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ABSTRACT

We presentaframework forautomatically ordering image patches that enables in-depth
analysis of dataset relationship to learnability of a classification task using
convolutional neural network. An image patch is a group of pixels residing in a
continuous area contained in the sample. Our preliminary experimental results show that
an informed smart shuffling of patches at a sample level can expedite training by
exposing important features at early stages of training. In addition, we conduct
systematic experiments and provide evidence that CNN’s generalization capabilities do
not correlate with human recognizable features presentin training samples. We utilized
the framework not only to show that spatial locality of features within samples do not
correlate with generalization, but also to expedite convergence while achieving similar
generalization performance. Using multiple network architectures and datasets, we
show that ordering image regions using mutual information measure between adjacent
patches,enables CNNs to converge in a third of the total steps required to train the same
network without patch ordering.

1 INTRODUCTION

Advances in Deep Learning (DL) and Convolutional Neural Networks (CNN) have dramatically
improved the state-of-the-art in computer vision tasks. Many of these breakthroughs are atributed to the
successive feature extraction and an increasing abstract representation of the underlying training data
using multi-stage simple operations such as convolution. These operations possess several model
parameters such as convolution filter which are trained to amplify and refine information that are relevant
to the classification, and to suppress irelevant information (lan Goodfellow et al., 2006). The training
procedure uses backpropagation algorithm with supervision. This algorithm combined with Stochastic
Gradient Descent (SGD), attempts to minimize the overall eror or deviation from true label by computing
the error gradient of each parameter and by performing small updates in the opposite direction. Despite
their success, theoretical characterization of deep learning and CNNs s still at its infancy and valuable
correlations such a number of layers needed to achieve a certain performance are not well understood.
However, the success of deep learning has spawned many research avenues in order to explain deep
network’s exceptional generalization performance (Saxe et al.,, 2018) (Mehta and Schwab, 2014) (Pai,
2016; Tishby and Zaslavsky, 2015). One promising theoretical characterization of deep learning that
supports an intuition that motivated this work is the characterization that uses an information theoretic
view of feature extraction. In particular it is based on the information bottleneck (IB) method which is
concerned with the problem of how one extracts an efficient representation of relevant information
contained in a large set of features (Slonim, 2002). Saxe etal., (2018) proposes tostudy deep learning
through the lens of information theory using the IB principle. In this characterization, deep learning is
modeled as a representation learning. Each layer of a deep neural network can be seen as a set of
summary statistics which contain some of the information presentin the training set, while retaining as
much information about the target output as possible (Saxe et al., 2018). In this context a relevant
information, of a cat vs dog classification task for instance, is the information pattern presentin all the
cat samples useful for predicting any picture of a cat. With this view, the amount of information relating
the training setand the labels encoded in the hidden layers can be measured over the course of training
(Tishby and Zaslavsky, 2015). Inspired by this view, we use information theoretic measures of entropy
extended to measure image characteristics, to develop preprocessing techniques that enable rob ust
features extraction during training. One relevant insight presented in these papers is that the goal of DL
is to capture and efficiently represent the relevant information in the input variable that describe the output
variable. This is equivalent to the IB method whose goal is to find maximally compressed mapping of
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the input while preserving a much relevant information of the output a possible. This characterization
leads us to ask the question:

1Can we utilize information theoretic techniques for images to make training efficient? Particularly,
can we preprocess training set and feature maps such that the relevant information is captured in the
early stages of training?

In supervised learning, we are interested in good feature representations of the input pattern that enable
good prediction of the label (Janocha and Czarnecki, 2017). As a result, a training set for image
classification tasks that employ supervised learning, is constructed with the help of human labeler. For
instance, for a cat vs dog classification problem, the human labeler must categorize each sample into
either one of the classes. During this process, the labeler must recognize and classify each input using
their own experience and distinguishing capabilities. Considering this, a natural question we first must
answer before addressing the question aboveis:

Does human classification performance on the training dataset affect learnability of the task?

In other words, can the networks learn from ‘scrambled’ samples that cannot be classified by the naked
eye? This question was investigated in Zhang et al. (2016) with intriguing outcomes. The authors
presented results that indicate that CNNs are capable of essily fitting training set containing samples that
have no correlation with labels (see Fig. 3 for illustration). These results have us reconsider the traditional
view that networks build hierarchy of features in increasing abstraction, ie, learn combination pixels that
make edges in the lower layers, learn combinations of edges that make up object parts in the middle
layers, learn combinations of parts that make up an object the next layer etc. ... This view is challenged
by the findings highlighted in Zhangetal. (2016) and in this paper (see section V for detail). We use the
information theoretic characterization of deep learning to shed light on the questions by developing
preprocessing and learning techniques that reduce convergence time by improving features extraction
from images using multilayered CNNs. We first rule out that human recognizable features matching labels
are not necessary for CNNs and that they are able to fit training set containing scrambled samples with
minimal impact on generalization. Equipped with this result we then utilize similarity and information
theoretic measures of image characteristics to preprocess and ease feature extraction from images during
training. Our methods aim to expose important features of each training sample earlier in training by
reorganizing image regions. The contribution of our approach are;

1. We provide a framework and algorithms for preprocessing dataset to reorder image patches using
techniques that minimize mutual entropy of adjacent image patches of each training sample.  As
the results demonstrate, organizing patches, of each training sample using measures such as entropy
of a patch and mutual information index between patches enable faster convergence.

2. We present several techniques for ranking samples that use information theoretic measures of the
relationship between adjacent patches and present results that show faster convergence compared to
standard training.

Inception (Szegedy et al., 2015) architecture, known for achieving exceptional results on image
classification tasks, is used for evaluation. The network is first evaluated on the corresponding datasets
to create baseline reference performance metrics for comparison. For each network we used Adams
optimization technique with cross-entropy loss to gatheremperical training, validation and test data.

The remaining contentis presented as follows. In section 2, we present the patch ordering approach and
highlight the design and implementation of algorithms used to preprocess dataand feature maps based on
patch ordering. In Section 3, we discuss the experimental setup. Then, section 4 presents analysis of our
results obtained by training Inception using multiple unmodified and patch-ordered datasets. Finally, we
conclude by offering our insight as to why the outcomes are important for deep learning and future
generation networks.

2 PATCHORDERING FOR ROBUST FEATURE EXTRACTION

The success of CNNs stem from their ability to automatically learn feature extractors. During training,
CNNs construct hierarchy of feature representations and use superposition of the hierarchical features
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when generalizing to unseen input (lan Goodfellow et al. 2006). However, we believe learnability of a
classification task is closely related to the amount of information contained in the dataset that enable
distinguishability of one class from the others. To further explore this claim, we developed techniques
and conducted several experiments by preprocessing training set using various techniques.  The
techniques and the general procedure used are described below. The results are summarized in section 4.

2.1 PATCH ORDERING

Our intuition is that some ordering at a sample level can expedite training by exposing features that are
important for separating the classes in the early stages of training.

For illustration, consider the toy images in Fig. 1. If a person with knowledge of the number system, was
asked to classify or label the two images, they can give several answers depending on their experiences.
At first glance, they can label &) as ‘large number 1’ and -b) & ‘large number 2. If they were asked to

a) b)
0123456789 2703496185

Figire 1: Toy immges to illustrate the importance of odering for
dassification. The two immges in this context are of the same dass. The
label can be ‘digits 09’

give more details, upon elaboration of the context, the labeler can quickly scan a) and realize that it is a
picture of digits 0 through 9. Similarly, b) would be classified as such, but analyzing and classifying b)
can cost more time because the labeler must ensure every digit is present (we encourage the readers to do
the experiment). It’s the time cost that is of interest to us in the context of learning systems. The mere
ordering of the numbers enables the labeler to classify a) faster than b).

a

Figure 2: a) input inmge b) feature mmp after convolving input with filter.

1

Given this intuition, we asked if ordering patches of training images such that the adjacent patches are
‘closer’ to each other by similarity measure, could expedite training and improve generalization. Based
on the mental exercise, the procedure can intuitively be justified by the fact that toy sample a) is essier to
classify because, as our eyes scan from left to right the features (0,1,2. ..) are captured in order. Whereas
it might take several scans of b) to determine the same outcome. Convolution based feature extractors use
a similar concept to capture features used to distinguish one class from the others. The features are
extracted by scanning the input image using convolution filters. The output of convolution at each spatial
location are then stacked to construct the feature map. Implementation of this operation in most deep
learning frameworks maintain spatial locations of features which then can be obtained by deconvolution.
In other words, there is a one-to-one mapping between the location of a feature in a feature map and its
location on the original input (Fig.2.). Note that the feature map not only encodes the feature (ear or head)
but it also implicitly encodes the location of the feature on the input image (green arow in Fig. 2). The
encoding of location is required for detection and localization tasks but not for classification tasks.
Another question that arises from these observations is:

Can we control feature map construction such that the resulting feature map has characteristics that
enables efficient learning while maintaining or improving generalization?

To answer this question, we searched for DL characterization that aligns with this intuition and found
the work of Tishby and Zaslavsky (2015) captures this intuition by relating DL training from images to
the Information Bottleneck principle (discussed below). While the authors discuss IBin the context of
the entire training setand end-to-end training of deep networks, our exploration is limited to individual
training samples and aim to expose information that can be captured and presented to the network. We
developed techniques to reconstruct training images by breaking up the inputs into equal sized patches
and reconstruct them using the concept of ordering (Fig.3). Information-theory-based and traditional



Under review as a conference paper a ICLR 2019

measures of images were used for ranking and ordering. These measures can generally be divided into
two:

1. Standalone measures -measure some characteristic of a patch. For example, the peak signal- to-
noise ratio measure returns aratio between maximum useful signal to the amount of noise present in
a patch.

2. Similarity measures —these measures on the other hand,compare a pair of patches. The comparison
measures can be measures of similarity or dissimilarity like Ll-norm and structural similarity or
information-theoretic-measures that compare distribution of pixel values such as joint entropy. The
measures discussed in subsections below are Ll-norm, L2-norm, Structural Similarity, Joint Entropy,
KL-Divergence, and Mutual Information.

m

Figure 3. An illustration of patch ordering. a) Inputimage, b) reconstruction of the input using structura
similarity of patches and c) feature map generated by convolving b). Note that the encoding of spatia
location of a feature is not present in the feature map. The original image (a) is reconstructed using
structural similarity measure. This reconstruction is performed prior to convolution a a preprocessing
stage. Similar procedure can be applied to feature maps deep in the learning pipeline.

Below we summarize the measures and present the sorting and reconstruction algorithm. The results are
summarized in Section 4.

211 ENTROPY-BASED MEASURES FOR PATCH ORDERING

2111 ENTROPY

Information theory provides a theoretical foundation to quantify information content, or the uncertainty,
of a random variable represented as a distribution (Cover and Thomas, 2006; Feixas et al., 2014).
Information theoretic measures of content can be extended to image processing and computer vision
(Leff and Rex, 1990). One such measure is entropy. Intuitively, entropy measures how much relevant
information is contained within an image when representing an image as a discrete information source
thatis random (Feixas et al., 2014). Formally, let X be a discrete random variable with alphabet y and a
probability mass function p(x), x € y. The Shannon entropy or information contentof X is defined as

1

ECO) = Z p0) log

xXe€x

@)

where Olog oo = 0 and the base of the logarithm determines the unit, e.g. if base 2 the measure is in bits
etc. (Bonev, 2010). The term log ﬁcan be viewed as the amount of information gained by observing

the outcome p(x). This measure can be extended to analyze images as realizations of random variables
(Feixas et al.,, 2014). A simple model would assume that each pixel is an independentand identically
distributed random variable (i.i.d) realization (Feixas et al., 2014). When dealing with discrete images,
we express all entropies with sums. One can obtain the probability distribution associated with each
image by binning the pixel values into histograms. The normalized histogram can be used as an estimate
of the underlying probability of pixel intensities, i.e., p(i) = by(i)/N, where by(i) denotes the histogram
entry of intensity value i in sample S and N is the totalnumber of pixels of S. With this model the entropy
of an image S can be computed using:

E®) = Z b,(i) log N

i€x(s),SETs bs(D)

()
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where T, = {(x,,y,):1 <n <N} is the training set comprising both the input values x, and
corresponding desired output values y,,. N is the total number of examples in the training set. y(s)
represents the image as a vector of pixel values. While individual entropy is the basic index used for
ordering, we also consider strategies that relate two image patches. These measures include joint
entropy(Feixas et al., 2014), kl-divergence (Szeliski, 2010), and mutual information(Russakoff et al.,
2004) .

2.1.1.2 JONT ENTROPY

By considering two random variables (X,Y) as a single vector-valued random variable, we can define
the joint entropy JE (X,Y) of pair of variables with joint distribution p(x, y) as follows:

JEY,X) = —ZZp(x,y) logp(x,y). 3)
x oy

When we model images as random variables, the joint entropy is computed by gathering joint histogram
between the two images. For two patches,p;,p, € S; € T, the joint entropy is given by:

JEGy,p) = ) b, logh,®, @
i
where b (i) is the i*" value of joint histogram between the two patches.

21.1.3 MUTUAL INFORMATION

Mutual information (MI) is the measure of the statistical dependency between two or more random
variables (Feixas et al., 2014). The mutual information of two random variables X and Y can be defined
in terms of the individual entropies of both X and Y and the joint entropy of the two variables JE(X,Y).
Assuming pixel values of the patches p,, p, the mutual information between the two patches is

MI(p,,p,) = E(p,) + E(p,) —JE(p,,p,). 5)

As noted in Russakoff et al. (2004), maximizing the mutual information between patches seems to try
and find the most complex overlapping regions by maximizing the individual entropies such that they
explain each otherwell by minimizing the joint entropy. As image similarity measure, M1 has been found
to be successfulin many application domains.

212 ADITIONAL MEASURES

21.2.1 KULLBACK-LEIBLER (K-L) DIVERGENCE

K-L Divergence is another measure we use to assess similarity of patches with in a sample. It’s a natural
distance measure from a pixel distribution p; to another distribution p, and is defined as:

P1;
Dy (pyp2) = Zplilog—‘, )
i pZi
where i the index of a pixel value taken from the distributions.

2.1.2.2 L1 NORM

Given two equal sized vectors a and b representing two patches of an image, the L, distance (Mitchell,
2010) is defined as

L1(p1'p2) = ||p1 _P2|| = Z|p1,- _p2i|' (7)

i=1

This is sum of lengths between corresponding pixel value at index i over the size of the patch.

2123 L2 NORM
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L2 norm is a common measure used to assess similarity between images.

L,y p,) = |lp =, |, = fZ(pli -1 )2 ®)
i=1

This can be interpreted as the Euclidean distance between the two vectors p; and p, representing the
patches (Mitchell, 2010).

2124 STRUCTURAL SIMILARITY INDEX (SSIM)

SSIM is usually used for predicting image quality using a reference image. Given two vectors p, and
p, the SSIM index (Horé and Ziou, 2010) is given by:

(Zleﬂpz + Cl)(zaplpz + CZ)

SSIM (p,) =
’ (up12+ upzz+ Cl)(o-p12+0-1722+C2)

©)

where the terms p and o are the mean and variances of the two vectors and o, ,,. is the covariance of
p, andp,. See (Horé and Ziou, 2010) for detail on this measure.

Table 1: Patch Ordering and Reconstruction (POR) Algorithm. The function Generate-Patches generates
equal sized patches of the inputimage. Compute-Individual-Index calculates the index of a given patch
when the MeasureType is of type standalone while Compute-Mutual-Index computes an index of
similarity between two patches. Sort-Pachtes sorts the patches according to indices and Reconstruct-
Sample constructs asample using sorted patches. Forcomputational efficiency PatchSize is taken from
(444, 8x8, 16x16) and all samples are resized to 32x32 prior to preprocessing. Since the dataset consists
of color (RGB) images the algorithm computes the index of each channels and returns the average.

Require: MeasureType, PatchSize
1. Obtain training batch B of size BatchSize

For i = 1 to BatchSize do:
For each input image x; in B,do:
a. p, = Generate — Patches(x;) r: 0, ..., number of
patchesin x;
b. If MeasureType is standalone
i.Compute — Individual — Index (p,.)
c. Otherwise
i.Select a reference patch p,
ii.Compute — Individual — Index (p,,p,)
d. Sort-Pachtes in order according to MeasureType and
indices
e. Reconstruct-Sample( X})
2. Train network on B
3. Repeat

End
Return Network

2125 PEAK SIGNAL TO NOISE RATIO (PSNR)

PSNR (Horé and Ziou, 2010) is another objective metric widely used in CODECs to assess picture
quality. PSNR can be defined in terms of the mean squared error (MSE). The MSE of two metrices
having the same size N is defined as:
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1 N N
MSE(a,b) = FZ Z(aii — b))% (10)
i

The PSNR measure of two patches p; and p, can then be expressed as:

MAX
PSNR = 20 log,( ), (11)

v MSE (py,p;)

where MAX is the maximum possible pixel value of the reference patch p, .

3 EXPERIMENTAL SETUPS

3.1 DATASETS

For evaluation we used CATSvsDOGS (Parkhi et al.,, 2012) and CIFAR100 (Krizhevsky and Hinton,
2009). The techniques described above along with the several network architectures, were employed to
learn and classify these datasets. To gather enough data that enable characterization of each
preprocessing technique, we set up a consistent training environment with fixed network architectures,
training procedure, as well as hyper parameters configuration. The results are summarized in section 4.

4 RESULTS AND ANALYSIS

We performed two sets of experiments to determine the impacts of algorithm POR (Table 1) on training.
The first experiment was designed to determine correlation between the preprocessing techniques and
network training performance while the second was conducted to characterize the impact of granularity
of patches ontraining. Below we present the analysis of results obtained using each approach. The results
are summarized in Figs. 4 and 5.

41 PATCH ORDERING

Figure 4 shows results obtained when training Inception network to classify CIFAR100 (Top) and Cats
vs Dogs (Bottom) datasets using slow learning rate and Adams optimization (Janocha and Czarnecki,
2017). Plots on theright side depict test performance of the network at different iterations. In both setups,
the mutual information technique speeds up learning rate more than all others while some techniques
degrade the learning rate compared to regular training.

However, all techniques converge to the same performance as the regular training when trained for 10000
iterations. Given these results we answer the questions posed in the earlier sections. The question of
whether ordering patches of the input based on some measure to help training can partially be answered
by the empirical evidence that indicate reconstructing the input using the MI measure enables faster
convergence. Dataset reordered using the MI measure achieves similar accuracy as the unmodified dataset
in ¥ of the total iterations. In support of this we hypothesize that informed ordering techniquesenable
robust feature extraction and make learning efficient. To conclusively prove this hypothesis, one must
considervariety of experimental setup.For instance, to rule outother factors for the observed results, we
must perform similar experiments using different datasets, learning techniques, hyper parameter
configuration and network architectures.

Given that most of these techniques remove human recognizable features by reordering (Figure 3) and
the experimental results that not all ordering techniques compromise training or testing accuracy, we
make the following claim:

Training and generalization performance of classification networksbased on the deep convolutional

neural network architecture isuncorrelated with human ability to separate the training set into the
variousclasses.

42 PATCH ORDERING IMPACT ON TRAINING
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In this section we provide analysis ofthe impact of the patch-ordering preprocessing technique on training
convolutional neural networks.

Let us consider the mutual information (MI) metric, which outperforms all other metrics. As mentioned
in previous sections the Ml index is used as a measure of statistical dependency between patches for patch
ordering. Given two patches (also applies to images) p;,p, the mutual information formula (Eqn. 5)
computes an index that describes how well you can predict p, given the pixel values in p, . This measures
the amount of information that image p, containsabout p,. When this index is used to order patches of
an input, the result consists of patches ordered in descending order according to their MI index For
instance, considera 32 by 32 wide image with sixteen 8 by 8 patches (see representation, I, below). If we
take patch p(0,0) to be the reference patch, Algorithm 1 in the first iteration computes Ml index of every
other patch with the reference patch and moves the one with the highest indexto position (0,1) and updates
the reference patch. At the end, the algorithm generates an image such that the patch at (0,0) has more
similarity to patchat (0,1) which has more similarity to patchat (0,2) etc. In otherwords, adjacent patches
explain each other well more than patches thatare further away from each other.

How doesthis impact training?

To answer this question let us consider the convolution operator (Garcia-Gasulla et al., 2017) and the
gradient decent optimization (Bengio, 2012) approach. This algorithm employs Adam optimization
technique and the SoftMax cross-entropy loss, to update network parameters.

We trained the networks using online training (Loshchilov and Hutter, 2015) mechanism, where error

calculations and weight updates occur after every sample. Our hypothesis is that samples preprocessed

using the MI measure enable rapid progress lowering the cost in the initial stages of the training.

In other words, when the input is rearranged such that adjacent samples have similar pixel value
distribution, the convolution filters extract features that produce smaller error. To illustrate this let us
assume the following values for the first few patches of an image (color coded in the matrix below). For
simplicity let us assumethe image is binary and all the pixel values are either 0 or 1.

M Ertropy JE | Li-Norm M L2-Norm M M criginal PSNR [ |

Accuracy (%)
Test Accuracy (%)
:

Step

Accuracy(%)
Test Accuracy (%)

Figure 4: Accuracy in validation classification as a function of training iterations of CIFAR100 (top) and
CATSvsDOGS (bottom) datasets using Inception networkarchitecture. We showtraining (left and testing
(right) results of all the similarity and statistical measure-based patch ordering techniques: patch ordering
using mutual information (MI, yellow) between adjacent samples outperforms all other techniques.
During training all parameters except for the training datasetare fixed.

0 0 00 0 1
1 1 1 1
1 111

| |
_| |
| |

—
= o
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Also considerthe following 3x3 convolution filter whose values are initialized randomly: K = [é i]

If one performs convolution of the original image with the above kernel K, the resulting feature map
consists ofthe following values.

0 000 0 1
[0 0 1 6 6 6
11t 6 6 7 7 7|
I*K‘|011111|
l001001J
1001 1 0

To maintain resolution of the original image we use 0-padding before applying convolution. Applying a
33 max pooling operation with stride 3 to the convolved sample generates a down-sampled feature-map
of the i*" training sample x; which is used as an input to compute probability score of each class in a
classifier. In this illustration we considera binary classifier with two possible outcomes.

16 7
x"_[1 1]
0.01 —0.05 0.1 0.05

0.7 02 0.05 0.16 _ _ o
SoftMax cross-entropy loss for the correct class can be computed using the normalized probabilities

assigned tothe correct label y; given the image x; parameterized by W (Eqn. 12).

Py lx;: W) = ;7 (12)

Given theweight matrix W = ]and a bias vector b = [_0024] the effective

The probabilities of each class using f(W,x) = (Wx; + b) objective function after normalization are
0.01
[0.99
Note here patches are ordered left to right and adjacent patches have Ml indices that are larger than those
thatare not adjacent. After ranking each 3x3 patch using the MI measure and preprocessing the sample
using Algorithm 1, the resulting sample 1" has ordering grey, green, pink and blue. In this example Ml
of the green with the grey patch is 0.557 while the blue has MI index equal to 0.224 against the same
reference patch.

]. Assuming the probability of the correct class is 0.01 the cross-entropy loss becomes 4.60.

6 5
6 71
] probabilities for each class. Taking the negative logarithm of the correct class results

Once I' is convolved using the same kernel K, the resulting downscaled feature map, x; = [

0.13
0.87
in a prediction loss equal to 2.01.

This is the underlying effect we would like all measure to have when reordering the training dataset.
However, it is not guaranteed. For instance, if we use 12-norm measure (Eqn. 8) to sort the patches, the
resulting loss becomes 4.71, which is higher compared to the unmodified original sample. As a result, the
training is slowed down since larger loss means more iterations are required for the iterative optimization
to converge.

produces [

43  PATCH SIZE IMAPCT ON TRAINING

To characterize the effect of patch size, we performed controlled experiments where only the patch size
is the varying parameter. The results and unmodified and preprocessed samples are depicted in Fig. 5.
As can clearly be seenin the plot, the network makes rapid progress lowering the cost when trained on a
4x4 patch ordered datasets. Based on the empirical evidence and observations, we believe patch-ordering
impact is more effective when mutual information index is combined with small patch size. To clarify
consider dividing the above sample into nine 2x2 patches.
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If the patches are reordered using MI measure against a reference patch p(0,0), and convolve the
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reordered sample, I"" = 0 0 | using the same filter K =[0 1], the resulting
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|y |

normalized prediction probabilities are [0'14], which results in a loss of 1.96 after the first iteration.

0.86
This is one explanation for the observed results, however, we cannot draw a conclusion regarding
proportionality of patch size to training performance. If the pink and red patches ofthe above sample,
which have same M1 index, were to swap places, the resulting loss would have been 4.71 which is greater
than the loss generated using 3x3 patch size. In this scenario training is slowed down.

5 SUMMARY AND DISCUSSION
We proposed several automated patch ordering techniques to assess their impact on training and assess

the relationship between dataset characteristics and training and generalization performances. Our
methods rank, and reorder patches of every sample based on a standalone measure and based on similarity

Patch Size: [l 4x4 axs M 1cx16 Unmedified
Total training loss CIFAR10 Total training loss on CIFAR100
N\
-./‘—‘\\/
. N S ]
\f—-/- BN =
Step Step
Regularization loss on CIFAR10 Regularization loss on CIFAR100

Loss
;
Regularization Loss

Step Step

Figure 5: Comparison of training performance of Inception using different patch sizes. CIFAR10 (left)
and CIFAR100 (right) datasets. Totaltraining loss (top) and regularization loss (bottom) for Unmodifiec
dataset, and datasets modified by applying Algorithm 1 usingthe MI metric and patch sizes 4x4, 8x8 an
16x16). The overall size of each sample is 32 by 32.

between patches. We used traditional image similarity measures as well as information theory-based
content measures of images to reconstruct training samples. We started off with theoretical foundations
for measures used and highlighted the intuition regarding ordering and classification performance. We
tested the proposed methods using several architectures, each effectively designed to achieve high

accuracy on image classification tasks. The empirical evidence and our analysis using multiple datasets
and Inception network architecture, suggest that training a convolutional neural network by supplying
inputs that have some ordering, at patch level, according to some measure, are effective in allowing a
gradient step to be taken in a direction that minimizes costat every iteration. Specifically, ourexperiments

10
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show that supplying training sample such that the mutual information between adjacent patches is
minimum, reduces the loss faster than all other techniques when optimizing a non-convexloss function.
In addition, using these systematic approaches, we have shown that image characteristics and human
recognizable features contained within training samples are uncorrelated with network performance. In
other words, the view that CNNs learn combination of features in increasing abstraction does not explain
their ability to fit images that have no recognizable features for the human eyes. Such a view also
discounts the ability of the networks to fit random noise during training. Instead further investigation
using theoretical characterizations such as the IB method are necessary to formally characterize learnability
of a given training set using CNN.
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RELEVANT DETAIL ON TRAINING CNN

A typical CNN architecture is structured as a series of data processing and classification stages. It consists
of several layers with tens of thousands of neurons in each layer, as well as millions of connections hetween
neurons. In the data processing stages, there are two kinds of layers: convolutional and pooling layers (lan
Goodfellow etal., 2006). In a convolutional layer, each neuron representing a filter is connected to a small
patch of a feature map from the previous layer through aset of weights. The result of the weighted sum is
then passed through an activation function that performs non-linear transformation and prevent learning
trivial linear combinations of the inputs. The pooling layers are used to reduce computation time by sub-
sampling from convolution outputs and to gradually build up further spatial and configural invariance (lan
Goodfellow et al., 2006).

Discrete image convolution [10] is used to extract information from training samples. For 2D functions |
and K, the convolution operation is defined as:

(oo}

1w, v) = Z Z 1 —i,v— DKG,)) (13)

i=—00 j=—00

In CNNs, convolution at a given layer is applied to the output of the previous layer and the limits of the
summation ae determined by the size the input Iand of the filter K. Fora given layer [, the input comprises
(fm) - feature maps from the previous layer (Goodfellow et al., 2016). When! = 1, the inputis a single
image consisting of one or more channels. The output of layer [ consists of (fm)%feature maps.

FEATURE MAPS

Feature maps are encodings of features and their locations present in the input (lan Goodfellow et al.,
2006). They are obtained by convolving the input with a fixed sized filter (or kernel, K) usually having
dimensions significantly smaller than the input. The i feature map of layer [, represented y/ is computed
as

m@-1
yi =B} + Z Kl ylt (14)
j=1
where m"~is the total number of feature maps generated by the previous layer, B/ is a bias matrix and

Ki‘_j is a filter connecting the j " feature map in layer [ (lan Goodfellow etal., 2006). The trainable weights
are found in thefilters K} ; and the bias matrices B/.

TRAINING AND THE BACKPROPAGATION ALGORITHM
During training, CNNs attempt to determine the filter weights to approximate target mapping g

(Goodfellow et al., 2016). In practice, g is a function fitted by the training data using supervised training
procedures. The training set

T, ={(xp,y,): 1 <n< N} (15)

comprises both the input values x,, and corresponding desired output values y, ~ g(x,,). N is the total
number of examples in the training set.

BACKPROPAGATION ALGORITHM
12
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Supervised training is accomplished by adjusting the weights w of the network to minimize a chosen
objective function that measures the deviation of the network output, y,,, from the desired target output
x,, (Goodfellow et al., 2016). Some of the common measures are cross-entropy error measure (Janocha
and Czarnecki, 2017) given by

N c c
EW) = ) E) = )" ) by log(y e w)), (16)
n=1

n=1k=1

and the squared-error measure (Bishop, 2006) given by

Ew) = i E,(w) = zc: zc: tor log(y, (e ), 17

n=1k=1
where t,, is the k™" entry of the target value t,, and c is the number of distinct classesin T;.

Deep learning with stochastic training seeks to minimize E, (w) with respect to the network weights w.
The necessary criterion can be written as

oE,
— =0, (18)
ow

where ‘;i; is the gradient of the error E,, (Goodfellow et al., 2016). Since E,, is a high dimensional

function, a closed-form exact solution is too expensive. lterative optimization approach, commonly
referred to as gradient descent (Algorithm1), is used to find optimal values of the parameters that best

Input image or feature map (I)

a b N A 2x2 filter (K)

w x

e f F4 I

¥

i~ k i

I Convolution of image by filter K

aw +bx+ey || hw+cx+fy || cow+dr+ gy
+fz +gz +hz

ew+fx+iy || fw 4 gxtjy || gw+he+ky
+iz +kz +1z

Output feature map ((fm)})

Figure 1. lllustration of convolution in a single convolution layer. If layer | is a convolutional layer, the
input image (if 1 = 1) or a feature map of the previous layer is convolved by different filters to yield the

output feature maps, (fm)! , of layer .

approximate a mapping between each sample in thetraining setto the desired output.

At each iteration, for a given weight vector w[t], gradient descent takes a step in the direction of the
steepest descent to reach aglobalminimum (Goodfellow etal., 2016) by computing weight update Aw[¢]
and updating weight accordingly:

wlt+ 11 = wltl + Awlt] (19)

where Awlt] = —a :ja] = —aAE, is the gradient of the error function with respectto w and « is the

learning rate.

There are few different training protocols used for parameter optimization. These protocols are
summarized in (Larochelle et al., n.d.). The most common ones are:
Stochastic training: when this protocol is employed, an input sample is chosen at random and the
network weights are updated based on the error function E, (w).
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Batch Training: with this protocol, all inputs of size N are processed and the weights are updated based
on the overall error

N
EW) = ) E, ). (20)
n=1

Online training: every sample is processed only once, and the weights are updated using the error
E,(w).

Mini-batch training: during mini-batch training a randomsubset (mini-batch) of samples of size M from
the training set is processed and the weights are updated based on the cumulative error

M
Eyw) = ) E,w). 1)

n=1

Table 2: The backpropagation algorithm using mini-batch training protocol.

Input:Learnig rate (@), max;e,qtion Ts
Output: Network

1. Initialize weights to 0

2. Draw abatch of size BatchSize

For (i=1to BatchSize):

3. Select input x;
4. PropagateForward x;
5. ComputeError E;
6. Compute gradient update AE;
7. Backpropagate and update weights
8. Goto?2

End

Return Network
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