
Under review as a conference paper at ICLR 2020

ON FEDERATED LEARNING OF DEEP NETWORKS
FROM NON-IID DATA: PARAMETER DIVERGENCE
AND THE EFFECTS OF HYPERPARAMETRIC METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning, where a global model is trained by iterative parameter aver-
aging of locally-computed updates, is a promising approach for distributed train-
ing of deep networks; it provides high communication-efficiency and privacy-
preservability, which allows to fit well into decentralized data environments,
e.g., mobile-cloud ecosystems. However, despite the advantages, the federated
learning-based methods still have a challenge in dealing with non-IID training
data of local devices (i.e., learners). In this regard, we study the effects of a va-
riety of hyperparametric conditions under the non-IID environments, to answer
important concerns in practical implementations: (i) We first investigate parame-
ter divergence of local updates to explain performance degradation from non-IID
data. The origin of the parameter divergence is also found both empirically and
theoretically. (ii) We then revisit the effects of optimizers, network depth/width,
and regularization techniques; our observations show that the well-known advan-
tages of the hyperparameter optimization strategies could rather yield diminishing
returns with non-IID data. (iii) We finally provide the reasons of the failure cases
in a categorized way, mainly based on metrics of the parameter divergence.

1 INTRODUCTION

Over the recent years, federated learning (McMahan et al., 2017) has been a huge success to re-
duce the communication overhead in distributed training of deep networks. Guaranteeing compet-
itive performance, the federated learning permits each learner to compute their local updates of
each round for relatively many iterations (e.g., 1 epoch, 10 epochs, etc.), which provides much
higher communication-efficiency compared to the conventional data parallelism approaches (for
intra-datacenter environments, e.g., Dean et al. (2012); Chen et al. (2016)) that generally require
very frequent gradient aggregation. Furthermore, the federated learning can also significantly re-
duce data privacy and security risks by enabling to conceal on-device data of each learner from the
server or other learners; thus the approach can be applied well to environments with highly private
data (e.g., personal medical data), it is now emerging as a promising methodology for privacy-
preserving distributed learning along with differential privacy-based methods (Hard et al., 2018;
Yang et al., 2018; Bonawitz et al., 2019; Chen et al., 2019).

On this wise, the federated learning takes a simple approach that performs iterative parameter aver-
aging of local updates computed from each learners’ own dataset, which suggests an efficient way
to learn a shared model without centralizing training data from multiple sources; but hereby, since
the local data of each device is created based on their usage pattern, the heterogeneity of training
data distributions across the learners might be naturally assumed in real-world cases. Hence, each
local dataset would not follow the population distribution, and handling the decentralized non-IID
data still remains a statistical challenge in the field of federated learning (Smith et al., 2017). For
instance, Zhao et al. (2018) observed severe performance degradation in multi-class classification
accuracy under highly skewed non-IID data; it was reported that more diminishing returns could be
yielded as the probabilistic distance of learners’ local data from the population distribution increases.
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Algorithm 1 Federated learning. wt
k is the model parameters updated by learner k at communication

round t, wt is the global model parameters at round t, K = {1, 2, · · · ,K} is the universal set of
learners, Pk is the local training dataset of learner k, B is the local minibatch size, E is the number
of the local epochs per round, η is the learning rate, and `(·) is the loss function.

Server executes:
initialize w0

for each round t = 1, 2, · · · , T do
for each learner k ∈ K in parallel do
wt
k ← LearnerUpdate(k,wt−1)

end for
wt ←

∑
k∈K

|Pk|∑
j∈K|Pj |

wt
k

end for

LearnerUpdate(k,w): // Run on learner k
B ←(split Pk into batches of size B)
for each local epoch ε from 1 to E do

for each batch b ∈ B do
w← w − η∇`(w;b)

end for
end for
return w to server

Contributions. To address the non-IID issue under federated learning, there have been a variety
of recent works1; nevertheless, in this paper we explore more fundamental factors, the effects of
various hyperparameters. The optimization for the number of local iterations per round or learning
rates has been handled in several literatures (e.g., Huang et al. (2018); Li et al. (2019c); Wang et al.
(2019)); by extension we discuss, for the first time to the best of our knowledge, the effects of
optimizers, network depth/width, and regularization techniques.

Our contributions are summarized as follows: First, as a root cause of performance degradation from
non-IID data, we investigate parameter divergence of local updates at each round. The parameter
divergence can be regarded as a direct response to learners’ local data being non-IID sampled from
the population distribution, of which the excessive magnitude could disturb the performance of
the consequent parameter averaging. We also investigate the origin of the parameter divergence in
both empirical and theoretical ways. Second, we observe the effects of well-known hyperparameter
optimization methods2 under the non-IID data environments; interestingly, some of our findings
show highly conflicted aspects with their positive outcomes under “vanilla” training3 or the IID data
setting. Third, we analyze the internal reasons of our observations in a unified way, mainly using
the parameter divergence metrics; it is identified that the rationale of the failures under non-IID data
lies in some or all of (i) inordinate magnitude of parameter divergence, (ii) its steep fall phenomenon
(described in Section 4.2), and (iii) excessively high training loss of local updates.

2 PRELIMINARIES

2.1 ALGORITHM

In this study, Algorithm 1 is considered as a federated learning method, and it is written based on
FedAvg (McMahan et al., 2017).4 We note that this kind of parameter averaging-based approach
has been widely discussed in the literature, under various names, e.g., parallel (restarted) SGD
(Zhang et al., 2016; Yu et al., 2019) and local SGD (Lin et al., 2018; Stich, 2019).

2.2 EXPERIMENTAL SETUP

In our experiments with Tensorflow (Abadi et al., 2016),5 we consider the multi-class classifica-
tion tasks on CIFAR-10 (Krizhevsky & Hinton, 2009) and SVHN (Netzer et al., 2011) datasets.

1For instance, Smith et al. (2017); Caldas et al. (2018); Huang et al. (2018); Jeong et al. (2018); Zhao et al.
(2018); Zhu & Jin (2018); Corinzia & Buhmann (2019); Duan (2019); Li et al. (2019a;b;c); Liu et al. (2019);
Mohri et al. (2019); Sattler et al. (2019); Wang et al. (2019); Yonetani et al. (2018); Yoshida et al. (2019).

2we use the term hyperparameter optimization methods and hyperparametric methods interchangeably.
3This term refers to the non-distributed training with a single machine, using the whole training examples.
4Regarding the significance of the algorithm, we additionally note that Google is currently employing it on

their mobile keyboard application (Gboard) (Hard et al., 2018; Yang et al., 2018; Bonawitz et al., 2019; Chen
et al., 2019). In this study we deal with image classification, which is also considered as the main applications
of federated learning along with the language models (McMahan et al., 2017).

5Our source code is available at https://github.com/fl-noniid/fl-noniid
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Figure 1: Magnitude of neurons in the last fully-connected layer of the NetA-Baseline model, at
the first round of Algorithm 1 on CIFAR-10. Brighter ones illustrates having greater magnitude.

Baseline network model: For the baseline deep network, we consider a CNN model that has
three 3 × 3 convolutional layers with 64, 128, 256 output channels, respectively; and then three
fully-connected layers with 512, 256, 10 output sizes, respectively (see Appendix A.1 for more
detailed description). We use the term NetA-Baseline to denote this baseline model throughout
this paper. Regularization configuration: For weight decay, we apply the method of decou-
pled weight decay regularization (Loshchilov & Hutter, 2019) based on the fact that weight decay
is equivalent to L2 regularization only for pure SGD (Loshchilov & Hutter, 2019; Zhang et al.,
2019). The baseline value of the weight decay factor is set to 0.00005. As our regularization base-
line, we consider not to apply any other regularization techniques additionally. We importantly
note that if without any particular comments, the results described in the following sections are
ones obtained using the above baseline configurations of the network model and regularization.

Table 1: Configuration of balanced data settings.
#Cls/L: the number of classes in each learner’s local
training dataset; #Exs/Cl/L: the number of training
examples per class in each local dataset.

Data Setting #Learners #Cls/L #Exs/Cl/L

IID 10 10 500
Non-IID(N) 10 N 5000/N

Environmental configuration: We con-
sider 10 learners to have each 5000 non-
overlapping training examples; Table 1 sum-
marizes our configuration of data settings;
Non-IID(N) denotes a data setting that lets
each learner to have training examples only
for N class(es). The data settings in the Ta-
ble 1 deal with data balanced cases where
learners have the same amount of local data,
and they are mainly considered in the follow-
ing sections; we additionally note that one can refer to Appendix C.8 for the experiments with data
unbalanced cases. For the IID and the non-IID data settings, T = 200 and 300 are used respectively,
while E = 1 and minibatch size of 50 are considered commonly for the both.6 One can find the
remaining configurations for the experiments in Appendix A.

3 PARAMETER DIVERGENCE

Parameter divergence is recently being regarded as a strong cause of diminishing returns from de-
centralized non-IID data in federated learning (Zhao et al., 2018) (it is sometimes expressed in
another way, gradient/loss divergence (Li et al., 2019b;c; Liu et al., 2019; Wang et al., 2019)). For
the divergence metrics, many of the literatures usually handle the difference of each learner’s local
model parameters from one computed with the population distribution; it eventually also causes pa-
rameter diversity between the local updates as the data distributions become heterogeneous across
learners. A pleasant level of parameter divergence could rather imply exploiting rich decentralized
data (IID cases); however, if the local datasets are far from the population distribution, the conse-
quent parameter averaging of the highly diverged local updates could lead to bad solutions away
from the global optimum (non-IID cases).

6Here, one epoch is used as one of the standard local iterations per round in McMahan et al. (2017) and
its large number of descendants; furthermore, more extreme cases such as E = 5, 20 are also considered. In
addition, in view of the number of local iterations, we use 100 for it during each round; note that � 100
iterations are even considered (e.g., up to 200 iterations is used on CIFAR-10 in McMahan et al. (2017)).
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Figure 2: Comparison of test accuracy and parameter divergence with respect to the degree of data
non-IIDness in the training of NetA-Baseline on CIFAR-10. Note that EMD values of Non-IID(5)
and Non-IID(2) from the population distribution are 1.0 and 1.6, respectively.

The origin of parameter divergence. In relation, it has been theoretically proven that the parame-
ter divergence (between the global model parameters under FedAvg and those computed by vanilla
SGD training) is directly related to the probabilistic distance of local datasets from the population
distribution (see Proposition 3.1 in Zhao et al. (2018)). In addition to it, for multi-class classifica-
tion tasks, we here identify in lower level, that if data distributions in each local dataset are highly
skewed and heterogeneous over classes, subsets of neurons, which have especially big magnitudes
of the gradients in back propagation, become significantly different across learners; this leads to
inordinate parameter divergence between them. As illustrated in Figure 1, under the IID data set-
ting, the weight values in the output layer are evenly distributed relatively evenly across classes if
the neurons of the model are initialized uniformly. However, we can observe under the non-IID
data settings that the magnitudes of the gradients are distributed depending on each learner’s data
distribution. We also provide the corresponding theoretical analysis in Appendix B.

Metrics. To capture parameter divergence under federated learning, we define the following two
metrics using the notations in Algorithm 1. Since in our analysis we compare different network
architectures or training settings together in a set, the number of neurons in the probed layers can
become different, and values of model parameters can highly depend on the experimental manip-
ulations; thus instead of Euclidean distance, in the two divergence metrics we use cosine distance
that enables normalized (qualitative) measures. We also note that PD-VL is defined assuming the
balancedness of data amount between learners, i.e., the same numbers of local iterations per round.

The reason of probing parameter divergence being important is that the federated learning are per-
formed based on iterative parameter averaging. That is, investigating how local updates are diverged
can give a clue whether the subsequent parameter averaging yields positive returns; the proposed
divergence metrics provide two ways for it.
Definition 1. For zt1, z

t
2, · · · , ztK ∈ Rd where ztk is a subset (or the universal set) of wt

k, we define
parameter divergence between local updates as

PD-Ls : ζ
(
zt1, z

t
2, · · · , ztK

)
=

(
K

2

)−1 ∑
i,j∈K;i<j

(
1−

zti · ztj
‖zti‖

∥∥ztj∥∥
)
.

In addition, assume that
∣∣Pk∣∣ is identical ∀k ∈ K, and let wt

−1 be the vanilla-updated parame-
ters, that is, the model parameters updated on the global parameters (i.e., wt−1) using IID train-
ing data during the same number of iterations with the actual learners (i.e.,

∣∣Pk∣∣/B). Then, for
zt1, z

t
2, · · · , ztK , and zt−1 ∈ Rd where zt−1 is a subset (or the universal set) of wt

−1, we define
parameter divergence between the vanilla update and local updates as

PD-VL : ξ
(
zt−1; z

t
1, z

t
2, · · · , ztK

)
=

1

K

∑
k∈K

(
1−

zt−1 · ztk∥∥zt−1∥∥ ‖ztk‖
)
.

Relationship among probabilistic distance, parameter divergence, and learning performance.
We consider Non-IID(5) and Non-IID(2) for non-IID data settings. Here we use earth mover’s
distance (EMD), also known as Wasserstein distance, to measure probabilistic distance of each data
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settings from the population distribution; the value becomes 1.0 and 1.6 for Non-IID(5) and Non-
IID(2), respectively. From the middle and right panels of Figure 2, it is seen that greater EMDs
lead to bigger parameter divergence (refer to also Figure 9 in the appendix). Also, together with
the left panel, we can observe the positive correlation between parameter divergence and learning
performance. Therefore, we believe the parameter divergence metrics can help to reveal the missing
link between data non-IIDness and the consequent learning performance. Note that one can also
refer to the similar analysis with more various EMD in Zhao et al. (2018).

4 THE EFFECTS OF HYPERPARAMETRIC METHODS

4.1 SUMMARY OF OUR OBSERVATIONS

From now on we describe our findings for the effects of various hyperparameter optimization meth-
ods with non-IID data on the federated learning algorithm. The considered hyperparametric methods
have been a huge success to improve performance in deep learning; however, here we newly iden-
tify that under non-IID data settings, they could give negative/diminishing effects on performance
of the federated learning algorithm. The following is the summary of our findings; we provide the
complete experimental results and further discussion in the next subsection and the appendix.

Effects of optimizers. Unlike non-adaptive optimizers such as pure SGD and momentum SGD
(Polyak, 1964; Nesterov, 1983), Adam (Kingma & Ba, 2015) could give poor performance from
non-IID data if the parameter averaging is performed only for weights and biases, compared to all
the model variables (including the first and second moment) being averaged.

Here we importantly note that both momentum SGD and Adam require the additional variables
related to momentum as well as weights and biases; throughout the rest of the paper, the terms
(optimizer name)-A and (optimizer name)-WB are used to refer to the parameter averaging being
performed for all the variables7 and only for weights & biases, respectively.

Effects of network depth/width. It is also known that deepening “plain” networks (which simply
stacks layers, without techniques such as information highways (Srivastava et al., 2015) and shortcut
connection (He et al., 2016)) yields performance degradation at a certain depth, even under vanilla
training; however this phenomenon gets much worse under non-IID data environments. On the
contrary, widening networks could help to achieve better outcomes; in that sense, the global average
pooling (Lin et al., 2014) could fail in this case since it significantly reduces the channel dimension
of the (last) fully-connected layer, compared to using the max pooling.

Effects of Batch Normalization. The well-known strength of Batch Normalization (Ioffe &
Szegedy, 2015), the dependence of hidden activations in the minibatch (Ioffe, 2017), could be-
come a severe drawback in non-IID data environments. Batch Renormalization (Ioffe, 2017) helps
to mitigate this, but it also does not resolve the problem completely.

Effects of regularization techniques. With non-IID data, regularizations techniques such as
weight decay and data augmentation could give excessively high training loss of local updates even
in a modest level, which offsets the generalization gain.

4.2 DISCUSSION

We now explain the internal reasons of the observations in the previous subsection. Through the
experimental results, we were able to classify the causes of the failures under non-IID data into

7To the best of our knowledge, so far there have been no studies about Adam to synchronize all the three
sets of variables (i.e., weights & biases, the first moment, and the second moment) under federated learning.
However, in the momentum SGD case, there have been some literatures; for instance, Lin et al. (2018) presented
the synchronization methods with local momentum, global momentum, and hybrid momentum. Here our simple
averaging strategy has the similar philosophy with the local momentum method; one can see from Table 4 in Lin
et al. (2018) that the simple averaging strategy can yield still competitive results compared to global momentum
or hybrid momentum method.

5



Under review as a conference paper at ICLR 2020

100 101 102

Communication Rounds

10-6

10-4

10-2

PD
-L

s

Weights of the Last Fully-Connected Layer

NetA-Baseline
NetA-Deeper
NetA-Deepest

100 101 102

Communication Rounds

10-6

10-4

10-2

PD
-L

s

Weights of 1st Convolutional Layer

WD Factor: 0.0
WD Factor: 0.00005
WD Factor: 0.0001
WD Factor: 0.0005

100 101 102

Communication Rounds

10-6

10-4

10-2

PD
-V

L

Weights of the Last Fully-Connected Layer

Baseline
w/ DO

Figure 3: Inordinate magnitude of parameter divergence in the CIFAR-10 training with NetA-
Deepest (left), weight decay factor of 0.0005 (middle), and Dropout (right), respectively, under
the non-IID data setting. Dotted and solid lines indicate the results under IID and Non-IID(2) set-
ting, respectively. WD: weight decay; DO: dropout.

Table 2: Test accuracy (%) of the trials in Figure 3. Values outside/inside brackets denote one
measured after the whole training and the highest one during the rounds, respectively. NMom:
Nesterov momentum SGD; BS: minibatch size. Note that weight decay factor of 0.00005 is the
baseline configuration.

Network Method Vanilla Training Federated Learning

BS: 50 BS: 500 IID Non-IID(2)

NetA-Baseline NMom-A 83.89 (83.90) 79.39 (79.49) 81.49 (81.82) 74.11 (74.23)

NetA-Deeper NMom-A 85.94 (86.00) 81.23 (81.29) 83.40 (83.63) 73.67 (73.89)
NetA-Deepest NMom-A 86.20 (86.33) 79.48 (79.53) 83.12 (83.58) 68.98 (69.64)
NetA-Baseline NMom-A + WD: 0.0 81.13 (81.15) 79.09 (79.25) 81.68 (81.90) 73.95 (64.27)
NetA-Baseline NMom-A + WD: 0.0001 84.29 (84.46) 79.13 (79.74) 82.22 (82.25) 72.65 (72.79)
NetA-Baseline NMom-A + WD: 0.0005 83.66 (84.60) 80.48 (80.79) 82.69 (83.14) 54.11 (54.15)
NetA-Baseline NMom-A + DO 86.55 (86.63) 84.29 (84.32) 84.34 (84.53) 75.80 (75.89)

three categories; the following discussions are described based on this.8 Note that our discussion
in this subsection is mostly made from the results under Nesterov momentum SGD and on CIFAR-
10; the complete results including other optimizers (e.g., pure SGD, Polyak momentum SGD, and
Adam) and datasets (e.g., SVHN) are given in Appendix C.

Inordinate magnitude of parameter divergence. As mentioned before, bigger parameter diver-
gence is the root cause of diminishing returns under federated learning methods with non-IID data.
By extension, here we observe that even under the same non-IID data setting, some of the considered
hyperparametric methods yield greater parameter divergence than when they are not applied.

For example, from the left plot of Figure 3, we see that under the Non-IID(2) setting, the parameter
divergence values (in the last fully-connected layer) become greater as the network depth increases
(note that NetA-Baseline, NetA-Deeper, and NetA-Deepest have 3, 6, and 9 convolutional lay-
ers, respectively; see also Appendix A.1 for their detailed architecture). The corresponding final
test accuracy was found to be 74.11%, 73.67%, and 68.98%, respectively, in order of the degree
of shallowness; this fits well into the parameter divergence results. Since the NetA-Deeper and
NetA-Deepest have twice and three times as many model parameters as NetA-Baseline, it can be
expected enough that the deeper models yield bigger parameter divergence in the whole model; but
our results also show its qualitative increase in a layer level. In relation, we also provide the results
using the modern network architecture (e.g., ResNet (He et al., 2016)) in Table 8 of the appendix.

8From the figures of the experimental results in Appendix C, we can identify that in most cases the parame-
ter divergence values of the first convolutional layer and the last fully-connected layer would be more dominant
than those of the other layers, judging from their difference of magnitude between under the IID and the non-
IID data setting (please also note that log scale is used for the y-axis). We additionally remark that the results
of other related studies also show the dominance of the first convolutional layer and the last fully-connected
layer (e.g., see Figure 2 in Zhao et al. (2018)). Therefore, our discussion here was primarily described based
on the results of the first convolutional layer and the last fully-connected layer.
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Figure 4: Steep fall phenomenon in the CIFAR-10 training with Adam-WB (left), NetC-Baseline
(middle), and Batch Normalization (right), respectively, under the non-IID data setting. Dotted and
solid lines indicate the results under IID and Non-IID(2) setting, respectively. BN: Batch Normal-
ization; BRN: Batch Renormalization.

Table 3: Test accuracy (%) of the trials in Figure 4.

Network Method Vanilla Training Federated Learning

BS: 50 BS: 500 IID Non-IID(2)

NetA-Baseline Adam-WB 81.97 (82.35) 80.73 (80.76) 80.99 (81.00) 67.51 (67.82)
NetA-Baseline Adam-A 81.97 (82.35) 80.73 (80.76) 81.18 (81.45) 75.32 (75.45)

NetC-Baseline NMom-A 84.25 (84.50) 76.70 (76.82) 80.60 (80.75) 64.06 (64.55)
NetC-Wider NMom-A 81.48 (81.53) 77.00 (77.14) 79.59 (79.85) 72.61 (72.97)
NetC-Widest NMom-A 83.16 (83.36) 78.39 (78.56) 80.90 (81.14) 73.64 (73.91)

NetA-Baseline NMom-A 83.89 (83.90) 79.39 (79.49) 81.49 (81.82) 74.11 (74.23)
NetA-Baseline NMom-A + BN 85.22 (85.25) 79.58 (80.14) 83.54 (83.80) 50.46 (59.31)
NetA-Baseline NMom-A + BRN 86.36 (86.43) 82.03 (82.46) 84.24 (84.70) 70.32 (70.38)

From the middle plot of the figure, we can also observe bigger parameter divergence in a high level
of weight decay under the Non-IID(2) setting. Under the non-IID data setting, the test accuracy
of about 72 ∼ 74% was achieved in the low levels (≤ 0.0001), but weight decay factor of 0.0005
yielded only that of 54.11%. Hence, this suggests that with non-IID data we should apply much
smaller weight decay to federated learning-based methods. Here we note that if a single iteration is
considered for each learner’s local update per round, the corresponding parameter divergence will
be of course the same without regard to degree of weight decay. However, in our experiments, the
great number of local iterations per round (i.e., 100) made a big difference of the divergence values
under the non-IID data setting; this eventually yielded the accuracy gap. We additionally observe
for the non-IID cases that even with weight decay factor of 0.0005, the parameter divergence values
are similar to those with the smaller factors at very early rounds in which the norms of the weights
are relatively very small.

In addition, it is observed from the right plot of the figure that Dropout (Hinton et al., 2012; Sri-
vatava et al., 2014) also yields bigger parameter divergence under the non-IID data setting. The cor-
responding test accuracy was seen to be a diminishing return with Nesterov momentum SGD (i.e.,
using Dropout we can achieve +2.85% under IID, but only +1.69% is obtained under non-IID(2),
compared to when it is not applied; see Table 2); however, it was observed that the generalization
effect of the Dropout is still valid in test accuracy for the pure SGD and the Adam (refer to also
Table 13 in the appendix).

Steep fall phenomenon. As we see previously, inordinate magnitude of parameter divergence
is one of the notable characteristics for failure cases under federated learning with non-IID data.
However, under the non-IID data setting, some of the failure cases have been observed where the test
accuracy is still low but the parameter divergence values of the last fully-connected layer decrease
(rapidly) over rounds; as the round goes, even the values were sometimes seen to be lower than those
of the comparison targets. We refer to this phenomenon as steep fall phenomenon. It is inferred
that these (unexpected abnormal) sudden drops of parameter divergence values indicate going into
poor local minima (or saddles); this can be supported by the behaviors that test accuracy increases
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Figure 5: Loss surface of the global model parameters under Non-IID(2) setting. The red dashed
boxes indicate the same level of loss value.

plausibly at very early rounds, but the growth rate quickly stagnates and eventually becomes much
lower than the comparison targets.

The left plot of Figure 4 shows the effect of the Adam optimizer with respect to its implementations.
Through the experiments, we identified that under non-IID data environments, the performance of
Adam is very sensitive to the range of model variables to be averaged, unlike the non-adaptive
optimizers (e.g., momentum SGD); its moment variables should be also considered in the param-
eter averaging together with weights and biases (see also Table 3). The poor performance of the
Adam-WB under the Non-IID(2) setting would be from twice as many momentum variables as the
momentum SGD, which indicates the increased number of them affected by the non-IIDness; thus,
originally we had thought that extreme parameter divergence could appear if the momentum vari-
ables are not averaged together with weights and biases. However, it was seen that the parameter
divergence values under the Adam-WB was seen to be similar or even smaller than under Adam-A
(see also Figure 11 in the appendix). Instead, from the left panel we can observe that the parame-
ter divergence of Adam-WB in the last fully-connected layer is bigger than that of Adam-A at the
very early rounds (as we expected), but soon it is abnormally sharply reduced over rounds; this is
considered the steep fall phenomenon.

The middle and the right plots of the figure also show the steep fall phenomenon in the last fully-
connected layer, with respect to network width and whether to use Batch Normalization, respec-
tively. In the case of the NetC models, NetC-Baseline, NetC-Wider, and NetC-Widest use the
global average pooling, the max pooling with stride 4, and the max pooling with stride 2, respec-
tively, after the last convolutional layer; the number of neurons in the output layer becomes 2560,
10240, and 40960, respectively (see also Appendix A.1 for their detailed architecture). Under the
Non-IID(2) setting, the corresponding test accuracy was found to be 64.06%, 72.61%, and 73.64%,
respectively, in order of the degree of wideness. In addition, we can see that under Non-IID(2),
Batch Normalization9 yields not only big parameter divergence (especially before the first learning
rate drop) but also the steep fall phenomenon; the corresponding test accuracy was seen to be very
low (see Table 3). The failure of the Batch Normalization stems from that the dependence of batch-
normalized hidden activations makes each learner’s update too overfitted to the distribution of their
local training data. Batch Renormalization, by relaxing the dependence, yields a better outcome;
however, it still fails to exceed the performance of the baseline due to the significant parameter
divergence.

To explain the impact of the steep fall phenomenon in test accuracy, we provide Figure 5, which in-
dicates that the loss landscapes for the failure cases (e.g., Adam-WB and with Batch Normalization)
commonly show sharper minima that leads to poorer generalization (Hochreiter & Schmidhuber,

9For its implementations into the considered federated learning algorithm, we let the server get the proper
moving variance by 1

K

∑
k∈K

(
E
[
φ2
])

k
− E

[
φ
]2 at each round, by allowing each learner k collect

(
E
[
φ2
])

k
as well as the existing moving statistics of Batch Normalization (φ denotes activations). This can be regarded
as a federated version of distributed Batch Normazliation methods (e.g., Qin et al. (2018); Zhang et al. (2018)).
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Figure 6: Excessively high training loss in the CIFAR-10 training with NetB-Baseline (left), the
weight decay factor of 0.0005 (middle), and data augmentation (right), respectively, under the non-
IID data setting. Dotted and solid lines indicate the results under IID and Non-IID(2) setting, respec-
tively. WD: weight decay; DA: data augmentation. Note that training loss values of each learner
were calculated on their local data before each synchronization.

Table 4: Test accuracy (%) of the trials in Figure 6. Note that weight decay factor of 0.00005 is the
baseline configuration.

Network Method Vanilla Training Federated Learning

BS: 50 BS: 500 IID Non-IID(2)

NetB-Baseline NMom-A 85.05 (85.13) 79.74 (79.79) 82.57 (82.65) 62.82 (63.08)
NetB-Wider NMom-A 82.74 (82.90) 77.29 (77.47) 80.03 (80.43) 72.24 (72.32)
NetB-Widest NMom-A 83.59 (83.60) 79.31 (79.77) 81.47 (81.73) 74.35 (74.52)

NetA-Baseline NMom-A 83.89 (83.90) 79.39 (79.49) 81.49 (81.82) 74.11 (74.23)

NetA-Baseline NMom-A + WD: 0.0 81.13 (81.15) 79.09 (79.25) 81.68 (81.90) 73.95 (74.27)
NetA-Baseline NMom-A + WD: 0.0001 84.29 (84.46) 79.13 (79.74) 82.22 (82.25) 72.65 (72.79)
NetA-Baseline NMom-A + WD: 0.0005 83.66 (84.60) 80.48 (80.79) 82.69 (83.14) 54.11 (54.15)
NetA-Baseline NMom-A + DA 87.16 (87.41) 83.07 (83.35) 84.85 (84.89) 73.95 (74.46)

1997; Keskar et al., 2017), and the minimal value in the bowl is relatively greater.10 Here it is also
observed that going into sharp minima starts even in early rounds such as 25th.

Excessively high training loss of local updates. The final cause that we consider for the failure
cases is excessively high training loss of local updates. For instance, from the left plot of Figure 6,
we see that under the Non-IID(2) setting, NetB-Baseline gives much higher training loss than the
other models. Here we note that for the NetB-Baseline model, the global average pooling is applied
after the last convolutional layer, and the number of neurons in the first fully-connected layer thus
becomes 256 · 256; on the other hand, NetB-Wider and NetB-Widest use the max pooling with
stride 4 and 2, which make the number of neurons in that layer become 1024 · 256 and 4096 · 256,
respectively (see also Appendix A.1 for their details). The experimental results were shown that
NetB-Baseline has notably lower test accuracy (see Table 4). We additionally remark that for NetB-
Baseline, very high losses are observed under the IID setting, and their values even are greater than
in the non-IID case; however, note that one have to be aware that local updates are extremely easy to
be overfitted to each training dataset under non-IID data environments, thus the converged training
losses being high is more critical than the IID cases.

The middle and the right plot of the figure show the excessive training loss under the non-IID setting
when applying the weight decay factor of 0.0005 and the data augmentation, respectively. In the
cases of the high level of weight decay, the severe performance degradation appears compared to
when the levels are low (i.e., ≤ 0.0001) as already discussed. In addition, we observed that with
Nesterov momentum SGD, the data augmentation yields a diminishing return in test accuracy (i.e.,
with the data augmentation we can achieve +3.36% under IID, but −0.16% is obtained under non-
IID(2), compared to when it is not applied); with Adam the degree of the diminishment becomes
higher (refer to Table 12 in the appendix). In the data augmentation cases, judging from that the

10Based on Li et al. (2018), the visualization of loss surface was conducted by L(α, β) = `(θ∗+αδ+βγ),
where θ∗ is a center point of the model parameters, and δ and γ is the orthogonal direction vectors.
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Table 5: Summary of the failure cases under the non-IID data setting. PD: parameter divergence.

Failure Cases High-level Reasons Observed Internal Causes
Magnitude

of PD
Steep Fall

Phenomenon
High Local

Training Loss

Adam-WB

Adam requires a much larger number of model
variables than the other optimizers, which indicates
the increased number of them stimulated by the
data non-IIDness

X X

Depth++ The increased number of model parameters could
lead to bigger parameter divergence X

Width-- - X X X

WD++

It makes the model parameters in previous iter-
ations to be reflected to the current ones; thus
the previous parameter divergence also affects the
present

X X

w/ BN
It makes local updates of learners biased to each
data distribution; it could aggravate the parameter
divergence

X X

w/ DA - X

w/ DO

The dropped nodes (or neurons), randomly se-
lected, are different across learners; its impact on
the parameter divergence would be much stronger
than under the IID setting

X

parameter divergence values are not so different between with and without it, we can identify that the
performance degradation stems from the high training loss (see Figures 30 and 31 in the appendix).
Here we additionally note that unlike on the CIFAR-10, in the experiments on SVHN it was seen
that the generalization effect of the data augmentation is still valid in test accuracy (see Table 12).

5 CONCLUSION

In this paper, we explored the effects of various hyperparameter optimization strategies for optimiz-
ers, network depth/width, and regularization on federated learning of deep networks. Our primary
concern in this study was lied on non-IID data, in which we found that under non-IID data settings
many of the probed factors show somewhat different behaviors compared to under the IID setting
and vanilla training. To explain this, a concept of the parameter divergence was utilized, and its
origin was identified both empirically and theoretically. We also provided the internal reasons of our
observations with a number of the experimental cases.

In the meantime, the federated learning has been vigorously studied for decentralized data environ-
ments due to its inherent strength, i.e., high communication-efficiency and privacy-preservability.
However, so far most of the existing works mainly dealt with only IID data, and the research to
address non-IID data has just entered the beginning stage very recently despite its high real-world
possibility. Our study, as one of the openings, handles the essential factors in the federated training
under the non-IID data environments, and we expect that it will provide refreshing perspectives for
upcoming works.
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Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, H. Brendan McMahan, Timon Van
Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards federated learning at
scale: System design. In SysML, 2019.

Sebastian Caldas, Virginia Smith, and Ameet Talwalker. Federated kernelized multi-task learning.
In SysML, 2018.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting dis-
tributed synchronous SGD. In ICLR Workshop, 2016.

Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays. Federated learning of out-
of-vocabulary words. arXiv preprint arXiv: 1903.10635, 2019.

Luca Corinzia and Joachim M. Buhmann. Variational federated multi-task learning. arXiv preprint
arXiv: 1906.06268, 2019.

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. Large scale
distributed deep networks. In NeurIPS, 2012.

Moming Duan. Astraea: Self-balancing federated learning for improving classification accuracy of
mobile deep learning applications. arXiv preprint arXiv: 1906.06268, 2019.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
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A EXPERIMENTAL DETAILS

A.1 NETWORK CONFIGURATIONS

In the experiments, we consider CNN architectures, as illustrated in Figure 7. In the network con-
figurations, three groups of 3 × 3 convolutional layers are included that have 16 ·m, 128, and 256
output channels, respectively; n denotes the number of the layers in each convolutional group. The
first two groups are followed by 3 × 3 max pooling with stride 2; the last convolutional layer is
followed by either the 3 × 3 max pooling with stride s or the global average pooling. In the case
of fully-connected layers, we use two types of the stacks: (i) three layers, of which the output sizes
are 256 · u, 256, and 10, respectively; and (ii) a single layer, of which the output size is 10. In
addition, we use the ReLU and the softmax activation for the hidden weight layers and the output
layer, respectively. Table 6 summarizes the network models used in the experiments.
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Figure 7: The network configurations.

Table 6: The network models used in the experiments.

n m Pooling after the Last Convolutional Layer v u

NetA-Baseline 1 4 max pool, /2 3 2
NetA-Deeper 2 4 max pool, /2 3 2
NetA-Deepest 3 4 max pool, /2 3 2

NetA-Narrowest 1 1 max pool, /2 3 2
NetA-Narrower 1 2 max pool, /2 3 2
NetA-Baseline 1 4 max pool, /2 3 2

NetB-Baseline 1 4 avg pool 3 1
NetB-Wider 1 4 max pool, /4 3 1
NetB-Widest 1 4 max pool, /2 3 1

NetC-Baseline 1 4 avg pool 1 -
NetC-Wider 1 4 max pool, /4 1 -
NetC-Widest 1 4 max pool, /2 1 -

A.2 THE REMAINING CONFIGURATIONS

In the experiments, we initialize the network models to mostly follow the truncated normal distribu-
tion with a mean of 0 based on He et al. (2015), however we fix the standard deviation to 0.05 for the
first convolutional group and the last fully-connected layer. For training, minibatch stochastic opti-
mization with cross-entropy loss is considered. Specifically, we use pure SGD, Nesterov momentum
SGD (Polyak, 1964; Nesterov, 1983), and Adam (Kingma & Ba, 2015) as optimization methods;
initial learning rates are set to 0.05, 0.01, and 0.001, respectively for each optimizer. We drop the
learning rate by 0.1 at 50% and 75% of the total training iterations, respectively. Regarding the
environmental configurations, we predetermine each of learners’ local training dataset in a random
seed; the training examples are allocated so that they do not overlap between the learners. To report
the experimental results, we basically considered to run the trials once, but as for unstable ones in
the preliminary tests, we chose the middle results of several runs. In every result plot, the values are
plotted at each round.
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B THEORETICAL ANALYSIS ON THE ORIGIN OF PARAMETER DIVERGENCE

In relation to the federated learning under non-IID data, so far there have been several works for
providing theoretical bounds to explain how does the degree of the non-IIDness of decentralized
data affect the performance, with respect to its degree (e.g., Zhao et al. (2018); Li et al. (2019b;c);
Liu et al. (2019); Stich (2019); Wang et al. (2019); Yu et al. (2019)). Inspired by them, here we
further study how does the non-IIDness make the model parameters of each learner diverged.

In this analysis, we consider training deep networks for multi-class classification. Based on the
notations in Algorithm 1, the SGD update of learner k at round t+ 1 is given as

wt+1
k , wt − η

R−1∑
τ=0

∑
q∈Q

pk(y = q)Ex∈Pk|y=q

[
∇w log fq(x;w

t+ τ
R

k )
]
,

where fq(x;w) is the posterior probability for class q ∈ Q (Q is the label space), obtained from
model parameters w with data examples (x, y), and pk(y = q) is the probability that the label of
a data example in Pk is q. In this equation, wt+ τ

R

k is the model parameters after the τ -th local
iterations in the round t + 1 (R is the number of local iterations of each learner per round). Herein
we note that wt+0

k (, wt) is the global model parameters received from the server at the round
t+ 1; we use the term to distinguish it from the term wt

k (which indicates the local update that has
sent back to the server at round t).

Then, by the linearity of the gradient, we obtain

(dq)
t+1
k = (dq)

t − η
R−1∑
τ=0

pk(y = q)∇dqEx∈Pk|y=q

[
log fq(x;w

t+ τ
R

k )
]
,

where dq denote the neurons, in the (dense) output layer of the model w, that are connected to the
output node for class q.

Parameter divergence between (dq)
t+1
k with the fixed k. At round t+1, suppose that for learner

k,
∥∥∥(aq)t+ τ

R

k

∥∥∥ ≤ G, ∀q ∈ Q, 0 ≤ τ < R, and
∥∥∥(ai)t+ τ

R

k − (aj)
t+ τ

R

k

∥∥∥ ≤ H , ∀i, j ∈ Q, 0 ≤ τ < R,

where (aq)
t+ τ

H
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[
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t+ τ
R

k )
]
. Then, we can get∥∥(di)t+1
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∥∥
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From this, we can identify that the parameter difference,
∥∥(di)t+1

k − (dj)
t+1
k

∥∥ is bounded according
to ‖pk(y = i)− pk(y = j)‖; it corresponds the results in Figure 1.
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Table 7: Test accuracy (%) comparison of NetA-Baseline with respect to optimizers. Values out-
side/inside brackets denote one measured after the whole training and the highest one during the
rounds, respectively. PMom: Polyak momentum SGD; NMom: Nesterov momentum SGD; BS:
minibatch size.

Dataset Method Vanilla Training Federated Learning

BS: 50 BS: 500 IID Non-IID(2)

CIFAR-10 Pure SGD 82.47 (82.72) 78.97 (79.06) 81.12 (81.36) 68.92 (69.57)
CIFAR-10 PMom-WB - - 81.56 (81.82) 74.30 (74.57)
CIFAR-10 PMom-A - - 81.78 (81.83) 74.82 (75.06)
CIFAR-10 NMom-WB 83.89 (83.90) 79.39 (79.49) 81.56 (81.99) 74.21 (74.31)
CIFAR-10 NMom-A 83.89 (83.90) 79.39 (79.49) 81.49 (81.82) 74.11 (74.23)
CIFAR-10 Adam-WB 81.97 (82.35) 80.73 (80.76) 80.99 (81.00) 67.51 (67.82)
CIFAR-10 Adam-A 81.97 (82.35) 80.73 (80.76) 81.18 (81.45) 75.32 (75.45)

SVHN Adam-WB - - 92.82 (93.12) 88.70 (88.91)
SVHN Adam-A - - 92.89 (93.28) 90.72 (90.95)

Parameter divergence between (dq)
t+1
k with the fixed q. At round t+1, suppose that for class q,∥∥∥(aq)t+ τ

R

k

∥∥∥ ≤ G′, ∀k ∈ K, 0 ≤ τ < R, and
∥∥∥(aq)t+ τ

R
i − (aq)

t+ τ
R

j

∥∥∥ ≤ H ′, ∀i, j ∈ K, 0 ≤ τ < R.
Then, similar with Equation 1, we can have∥∥(dq)t+1

i − (dq)
t+1
j

∥∥ ≤ ηRH ′pi(y = q) + ηRG′ ‖pi(y = q)− pj(y = q)‖ . (2)

C THE COMPLETE EXPERIMENTAL RESULTS

In this section we provide our complete experimental results. Before the main statement, we first
note that in the following figures, Cij denotes the j-th convolutional layer in the i-th group, and Fj
denotes the j-th fully-connected layer (in relation, refer to Appendix A.1). In addition, we remind
that in this paper “vanilla” training refers to non-distributed training with a single machine, using
the whole data examples; for the vanilla training, we trained the networks for 100 epochs.

C.1 THE EFFECT OF OPTIMIZERS

Here we investigate the effect of optimizers. We importantly note that both momentum SGD and
Adam require the additional variables related to momentum as well as weights and biases; the terms
(optimizer name)-A and (optimizer name)-WB are used to refer to the parameter averaging being
performed for all the variables and only for weights & biases, respectively.

The experimental results are provided in Table 7 and Figures 10 and 11. From the table, interest-
ingly we can notice that under the non-IID data setting, there exists a huge performance gap between
Adam-A and Adam-WB (≈ 7%), unlike the momentum SGD trials. At the initial steps of this study,
we had thought that the poor performance of Adam-WB would be from the following: Since Adam
requires twice as many momentum variables as momentum SGD, extreme parameter divergence
could appear if they are not averaged together with weights and biases. However, unlike our expec-
tations, the parameter divergence values under the Adam-WB was seen to be similar or even smaller
than under Adam-A. Nevertheless, we can observe the followings for the non-IID cases: First, the
parameter divergence of Adam-WB in F3 is bigger than that of Adam-A at the very early rounds
(as we expected), but soon it is abnormally sharply reduced over rounds; this can be considered the
steep fall phenomenon. Second, Adam-WB leads to higher training loss of each learner. We guess
that these two caused the severe degradation of Adam-WB in test accuracy.

C.2 THE EFFECT OF NETWORK DEPTH

Here we investigate the effect of network depth. Since deepening networks also indicates that there
becomes having more parameters to be averaged in the considered federated learning algorithm, we
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Table 8: Test accuracy (%) comparison with respect to network depth. Values outside/inside brack-
ets denote one measured after the whole training and the highest one during the rounds, respectively.
Note that ResNet-14 and ResNet-20 have 14 layers (13 convolutional layers + 1 fully-connected
layer) and 20 layers (19 convolutional layers + 1 fully-connected layer), respectively; they use the
global average pooling after the last convolutional layer, in common with NetC-Baseline. For ref-
erence, in our trials with Batch Normalization and data augmentation, the ResNet-20 could achieve
test accuracy of 89.18 and 89.07 under Nesterov Momentum SGD and Adam, respectively.

Dataset Network Method Vanilla Training Federated Learning

BS: 50 BS: 500 IID Non-IID(2)

CIFAR-10 NetA-Baseline PMom-A - - 81.78 (81.83) 74.82 (75.06)
CIFAR-10 NetA-Deeper PMom-A - - 82.93 (83.26) 74.73 (75.16)
CIFAR-10 NetA-Deepest PMom-A - - 81.99 (82.75) 69.77 (70.42)
CIFAR-10 NetA-Baseline NMom-A 83.89 (83.90) 79.39 (79.49) 81.49 (81.82) 74.11 (74.23)
CIFAR-10 NetA-Deeper NMom-A 85.94 (86.00) 81.23 (81.29) 83.40 (83.63) 73.67 (73.89)
CIFAR-10 NetA-Deepest NMom-A 86.20 (86.33) 79.48 (79.53) 83.12 (83.58) 68.98 (69.64)

SVHN NetA-Baseline NMom-A - - 93.02 (93.26) 89.28 (89.70)
SVHN NetA-Deepest NMom-A - - 94.42 (94.71) 89.12 (89.84)

CIFAR-10 NetC-Baseline NMom-A 84.25 (84.50) 76.70 (76.82) 80.60 (80.75) 64.06 (64.55)
CIFAR-10 ResNet-14 NMom-A - - 81.24 (81.64) 62.14 (62.47)
CIFAR-10 ResNet-20 NMom-A - - 82.30 (82.77) 59.98 (59.98)
CIFAR-10 NetC-Baseline Adam-A 82.59 (83.42) 79.71 (80.89) 81.72 (81.80) 68.41 (68.75)
CIFAR-10 ResNet-14 Adam-A - - 79.32 (79.99) 64.46 (64.92)
CIFAR-10 ResNet-20 Adam-A - - 78.40 (79.28) 63.50 (64.06)

had predicted especially under non-IID data settings that depending on their depth, it would yield
bigger parameter divergence in the whole model and the consequent diminishing returns compared
to under the vanilla training and the IID data setting; the test accuracy results show it as expected
(see Table 8).11 Moreover, it is also seen from Figure 12 that parameter divergence increases also
qualitatively (i.e., in a layer level) under the non-IID data setting, as the number of convolutional
layers increases. Note that for C21 and C31, the divergence pattern is resulted as opposed to that of
C11 and F3; however, the values ofC11 and F3 would be more impactful as mentioned in Footnote 8.

We additionally remark from the figure that the sharp reduction of parameter divergence (in the
convolutional layers) at the very early rounds when using NetA-Deepest indicates the parameter
averaging algorithm did not work properly. Correspondingly, the test accuracy values in the early
period were seen to be not much different from the initial one.

C.3 THE EFFECT OF NETWORK WIDTH

Following the previous subsection, from now on we investigate the effect of network width. Contrary
to the results in the Section C.2, it is seen from Table 9 that widening networks provides positive
effects for the considered federated learning algorithm under the non-IID data setting. Especially,
one can see that compared to the max pooling trials, while the global average pooling yields higher
test accuracy in the vanilla training (with the minibatch size of 50), its performance gets signifi-
cantly worse under the non-IID data setting (remind that NetB-Baseline and NetC-Baseline use
the global average pooling after the last convolutional layer). Focusing on the NetC models, we
here make the following observations for the non-IID data setting from Figures 15, 18, and 21:
First, the considered federated learning algorithm provides bigger parameter divergence in F1 as
its width decreases (note that each input size of F1 is 256, 1024, and 4096 for NetC-Baseline,
NetC-Wider, and NetC-Widest, respectively), especially during the beginning rounds (e.g., for the
NMom-A case, until about 50 rounds). Unlike in Section C.2, here we can identify that even though
the parameter size of is the smallest under the global averaging pooling, it rather yields the biggest
qualitative parameter divergence. Second, the steep fall phenomenon appears in F1 for the NetC-

11Note that for the SVHN cases, the test accuracy of NetA-Deepest is higher than that of NetA-Baseline
under the non-IID data setting, but the increase is much smaller than under the IID data setting.
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Table 9: Test accuracy (%) comparison with respect to network width. Values outside/inside brackets
denote one measured after the whole training and the highest one during the rounds, respectively.

Dataset Network Method Vanilla Training Federated Learning

BS: 50 BS: 500 IID Non-IID(2)

CIFAR-10 NetA-Narrowest pure SGD 81.64 (81.76) 76.68 (77.06) 78.78 (78.93) 67.66 (67.98)
CIFAR-10 NetA-Narrower pure SGD 82.46 (82.68) 78.32 (78.38) 79.58 (79.72) 68.93 (69.28)
CIFAR-10 NetA-Baseline pure SGD 82.47 (82.72) 78.97 (79.06) 81.12 (81.36) 68.92 (69.57)

CIFAR-10 NetB-Baseline pure SGD 84.18 (84.61) 69.22 (69.22) 74.58 (74.59) 54.39 (54.84)
CIFAR-10 NetB-Wider pure SGD 81.41 (81.59) 76.69 (77.57) 79.49 (79.81) 65.06 (65.29)
CIFAR-10 NetB-Widest pure SGD 82.60 (82.65) 79.10 (79.27) 80.31 (80.37) 68.77 (69.20)

CIFAR-10 NetC-Baseline pure SGD 83.64 (83.69) 68.46 (68.47) 72.64 (72.70) 58.13 (58.51)
CIFAR-10 NetC-Wider pure SGD 79.88 (79.96) 76.69 (76.87) 78.08 (78.24) 68.30 (68.65)
CIFAR-10 NetC-Widest pure SGD 82.11 (82.21) 78.28 (78.34) 79.94 (79.97) 70.33 (70.51)

CIFAR-10 NetC-Baseline PMom-A - - 79.69 (79.84) 64.42 (64.54)
CIFAR-10 NetC-Widest PMom-A - - 80.12 (80.36) 74.68 (75.18)

CIFAR-10 NetA-Narrowest NMom-A 82.03 (82.06) 77.75 (77.92) 80.75 (81.02) 72.57 (72.64)
CIFAR-10 NetA-Narrower NMom-A 83.50 (83.50) 78.11 (78.59) 81.29 (81.44) 73.44 (73.60)
CIFAR-10 NetA-Baseline NMom-A 83.89 (83.90) 79.39 (79.49) 81.49 (81.82) 74.11 (74.23)

CIFAR-10 NetB-Baseline NMom-A 85.05 (85.13) 79.74 (79.79) 82.57 (82.65) 62.82 (63.08)
CIFAR-10 NetB-Wider NMom-A 82.74 (82.90) 77.29 (77.47) 80.03 (80.43) 72.24 (72.32)
CIFAR-10 NetB-Widest NMom-A 83.59 (83.60) 79.31 (79.77) 81.47 (81.73) 74.35 (74.52)

CIFAR-10 NetC-Baseline NMom-A 84.25 (84.50) 76.70 (76.82) 80.60 (80.75) 64.06 (64.55)
CIFAR-10 NetC-Wider NMom-A 81.48 (81.53) 77.00 (77.14) 79.59 (79.85) 72.61 (72.97)
CIFAR-10 NetC-Widest NMom-A 83.16 (83.36) 78.39 (78.56) 80.90 (81.14) 73.64 (73.91)

SVHN NetC-Baseline NMom-A - - 92.64 (92.85) 82.69 (83.35)
SVHN NetC-Widest NMom-A - - 92.19 (92.50) 89.55 (90.62)

CIFAR-10 NetA-Narrowest Adam-A 80.62 (81.02) 79.72 (79.72) 79.82 (79.88) 75.06 (75.18)
CIFAR-10 NetA-Narrower Adam-A 82.23 (82.51) 80.80 (80.80) 81.04 (81.09) 74.88 (74.88)
CIFAR-10 NetA-Baseline Adam-A 81.97 (82.35) 80.73 (80.76) 81.18 (81.45) 75.32 (75.45)

CIFAR-10 NetB-Baseline Adam-A 83.52 (83.62) 80.98 (81.61) 81.68 (82.29) 71.40 (71.45)
CIFAR-10 NetB-Wider Adam-A 81.20 (81.39) 79.49 (79.62) 80.22 (80.39) 74.42 (74.67)
CIFAR-10 NetB-Widest Adam-A 82.08 (82.29) 80.87 (80.87) 81.02 (81.20) 74.93 (75.41)

CIFAR-10 NetC-Baseline Adam-A 82.59 (83.42) 79.71 (80.89) 81.72 (81.80) 68.41 (68.75)
CIFAR-10 NetC-Wider Adam-A 80.77 (80.94) 77.31 (77.48) 78.81 (79.09) 75.09 (75.22)
CIFAR-10 NetC-Widest Adam-A 81.53 (81.59) 78.80 (78.92) 79.91 (80.08) 76.57 (76.57)

Baseline case. Third, the global average pooling gives too high training loss of each learner. All
the three observations fit well into the failure of the global average pooling.

We additionally note that when using NetC-Baseline, the results under the IID data setting shows
very high loss values; this leads to diminishing returns for the pure SGD and the NMom-A cases,
compared to the vanilla training results with the minibatch size of 50. However, the corresponding
degradation rate is seen to be much higher under the non-IID data setting. This is because the local
updates are extremely easy to be overfitted to the training data under the non-IID data setting; thus
the converged training losses being high becomes much more critical.

C.4 THE EFFECT OF WEIGHT DECAY

Here we investigate the effect of weight decay. From Table 10, it is seen that under the non-IID data
setting we should apply much smaller weight decay for the considered federated learning algorithm
than under the vanilla training or the IID data setting. For its internal reason, Figures 22, 23, and
24 show that under the non-IID data setting, the considered federated learning algorithm not only
converges to too high training loss (of each learner) but also causes excessive parameter divergence
when the weight decay factor is set to 0.0005. Here we note that if a single iteration is considered
for each learner’s local update per round, the corresponding parameter divergence will be of course
the same without regard to degree of weight decay. However, in our experiments, the great number
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Table 10: Test accuracy (%) comparison of NetA-Baseline with respect to weight decay levels.
Values outside/inside brackets denote one measured after the whole training and the highest one
during the rounds, respectively. WD: weight decay.

Dataset Method WD Factor Vanilla Training Federated Learning

BS: 50 BS: 500 IID Non-IID(2)

CIFAR-10 pure SGD 0.0 81.33 (81.33) 78.00 (78.16) 79.88 (80.09) 68.85 (69.79)
CIFAR-10 pure SGD 0.00005 82.47 (82.72) 78.97 (79.06) 81.12 (81.36) 68.92 (69.57)
CIFAR-10 pure SGD 0.0001 82.00 (82.19) 79.58 (79.74) 81.28 (81.40) 68.95 (69.03)
CIFAR-10 pure SGD 0.0005 82.39 (82.54) 78.92 (78.95) 80.28 (80.28) 47.43 (47.66)
CIFAR-10 PMom-A 0.00005 - - 81.78 (81.83) 74.82 (75.06)
CIFAR-10 PMom-A 0.0005 - - 82.67 (83.21) 55.57 (56.25)
CIFAR-10 NMom-A 0.0 81.13 (81.15) 79.09 (79.25) 81.68 (81.90) 73.95 (64.27)
CIFAR-10 NMom-A 0.00005 83.89 (83.90) 79.39 (79.49) 81.49 (81.82) 74.11 (74.23)
CIFAR-10 NMom-A 0.0001 84.29 (84.46) 79.13 (79.74) 82.22 (82.25) 72.65 (72.79)
CIFAR-10 NMom-A 0.0005 83.66 (84.60) 80.48 (80.79) 82.69 (83.14) 54.11 (54.15)

SVHN NMom-A 0.00005 - - 93.02 (93.26) 89.28 (89.70)
SVHN NMom-A 0.0005 - - 93.23 (93.72) 76.31 (76.82)

CIFAR-10 Adam-A 0.0 80.70 (80.73) 80.01 (80.01) 80.11 (80.19) 74.77 (74.93)
CIFAR-10 Adam-A 0.00005 81.97 (82.35) 80.73 (80.76) 81.18 (81.45) 75.32 (75.45)
CIFAR-10 Adam-A 0.0001 82.79 (83.19) 81.27 (81.30) 81.74 (81.84) 75.95 (76.02)
CIFAR-10 Adam-A 0.0005 82.93 (84.44) 81.34 (81.54) 82.33 (83.06) 69.75 (69.75)
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Figure 8: Comparison of test accuracy and parameter divergence under Non-IID(2) setting with
respect to FedProx factor µ in the training of NetA-Baseline on CIFAR-10 (Optimizer: NMom-
A).

of local iterations per round (i.e., 100) made a big difference of the divergence values under the
non-IID data setting; this eventually yielded the accuracy gap. In addition, we further observe under
the non-IID data setting that even with the weight decay factor of 0.0005, the test accuracy increases
similarly with its smaller values at very early rounds, in which the norm values of the weights are
relatively much smaller.

Moreover we also conducted additional experiments for the related regularization techniques,
FedProx (Li et al., 2019b). Under the FedProx, in order to make local updates do not de-
viate excessively from the current global model parameters, at each round t each learner uses
the following surrogate loss function that adds a proximal term to the original objective function:
`(w)+ µ

2

∥∥w −wt−1∥∥2. Figure 8 shows the experimental results; as seen from the figure, in our im-
plementation FedProx did not provide dramatic improvement in final accuracy, but we can observe
that it could yield not only lower parameter divergence but also faster convergence speed (especially
before the first learning rate drop). One can find the corresponding complete results in Figure 25.

C.5 THE EFFECT OF BATCH NORMALIZATION

Here we investigate the effect of Batch Normalization. For its implementations into the con-
sidered federated learning algorithm, we let the server get the proper moving variance by
1
K

∑
k∈K

(
E
[
φ2
])
k
− E

[
φ
]2

at each round, by allowing each learner k collect
(
E
[
φ2
])
k

as well
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Table 11: Test accuracy (%) comparison of NetA-Baseline with/without Batch Normaliza-
tion/Renormalization. Values outside/inside brackets denote one measured after the whole train-
ing and the highest one during the rounds, respectively. BN: Batch Normalization; BRN: Batch
Renormalization.

Dataset Method Vanilla Training Federated Learning

BS: 50 BS: 500 IID Non-IID(2)

CIFAR-10 pure SGD 82.47 (82.72) 78.97 (79.06) 81.12 (81.36) 68.92 (69.57)
CIFAR-10 pure SGD + BN 85.06 (85.17) 78.33 (78.70) 82.91 (83.02) 57.56 (58.68)
CIFAR-10 pure SGD + BRN 85.67 (85.72) 81.49 (81.65) 84.00 (84.19) 66.19 (66.32)
CIFAR-10 PMom-A - - 81.78 (81.83) 74.82 (75.06)
CIFAR-10 PMom-A + BN - - 83.74 (83.84) 52.76 (59.69)
CIFAR-10 NMom-A 83.89 (83.90) 79.39 (79.49) 81.49 (81.82) 74.11 (74.23)
CIFAR-10 NMom-A + BN 85.22 (85.25) 79.58 (80.14) 83.54 (83.80) 50.46 (59.31)
CIFAR-10 NMom-A + BRN 86.36 (86.43) 82.03 (82.46) 84.24 (84.70) 70.32 (70.38)

SVHN NMom-A - - 93.02 (93.26) 89.28 (89.70)
SVHN NMom-A + BN - - 92.96 (93.34) 74.50 (79.73)

CIFAR-10 Adam-A 81.97 (82.35) 80.73 (80.76) 81.18 (81.45) 75.32 (75.45)
CIFAR-10 Adam-A + BN 85.76 (85.93) 83.84 (83.93) 84.88 (85.17) 39.31 (47.67)
CIFAR-10 Adam-A + BRN 85.86 (86.11) 83.18 (83.36) 84.68 (84.91) 72.49 (72.71)

as the existing moving statistics of Batch Normalization (φ denotes activations). This can be re-
garded as a federated version of distributed Batch Normazliation methods (e.g., Qin et al. (2018);
Zhang et al. (2018)). It is natural to take this strategy especially under the non-IID data setting;
otherwise, a huge problem would arise due to bad approximation of the moving statistics. Also, it
is additionally remarked that for Batch Renormalization we simply used α = 0.01, rmax = 2, and
dmax = 2 in the experiments (see Ioffe (2017) for the description of the three hyperparameters).

It is seen from Table 11 that under the non-IID data setting, the performance significantly gets worse
if Batch Normalization is employed to the baseline; this would be rooted in that the dependence of
batch-normalized hidden activations makes each learner’s update too overfitted to the distribution
of their local training data. The consequent bigger parameter divergence is observed in Figures 26,
27, and 28. On the contrary, Batch Renormalization, by relaxing the dependence, yields a better
outcome; although its parameter divergence is seen greater in some layers than under Batch Nor-
malization, it does not lead to the steep fall phenomenon while the Batch Normalization does in F3.
Nevertheless, the Batch Renormalization was still not able to exceed the performance of the baseline
due to the significant parameter divergence.12

C.6 THE EFFECT OF DATA AUGMENTATION

In the implementation of data augmentation, we used random horizontal flipping, brightness &
contrast adjustment, and 24×24 cropping & resizing in the pipeline. From Table 12, we identify that
under the non-IID data setting, the data augmentation yields diminishing returns for the PMom-A,
NMom-A, and Adam-A cases on CIFAR-10, compared to under the IID data setting; under Adam-
A, especially it gives even a worse outcome. However, it is seen that the corresponding parameter
divergence is almost similar between with and without the data augmentation (refer to Figures 30
and 31). Instead, we are able to notice that the diminishing outcomes from the data augmentation
had been eventually rooted in local updates’ high training losses. Here we note that in the pure
SGD case, very high training loss values are found as well under the IID data setting when the data
augmentation was applied (see Figure 29); this leads to lower test accuracy compared to the baseline,

12During the experiments, we observed that Batch Renormalization yields relatively heavy fluctuation of
test accuracy and training loss until the first learning rate drop. This is thought to have the effect of setting
rmax and dmax to the fixed value, as discussed in Ioffe (2017); however we guess that the effect of the data
non-IIDness might be greater, judging from the degree of the fluctuation under the IID and the non-IID data
setting.
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Table 12: Test accuracy (%) comparison of NetA-Baseline with/without data augmentation. Values
outside/inside brackets denote one measured after the whole training and the highest one during the
rounds, respectively. DA: data augmentation.

Dataset Method Vanilla Training Federated Learning

BS: 50 BS: 500 IID Non-IID(2)

CIFAR-10 pure SGD 82.47 (82.72) 78.97 (79.06) 81.12 (81.36) 68.92 (69.57)
CIFAR-10 pure SGD + DA 86.79 (86.97) 77.66 (78.03) 80.39 (80.48) 68.33 (68.69)

CIFAR-10 PMom-A - - 81.78 (81.83) 74.82 (75.06)
CIFAR-10 PMom-A + DA - - 83.87 (83.93) 72.40 (74.01)
CIFAR-10 NMom-A 83.89 (83.90) 79.39 (79.49) 81.49 (81.82) 74.11 (74.23)
CIFAR-10 NMom-A + DA 87.16 (87.41) 83.07 (83.35) 84.85 (84.89) 73.95 (74.46)

SVHN NMom-A - - 93.02 (93.26) 89.28 (89.70)
SVHN NMom-A + DA - - 94.51 (94.66) 90.61 (91.59)

CIFAR-10 Adam-A 81.97 (82.35) 80.73 (80.76) 81.18 (81.45) 75.32 (75.45)
CIFAR-10 Adam-A + DA 83.27 (83.54) 84.84 (84.96) 82.63 (82.99) 72.79 (73.67)

Table 13: Test accuracy (%) comparison of NetA-Baseline with/without Dropout. Values out-
side/inside brackets denote one measured after the whole training and the highest one during the
rounds, respectively. DO: Dropout.

Dataset Method Vanilla Training Federated Learning

BS: 50 BS: 500 IID Non-IID(2)

CIFAR-10 pure SGD 82.47 (82.72) 78.97 (79.06) 81.12 (81.36) 68.92 (69.57)
CIFAR-10 pure SGD + DO 85.76 (85.79) 82.48 (82.53) 83.40 (83.52) 73.02 (73.04)

CIFAR-10 PMom-A - - 81.78 (81.83) 74.82 (75.06)
CIFAR-10 PMom-A + DO - - 84.29 (84.38) 76.83 (76.88)
CIFAR-10 NMom-A 83.89 (83.90) 79.39 (79.49) 81.49 (81.82) 74.11 (74.23)
CIFAR-10 NMom-A + DO 86.55 (86.63) 84.29 (84.32) 84.34 (84.53) 75.80 (75.89)

SVHN NMom-A - - 93.02 (93.26) 89.28 (89.70)
SVHN NMom-A + DO - - 94.14 (94.36) 90.61 (91.45)

CIFAR-10 Adam-A 81.97 (82.35) 80.73 (80.76) 81.18 (81.45) 75.32 (75.45)
CIFAR-10 Adam-A + DO 84.27 (84.46) 83.09 (83.20) 82.01 (82.11) 76.63 (76.68)

similar to under the non-IID cases. Also, it is additionally noted that unlike on the CIFAR-10, in the
experiments on SVHN it was observed that the generalization effect of the data augmentation is still
valid in test accuracy.

C.7 THE EFFECT OF DROPOUT

In the experiments, we employed Dropout with the rates 0.2 and 0.5 for convolutional layers and
fully-connected layers, respectively. The results show that under the non-IID data setting, the
Dropout provides greater parameter divergence compared to the baselines, especially in F3 (see
Figures 32, 33, and 34); this leads to diminishing returns for the PMom-A and NMom-A cases on
CIFAR-10, compared to under the IID data setting. However, we can observe from Table 13 that the
effect of the Dropout is still maintained positive for the rest of the cases.

21



Under review as a conference paper at ICLR 2020

C.8 THE EXPERIMENT RESULTS UNDER UNBALANCED DATA SETTINGS

As remarked in (McMahan et al., 2017), since the federated learning do not require centralizing lo-
cal data, data unbalancedness (i.e., each learner has various numbers of local data examples) would
be also naturally assumed in the federated learning along with non-IIDness. In relation, we also
conducted the experiments under the unbalanced cases. Table 14 summarizes the considered unbal-
anced data settings; they were constructed similarly to (Li et al., 2019b) so that the number of data
examples per learner follows a power law.

The experimental results under the unbalanced settings are summarized in Table 15. From the table,
it is observed that our findings in Section 4.1 are still valid under the unbalanced data settings. In
addition, we can also see that for the unbalanced cases, the performance under Non-IID(2) setting is
worse mostly than that of balanced cases while they show similar values under the IID data setting;
this indicates that the negative impact of data unbalancedness is not as great as that of the non-
IIDness, but it becomes much bigger when the two are combined.

Table 14: Configuration of unbalanced data settings. #Cls/L: the number of classes in each learner’s
local training dataset; #Exs/L: the number of training examples in each local dataset.

Data Setting #Learners #Cls/L #Exs/L

Mean Std.

IID 10 10 5000 2905
Non-IID(2) 10 2 5000 2905

Table 15: Test accuracy (%) comparison on CIFAR-10 under the balanced and the unbalanced data
settings. Values outside/inside brackets denote one measured after the whole training and the highest
one during the rounds, respectively.

Network Method Balanced Data Setting Unbalanced Data Setting

IID Non-IID(2) IID Non-IID(2)

NetA-Baseline Adam-WB 80.99 (81.00) 67.51 (67.82) 80.03 (80.27) 56.52 (59.62)
NetA-Baseline Adam-A 81.18 (81.45) 75.32 (75.45) 81.02 (81.14) 73.12 (73.19)

NetA-Baseline NMom-A 81.49 (81.82) 74.11 (74.23) 81.31 (81.49) 72.59 (72.86)
NetA-Deepest NMom-A 83.12 (83.58) 68.98 (69.64) 83.67 (83.68) 69.10 (69.23)
NetC-Baseline NMom-A 80.60 (80.75) 64.06 (64.55) 81.00 (81.10) 62.23 (62.30)
NetC-Widest NMom-A 80.90 (81.14) 73.64 (73.91) 80.67 (80.76) 71.84 (72.34)

NetA-Baseline NMom-A 81.49 (81.82) 74.11 (74.23) 81.31 (81.49) 72.59 (72.86)
NetA-Baseline NMom-A + WD: 0.0005 82.69 (83.14) 54.11 (54.15) 82.76 (83.13) 47.85 (47.85)
NetA-Baseline NMom-A + BN 83.54 (83.80) 50.46 (59.31) 83.38 (83.54) 45.92 (50.95)
NetA-Baseline NMom-A + DA 84.85 (84.89) 73.95 (74.46) 84.16 (84.19) 73.60 (74.06)
NetA-Baseline NMom-A + DO 84.34 (84.53) 75.80 (75.89) 84.25 (84.38) 68.83 (70.33)
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Figure 9: Behavior comparison with respect to the degree of data non-IIDness in the training of
NetA-Baseline on CIFAR-10 (Optimizer: NMom-A).
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Figure 10: Behavior comparison between NMom-WB and Nmom-A in the training of
NetA-Baseline on CIFAR-10. Dotted and solid lines indicate the results under IID and Non-IID(2)
setting, respectively.
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Figure 11: Behavior comparison between Adam-WB and Adam-A in the training of NetA-Baseline
on CIFAR-10. Dotted and solid lines indicate the results under IID and Non-IID(2) setting, respec-
tively.
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Figure 12: Behavior comparison of the NetA models with respect to network depth on CIFAR-10
(Optimizer: NMom-A). Dotted and solid lines indicate the results under IID and Non-IID(2) setting,
respectively.
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Figure 13: Behavior comparison of the NetA models with respect to network width on CIFAR-10
(Optimizer: pure SGD). Dotted and solid lines indicate the results under IID and Non-IID(2) setting,
respectively.
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Figure 14: Behavior comparison of the NetB models with respect to network width on CIFAR-10
(Optimizer: pure SGD). Dotted and solid lines indicate the results under IID and Non-IID(2) setting,
respectively.
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Figure 15: Behavior comparison of the NetC models with respect to network width on CIFAR-10
(Optimizer: pure SGD). Dotted and solid lines indicate the results under IID and Non-IID(2) setting,
respectively.
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Figure 16: Behavior comparison of the NetA models with respect to network width on CIFAR-10
(Optimizer: NMom-A). Dotted and solid lines indicate the results under IID and Non-IID(2) setting,
respectively.
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Figure 17: Behavior comparison of the NetB models with respect to network width on CIFAR-10
(Optimizer: NMom-A). Dotted and solid lines indicate the results under IID and Non-IID(2) setting,
respectively.
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Figure 18: Behavior comparison of the NetC models with respect to network width on CIFAR-10
(Optimizer: NMom-A). Dotted and solid lines indicate the results under IID and Non-IID(2) setting,
respectively.
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Figure 19: Behavior comparison of the NetA models with respect to network width on CIFAR-10
(Optimizer: Adam-A). Dotted and solid lines indicate the results under IID and Non-IID(2) setting,
respectively.
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Figure 20: Behavior comparison of the NetB models with respect to network width on CIFAR-10
(Optimizer: Adam-A). Dotted and solid lines indicate the results under IID and Non-IID(2) setting,
respectively.
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Figure 21: Behavior comparison of the NetC models with respect to network width on CIFAR-10
(Optimizer: Adam-A). Dotted and solid lines indicate the results under IID and Non-IID(2) setting,
respectively.
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Figure 22: Behavior comparison with respect to weight decay levels in the training of NetA-
Baseline on CIFAR-10 (Optimizer: pure SGD). Dotted and solid lines indicate the results under
IID and Non-IID(2) setting, respectively.
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Figure 23: Behavior comparison with respect to weight decay levels in the training of NetA-
Baseline on CIFAR-10 (Optimizer: NMom-A). Dotted and solid lines indicate the results under
IID and Non-IID(2) setting, respectively.
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Figure 24: Behavior comparison with respect to weight decay levels in the training of NetA-
Baseline on CIFAR-10 (Optimizer: Adam-A). Dotted and solid lines indicate the results under
IID and Non-IID(2) setting, respectively.
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Figure 25: Behavior comparison under Non-IID(2) setting with respect to FedProx factor µ in the
training of NetA-Baseline on CIFAR-10 (Optimizer: NMom-A).
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Figure 26: Behavior comparison with/without Batch Normalization/Renormalization in the training
of NetA-Baseline on CIFAR-10 (Optimizer: pure SGD). Dotted and solid lines indicate the results
under IID and Non-IID(2) setting, respectively.
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Figure 27: Behavior comparison with/without Batch Normalization/Renormalization in the training
of NetA-Baseline on CIFAR-10 (Optimizer: NMom-A). Dotted and solid lines indicate the results
under IID and Non-IID(2) setting, respectively.
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Figure 28: Behavior comparison with/without Batch Normalization/Renormalization in the training
of NetA-Baseline on CIFAR-10 (Optimizer: Adam-A). Dotted and solid lines indicate the results
under IID and Non-IID(2) setting, respectively.
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Figure 29: Behavior comparison with/without data augmentation in the training of NetA-Baseline
on CIFAR-10 (Optimizer: pure SGD). Dotted and solid lines indicate the results under IID and
Non-IID(2) setting, respectively.
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Figure 30: Behavior comparison with/without data augmentation in the training of NetA-Baseline
on CIFAR-10 (Optimizer: NMom-A). Dotted and solid lines indicate the results under IID and Non-
IID(2) setting, respectively.
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Figure 31: Behavior comparison with/without data augmentation in the training of NetA-Baseline
on CIFAR-10 (Optimizer: Adam-A). Dotted and solid lines indicate the results under IID and Non-
IID(2) setting, respectively.
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Figure 32: Behavior comparison with/without Dropout in the training of NetA-Baseline on CIFAR-
10 (Optimizer: pure SGD). Dotted and solid lines indicate the results under IID and Non-IID(2)
setting, respectively.
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Figure 33: Behavior comparison with/without Dropout in the training of NetA-Baseline on CIFAR-
10 (Optimizer: NMom-A). Dotted and solid lines indicate the results under IID and Non-IID(2)
setting, respectively.
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Figure 34: Behavior comparison with/without Dropout in the training of NetA-Baseline on CIFAR-
10 (Optimizer: Adam-A). Dotted and solid lines indicate the results under IID and Non-IID(2)
setting, respectively.
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Adam-A at 300th Round Adam-WB at 300th Round

Figure 35: Loss surface of the global model parameters with Adam-WB and with Adam-A under
Non-IID(2) setting.
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Figure 36: Loss surface of the global model parameters with/without Batch Normalization under
Non-IID(2) setting.
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