 patches (see representation, I, below). If we 

take patch 𝑝(0,0) to be the reference patch, Algorithm 1 in the first iteration computes MI index of every 

other patch with the reference patch and moves the one with the highest index to position (0,1) and updates 

the reference patch. At the end, the algorithm generates an image such that the patch at (0,0) has more 

similarity to patch at (0,1) which has more similarity to patch at (0,2) etc. In other words, adjacent patches 

explain each other well more than patches that are further away from each other.  

 

How does this impact training? 

To answer this question let us consider the convolution operator (Garcia-Gasulla et al., 2017) and the 

gradient decent optimization (Bengio, 2012) approach. This algorithm employs Adam optimization  

technique and the SoftMax cross -entropy loss, to update network parameters.  

We trained the networks using online training (Loshchilov and Hutter, 2015) mechanism, where error 

calculations and weight updates occur after every sample.  Our hypothesis is that samples preprocessed 

using the MI measure enable rapid progress lowering the cost in the initial stages of the training. 

In other words, when the input is rearranged such that adjacent samples have similar pixel value 

distribution, the convolution filters extract features that produce smaller error. To illustrate this let us 

assume the following values for the first few patches of an image (color coded in the matrix below). For  

simplicity let us assume the image is binary and all the pixel values are either 0 or 1.  

=

[
 
 
 
 
 
0 0 0
0 0 1
1 1 1

0 0 1
1 1 1
1 1 1

0 0 0
0 0 1
1 0 0

0 0 0
0 0 1
1 1 0]

 
 
 
 
 

 

 

Figure 4: Accuracy in validation classification as a function of training iterations of CIFAR100 (top) and 

CATSvsDOGS (bottom) datasets using Inception network architecture. We show training (left and testing 

(right) results of all the similarity and statistical measure-based patch ordering techniques: patch ordering 

using mutual information (MI, yellow) between adjacent samples outperforms all other techniques. 

During training all parameters except for the training dataset are fixed.  
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Also consider the following 3x3 convolution filter whose values are initialized randomly: 𝐾 = [1 5
0 1

] 

If one performs convolution of the original image with the above kernel 𝐾, the resulting feature map  

consists of the following values.  

𝐼 ∗ 𝐾 =

[
 
 
 
 
 
0 0 0
0 0 1
1 6 6

0 0 1
6 6 6
7 7 7

0 1 1
0 0 1
1 0 0

1 1 1
0 0 1
1 1 0]

 
 
 
 
 

 

 

To maintain resolution of the original image we use 0-padding before applying convolution. Applying a 

3x3 max pooling operation with stride 3 to the convolved sample generates a down-sampled feature-map   

of the 𝑖𝑡ℎ training sample 𝑥 𝑖 which is used as an input to compute probability score of each class in a 

classifier. In this illustration we consider a binary classifier with two possible outcomes.  

𝒙𝒊 = [6 7
1 1

]  

Given the weight matrix 𝑾 =  [
0.01 −0.05 0.1 0.05
0.7 0.2 0.05 0.16

] and a bias vector 𝒃 =  [
0.2

−0.4
], the effective 

SoftMax cross-entropy loss for the correct class can be computed using the normalized probabilities  

assigned  to the correct label 𝒚𝒊 given the image 𝒙𝒊 parameterized by 𝑾 (Eqn. 12).  

𝑷(𝒚𝒊
|𝒙𝒊: 𝑾) =  

𝒆𝒇𝒚𝒊

∑𝒆𝒇𝒊
                                                                                  (12) 

 

The probabilities of each class using 𝒇(𝑾, 𝒙) =  (𝑾𝒙𝒊 + 𝒃) objective function after normalization are  

[0.01
0.99

]. Assuming the probability of the correct class is 0.01 the cross-entropy loss becomes 4.60.  

Note here patches are ordered left to right and adjacent patches have MI indices that are larger than those 

that are not adjacent. After ranking each 3x3 patch using the MI measure and preprocessing the sample 

using Algorithm 1, the resulting sample 𝐼′ has ordering grey, green, pink and blue. In this example MI 

of the green with the grey patch is 0.557 while the blue has MI index equal to 0.224 against the same 

reference patch. 

𝐼′ =

[
 
 
 
 
 
0 0 0
0 0 1
1 1 1

0 0 0
0 0 1
1 1 0

0 0 0
0 0 1
1 0 0

0 0 1
1 1 1
1 1 1]

 
 
 
 
 

 

Once 𝐼′ is convolved using the same kernel 𝐾, the resulting downscaled feature map, 𝒙𝒊
′ = [6 5

6 7
], 

produces [
0.13
0.87

]  probabilities for each class.  Taking the negative logarithm of the correct class results 

in a prediction loss equal to 2.01.  

This is the underlying effect we would like all measure to have when reordering the training dataset. 

However, it is not guaranteed. For instance, if we use l2-norm measure (Eqn. 8) to sort the patches, the 

resulting loss becomes 4.71, which is higher compared to the unmodified original sample. As a result, the 

training is slowed down since larger loss means more iterations are required for the iterative optimization  

to converge. 

 

4.3     PATC H SIZE IMA PC T ON TRA IN IN G  

 

To characterize the effect of patch size, we performed controlled experiments where only the patch size 

is the varying parameter. The results and unmodified and preprocessed samples are depicted in Fig. 5.  

As can clearly be seen in the plot, the network makes rapid progress lowering the cost when trained on a 

4x4 patch ordered datasets. Based on the empirical evidence and observations, we believe patch-ordering  

impact is more effective when mutual information index is combined with small patch size. To clarify  

consider dividing the above sample into nine 2x2 patches.  
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𝐼′′ =

[
 
 
 
 
 
0 0
0 0
1 1
0 0
0 0
1 0

0 0
1 1
1 1
0 0
1 0
0 1

0 1
1 1
1 1
0 0
0 1
1 0]

 
 
 
 
 

 

If the patches are reordered using MI measure against a reference patch p(0,0), and convolve the  

reordered sample, 𝐼′′′ =

[
 
 
 
 
 
0 0
0 0
1 1
0 0
0 1
1 0

0 0
1 1
1 0
0 1
0 0
1 0

1 1
0 0
1 1
0 0
0 1
1 1]

 
 
 
 
 

, using the same filter 𝐾 = [1 5
0 1

], the resulting  

normalized prediction probabilities are [
0.14
0.86

], which results in a loss of 1.96 after the first iteration.  

This is one explanation for the observed results, however, we cannot draw a conclusion regarding 
proportionality of patch size to training performance. If the pink and red patches of the above  sample,  

which have same MI index, were to swap places, the resulting loss would have been 4.71 which is greater 

than the loss generated using 3x3 patch size. In this scenario training is slowed down.  
 

5     SUMMARY AND DISCUSSION 

 
We proposed several automated patch ordering techniques to assess their impact on training  and assess 

the relationship between dataset characteristics and training and generalization performances . Our 

methods rank, and reorder patches of every sample based on a standalone measure and based on similarity  

between patches. We used traditional image similarity measures as well as information theory -based 

content measures of images to reconstruct training samples.  We started off with theoretical foundations 

for measures used and highlighted the intuition regarding ordering and classification performance. We 

tested the proposed methods using several architectures, each effectively designed to achieve high  

accuracy on image classification tasks. The empirical evidence and our analysis using multiple datasets 

and Inception network architecture, suggest that training a convolutional neural network by supplying 

inputs that have some ordering, at patch level, according to some measure, are effective in allowing a 

gradient step to be taken in a direction that minimizes cost at every iteration. Specifically, our experiments   

Figure 5: Comparison of training performance of Inception using different patch sizes . CIFAR10 (left)  

and CIFAR100 (right) datasets. Total training loss (top) and regularization loss (bottom) for Unmodified 

dataset, and datasets modified by applying Algorithm 1 using the MI metric and patch sizes 4x4, 8x8 and 

16x16). The overall size of each sample is 32 by 32. 
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show that supplying training sample such that the mutual information between adjacent patches is 

minimum, reduces the loss faster than all other techniques when optimizing a non-convex loss function.  

In addition, using these systematic approaches, we have shown that image characteristics and human 

recognizable features contained within training samples are uncorrelated with network performance. In 

other words, the view that CNNs learn combination of features in increasing abstraction does not explain  

their ability to fit images that have no recognizable features for the human eyes. Such a view also 

discounts the ability of the networks to fit random noise during training . Instead further investig a t i o n 

using theore tic a l chara cte riz a tio n s such as the IB metho d are nece ssa ry to form al ly char a cte riz e learn ab i l i t y 

of a given trainin g set using CNN . 
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 RELEVANT DETAIL ON TRAINING CNN 

 

A typical CNN arch ite c tur e is struc tur ed as a serie s of data proce ssin g and classi fic at ion stage s.  It consi s t s  
of severa l layers with tens of thousa nd s of neur on s in each layer , as wel l as millio ns of conne c tio n s bet w e e n 

neuro n s.  In the data proce ssin g stages , there are two kinds of layer s: convo lut ion al and poolin g layer s (Ian 

Goodfellow et al., 2006).  In a convo lutio n al layer, each neur on repre se nt in g a filter is conne c te d to a sma l l  
patch of a featur e map from the previo us layer throu g h a set of weig hts.  The resul t of the weigh te d sum is 

then passed throu g h an activ at ion funct io n that perfo rm s non-lin e a r transfo rm at ion and prev e nt lear n i n g 

trivia l linea r combin at ion s of the inputs. The pool in g layers are used to reduc e comp uta t ion time by sub-
samp lin g from conv olut io n outputs and to gradu al ly build up furth er spat ial and configu ra l invarian c e (Ian 

Goodfellow et al., 2006). 
 

Discr ete image convolu tio n [10] is used to ext ra ct inform at ion from trainin g sample s. For 2D funct ion s I 
and K, the conv olu tio n opera tio n is define d as: 

 

𝐼(𝑢 , 𝑣) =  ∑ ∑ 𝐼(𝑢 − 𝑖, 𝑣 − 𝑗)𝐾(𝑖, 𝑗)

∞

𝑗=−∞

∞

𝑖=−∞

                                                   (13)  

 

In CNN s, conv olut io n at a given layer is appl ie d to the output of the previou s layer and the limits of the 

summ a tio n are determ in e d by the size the input I and of the filter K. For a given layer 𝑙, the input comprises 
(𝑓𝑚)

1
𝑙−1 feature maps from the previous layer (Goodfellow et al., 2016). When 𝑙 = 1, the input is a single 

image consisting of one or more channels . The output of layer 𝑙 consists of  (𝑓𝑚)
1
𝑙  feature maps. 

 
FEATUR E MAPS 
 

Feature maps are encodings of features and their locations present in the input (Ian Goodfellow et al., 

2006). They are obtained by convolving the input with a fixed sized filter (or kernel, K) usually having 

dimensions significantly smaller than the input.  The 𝑖𝑡ℎ feature map of layer 𝑙, represented 𝑦𝑖
𝑙 is computed 

as  

𝑦𝑖
𝑙 = 𝐵𝑖

𝑙 + ∑ 𝐾𝑖 ,𝑗
𝑙 ∗ 𝑦𝑗

𝑙−1

𝑚(𝑙−1)

𝑗=1

                                                                                (14)  

 
 

where 𝑚
(𝑙−1)

is the total number of feature maps generated by the previous layer, 𝐵𝑖
𝑙 is a bias matrix and 

𝐾𝑖 ,𝑗
𝑙  is a filter connecting the 𝑗 𝑡ℎ feature map in layer 𝑙 (Ian Goodfellow et al., 2006). The trainable weights 

are found in the filters 𝐾𝑖 ,𝑗
𝑙  and the bias matrices 𝐵𝑖

𝑙. 

 
TRAININ G AND THE BACKP R OP AG A TION ALGOR ITH M 

 

During training, CNNs attempt to determine the filter weights to approximate target mapping 𝑔 

(Goodfellow et al., 2016). In practice, 𝑔 is a function fitted by the training data using supervised training 

procedures. The training set 

 

𝑇𝑠 = {(𝑥𝑛 ,𝑦𝑛
): 1 ≤ 𝑛 ≤ 𝑁}                                                                                (15) 

 

 

 

comprises both the input values 𝑥𝑛 and corresponding desired output values 𝑦𝑛 ≈ 𝑔(𝑥𝑛
). N is the total 

number of examples in the training set.  

 
BACKP R OP AG AT ION  ALGOR ITHM  
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Supervised training is accomplished by adjusting the weights 𝑤 of the network to minimize a chosen 

objective function that measures the deviation of the network output, 𝑦𝑛 , from the desired target output 

𝑥𝑛 (Goodfellow et al., 2016). Some of the common measures are cross -entropy error measure (Janocha 

and Czarnecki, 2017) given by  

𝐸(𝑤) =  ∑ 𝐸𝑛
(𝑤)

𝑁

𝑛=1

=  ∑ ∑ 𝑡𝑛,𝑘 log(𝑦𝑘
(𝑥𝑛 ,𝑤))

𝑐

𝑘=1

𝑐

𝑛=1

,                                       (16)  

 

and the squared-error measure (Bishop, 2006) given by  

 

𝐸(𝑤) =  ∑ 𝐸𝑛
(𝑤)

𝑁

𝑛=1

= ∑ ∑ 𝑡𝑛,𝑘 log(𝑦𝑘
(𝑥𝑛 ,𝑤)),                                      (17)

𝑐

𝑘=1

𝑐

𝑛=1

 

 

where 𝑡𝑛,𝑘  is the 𝑘𝑡ℎ entry of the target value 𝑡𝑛  and c is the number of distinct classes in  𝑇𝑠.  

 

Deep learning with stochastic training seeks to minimize 𝐸𝑛
(w)  with respect to the network weights 𝑤. 

The necessary criterion can be written as  

 
𝜕𝐸𝑛

𝜕𝑤
= 0,                                                                                                                   (18) 

 

where 
𝜕𝐸𝑛

𝜕𝑤
 is the gradient of the error 𝐸𝑛  (Goodfellow et al., 2016). Since 𝐸𝑛  is a high dimensional 

function, a closed-form exact solution is too expensive. Iterative optimization approach, commonly  

referred to as gradient descent (Algorithm 1), is used to find optimal values of the parameters that best 

approximate a mapping between each sample in the training set to the desired output. 

At each iteration, for a given weight vector 𝑤[𝑡],  gradient descent takes a step in the direction of the 

steepest descent to reach a global minimum (Goodfellow et al., 2016) by computing weight update ∆𝑤[𝑡] 
and updating weight accordingly: 

 

𝑤[𝑡 + 1] =   𝑤[𝑡] +  ∆𝑤[𝑡]                                                                                (19) 

 

 

where ∆𝑤[𝑡] =  −𝛼
𝜕𝐸𝑛

𝜕𝑤[𝑡]
=  −𝛼∆𝐸𝑛  is the gradient of the error function with respect to 𝑤 and 𝛼 is the 

learning rate.  

 

 

There are few different training protocols used for parameter optimization. These protocols are 

summarized in (Larochelle et al., n.d.). The most common ones are: 

Stochastic training:  when this protocol is employed, an input sample is chosen at random and the 

network weights are updated based on the error function  𝐸𝑛
(𝑤).  

Figure 1. Illustration of convolution in a single convolution layer. If layer l is a convolutional layer, the 

input image (if l = 1) or a feature map of the previous layer is convolved by different filters to yield the 

output feature maps, (𝒇𝒎)𝟏
𝒍  , of layer l. 
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Batch Training: with this protocol, all inputs of size 𝑁 are processed and the weights are updated based 

on the overall error  

𝑬(𝒘) =  ∑ 𝑬𝒏
(𝒘)

𝑵

𝒏=𝟏

.                                                                                              (𝟐𝟎) 

 

Online training:  every sample is processed only once, and the weights are updated using the error 

𝐸𝑛
(𝑤) . 

Mini-batch training: during mini-batch training a random subset (mini-batch) of samples of size M from 

the training set is processed and the weights are updated based on the cumulative  error  

𝐸𝑀
(𝑤) =  ∑ 𝐸𝑛

(𝑤)

𝑀

𝑛=1

.                                                                                             (21)  

 
Table 2: The backpropagation algorithm using mini-batch training protocol. 

Input:𝑳𝒆𝒂𝒓𝒏𝒊𝒈 𝒓𝒂𝒕𝒆 (𝜶), 𝒎𝒂𝒙𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 , 𝑻𝒔  

Output: 𝑵𝒆𝒕𝒘𝒐𝒓𝒌  

1. 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 to 0  

2. Draw a batch of size BatchSize 

For (i=1 to BatchSize): 

3. 𝐒𝐞𝐥𝐞𝐜𝐭 𝒊𝒏𝒑𝒖𝒕  𝒙𝒊 

4. 𝐏𝐫𝐨𝐩𝐚𝐠𝐚𝐭𝐞𝐅𝐨𝐫𝐰𝐚𝐫𝐝  𝒙𝒊 

5. 𝐂𝐨𝐦𝐩𝐮𝐭𝐞𝐄𝐫𝐫𝐨𝐫  𝑬𝒊 

6. 𝐂𝐨𝐦𝐩𝐮𝐭𝐞 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕 𝒖𝒑𝒅𝒂𝒕𝒆 ∆𝑬𝒊 

7. Backpropagate and update weights  

8. Go to 2 

End 

Return 𝑵𝒆𝒕𝒘𝒐𝒓𝒌  

 


